Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175         fix1             = _mm256_setzero_pd();
176         fiy1             = _mm256_setzero_pd();
177         fiz1             = _mm256_setzero_pd();
178         fix2             = _mm256_setzero_pd();
179         fiy2             = _mm256_setzero_pd();
180         fiz2             = _mm256_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209             dx10             = _mm256_sub_pd(ix1,jx0);
210             dy10             = _mm256_sub_pd(iy1,jy0);
211             dz10             = _mm256_sub_pd(iz1,jz0);
212             dx20             = _mm256_sub_pd(ix2,jx0);
213             dy20             = _mm256_sub_pd(iy2,jy0);
214             dz20             = _mm256_sub_pd(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
222             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
223             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
224
225             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
229                                                                  charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm256_setzero_pd();
236             fjy0             = _mm256_setzero_pd();
237             fjz0             = _mm256_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm256_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_pd(iq0,jq0);
247             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
248                                             vdwioffsetptr0+vdwjidx0B,
249                                             vdwioffsetptr0+vdwjidx0C,
250                                             vdwioffsetptr0+vdwjidx0D,
251                                             &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm256_mul_pd(r00,vftabscale);
255             vfitab           = _mm256_cvttpd_epi32(rt);
256             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
257             vfitab           = _mm_slli_epi32(vfitab,2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
264             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
265             Heps             = _mm256_mul_pd(vfeps,H);
266             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
267             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
268             velec            = _mm256_mul_pd(qq00,VV);
269             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
270             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
278             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_pd(velecsum,velec);
282             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
283
284             fscal            = _mm256_add_pd(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm256_mul_pd(fscal,dx00);
288             ty               = _mm256_mul_pd(fscal,dy00);
289             tz               = _mm256_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm256_add_pd(fix0,tx);
293             fiy0             = _mm256_add_pd(fiy0,ty);
294             fiz0             = _mm256_add_pd(fiz0,tz);
295
296             fjx0             = _mm256_add_pd(fjx0,tx);
297             fjy0             = _mm256_add_pd(fjy0,ty);
298             fjz0             = _mm256_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r10              = _mm256_mul_pd(rsq10,rinv10);
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq10             = _mm256_mul_pd(iq1,jq0);
308
309             /* Calculate table index by multiplying r with table scale and truncate to integer */
310             rt               = _mm256_mul_pd(r10,vftabscale);
311             vfitab           = _mm256_cvttpd_epi32(rt);
312             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
313             vfitab           = _mm_slli_epi32(vfitab,2);
314
315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
316             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
317             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
318             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
319             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
320             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
321             Heps             = _mm256_mul_pd(vfeps,H);
322             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
323             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
324             velec            = _mm256_mul_pd(qq10,VV);
325             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
326             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
327
328             /* Update potential sum for this i atom from the interaction with this j atom. */
329             velecsum         = _mm256_add_pd(velecsum,velec);
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = _mm256_mul_pd(fscal,dx10);
335             ty               = _mm256_mul_pd(fscal,dy10);
336             tz               = _mm256_mul_pd(fscal,dz10);
337
338             /* Update vectorial force */
339             fix1             = _mm256_add_pd(fix1,tx);
340             fiy1             = _mm256_add_pd(fiy1,ty);
341             fiz1             = _mm256_add_pd(fiz1,tz);
342
343             fjx0             = _mm256_add_pd(fjx0,tx);
344             fjy0             = _mm256_add_pd(fjy0,ty);
345             fjz0             = _mm256_add_pd(fjz0,tz);
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r20              = _mm256_mul_pd(rsq20,rinv20);
352
353             /* Compute parameters for interactions between i and j atoms */
354             qq20             = _mm256_mul_pd(iq2,jq0);
355
356             /* Calculate table index by multiplying r with table scale and truncate to integer */
357             rt               = _mm256_mul_pd(r20,vftabscale);
358             vfitab           = _mm256_cvttpd_epi32(rt);
359             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
360             vfitab           = _mm_slli_epi32(vfitab,2);
361
362             /* CUBIC SPLINE TABLE ELECTROSTATICS */
363             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
364             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
365             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
366             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
367             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
368             Heps             = _mm256_mul_pd(vfeps,H);
369             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
370             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
371             velec            = _mm256_mul_pd(qq20,VV);
372             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
373             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velecsum         = _mm256_add_pd(velecsum,velec);
377
378             fscal            = felec;
379
380             /* Calculate temporary vectorial force */
381             tx               = _mm256_mul_pd(fscal,dx20);
382             ty               = _mm256_mul_pd(fscal,dy20);
383             tz               = _mm256_mul_pd(fscal,dz20);
384
385             /* Update vectorial force */
386             fix2             = _mm256_add_pd(fix2,tx);
387             fiy2             = _mm256_add_pd(fiy2,ty);
388             fiz2             = _mm256_add_pd(fiz2,tz);
389
390             fjx0             = _mm256_add_pd(fjx0,tx);
391             fjy0             = _mm256_add_pd(fjy0,ty);
392             fjz0             = _mm256_add_pd(fjz0,tz);
393
394             fjptrA             = f+j_coord_offsetA;
395             fjptrB             = f+j_coord_offsetB;
396             fjptrC             = f+j_coord_offsetC;
397             fjptrD             = f+j_coord_offsetD;
398
399             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
400
401             /* Inner loop uses 145 flops */
402         }
403
404         if(jidx<j_index_end)
405         {
406
407             /* Get j neighbor index, and coordinate index */
408             jnrlistA         = jjnr[jidx];
409             jnrlistB         = jjnr[jidx+1];
410             jnrlistC         = jjnr[jidx+2];
411             jnrlistD         = jjnr[jidx+3];
412             /* Sign of each element will be negative for non-real atoms.
413              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
414              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
415              */
416             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
417
418             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
419             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
420             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
421
422             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
423             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
424             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
425             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
426             j_coord_offsetA  = DIM*jnrA;
427             j_coord_offsetB  = DIM*jnrB;
428             j_coord_offsetC  = DIM*jnrC;
429             j_coord_offsetD  = DIM*jnrD;
430
431             /* load j atom coordinates */
432             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
433                                                  x+j_coord_offsetC,x+j_coord_offsetD,
434                                                  &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _mm256_sub_pd(ix0,jx0);
438             dy00             = _mm256_sub_pd(iy0,jy0);
439             dz00             = _mm256_sub_pd(iz0,jz0);
440             dx10             = _mm256_sub_pd(ix1,jx0);
441             dy10             = _mm256_sub_pd(iy1,jy0);
442             dz10             = _mm256_sub_pd(iz1,jz0);
443             dx20             = _mm256_sub_pd(ix2,jx0);
444             dy20             = _mm256_sub_pd(iy2,jy0);
445             dz20             = _mm256_sub_pd(iz2,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
449             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
450             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
451
452             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
453             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
454             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
455
456             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
457
458             /* Load parameters for j particles */
459             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
460                                                                  charge+jnrC+0,charge+jnrD+0);
461             vdwjidx0A        = 2*vdwtype[jnrA+0];
462             vdwjidx0B        = 2*vdwtype[jnrB+0];
463             vdwjidx0C        = 2*vdwtype[jnrC+0];
464             vdwjidx0D        = 2*vdwtype[jnrD+0];
465
466             fjx0             = _mm256_setzero_pd();
467             fjy0             = _mm256_setzero_pd();
468             fjz0             = _mm256_setzero_pd();
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             r00              = _mm256_mul_pd(rsq00,rinv00);
475             r00              = _mm256_andnot_pd(dummy_mask,r00);
476
477             /* Compute parameters for interactions between i and j atoms */
478             qq00             = _mm256_mul_pd(iq0,jq0);
479             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
480                                             vdwioffsetptr0+vdwjidx0B,
481                                             vdwioffsetptr0+vdwjidx0C,
482                                             vdwioffsetptr0+vdwjidx0D,
483                                             &c6_00,&c12_00);
484
485             /* Calculate table index by multiplying r with table scale and truncate to integer */
486             rt               = _mm256_mul_pd(r00,vftabscale);
487             vfitab           = _mm256_cvttpd_epi32(rt);
488             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
489             vfitab           = _mm_slli_epi32(vfitab,2);
490
491             /* CUBIC SPLINE TABLE ELECTROSTATICS */
492             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
493             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
494             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
495             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
496             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
497             Heps             = _mm256_mul_pd(vfeps,H);
498             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
499             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
500             velec            = _mm256_mul_pd(qq00,VV);
501             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
502             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
503
504             /* LENNARD-JONES DISPERSION/REPULSION */
505
506             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
507             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
508             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
509             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
510             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
511
512             /* Update potential sum for this i atom from the interaction with this j atom. */
513             velec            = _mm256_andnot_pd(dummy_mask,velec);
514             velecsum         = _mm256_add_pd(velecsum,velec);
515             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
516             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
517
518             fscal            = _mm256_add_pd(felec,fvdw);
519
520             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
521
522             /* Calculate temporary vectorial force */
523             tx               = _mm256_mul_pd(fscal,dx00);
524             ty               = _mm256_mul_pd(fscal,dy00);
525             tz               = _mm256_mul_pd(fscal,dz00);
526
527             /* Update vectorial force */
528             fix0             = _mm256_add_pd(fix0,tx);
529             fiy0             = _mm256_add_pd(fiy0,ty);
530             fiz0             = _mm256_add_pd(fiz0,tz);
531
532             fjx0             = _mm256_add_pd(fjx0,tx);
533             fjy0             = _mm256_add_pd(fjy0,ty);
534             fjz0             = _mm256_add_pd(fjz0,tz);
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r10              = _mm256_mul_pd(rsq10,rinv10);
541             r10              = _mm256_andnot_pd(dummy_mask,r10);
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq10             = _mm256_mul_pd(iq1,jq0);
545
546             /* Calculate table index by multiplying r with table scale and truncate to integer */
547             rt               = _mm256_mul_pd(r10,vftabscale);
548             vfitab           = _mm256_cvttpd_epi32(rt);
549             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
550             vfitab           = _mm_slli_epi32(vfitab,2);
551
552             /* CUBIC SPLINE TABLE ELECTROSTATICS */
553             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
554             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
555             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
556             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
557             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
558             Heps             = _mm256_mul_pd(vfeps,H);
559             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
560             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
561             velec            = _mm256_mul_pd(qq10,VV);
562             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
563             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
564
565             /* Update potential sum for this i atom from the interaction with this j atom. */
566             velec            = _mm256_andnot_pd(dummy_mask,velec);
567             velecsum         = _mm256_add_pd(velecsum,velec);
568
569             fscal            = felec;
570
571             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
572
573             /* Calculate temporary vectorial force */
574             tx               = _mm256_mul_pd(fscal,dx10);
575             ty               = _mm256_mul_pd(fscal,dy10);
576             tz               = _mm256_mul_pd(fscal,dz10);
577
578             /* Update vectorial force */
579             fix1             = _mm256_add_pd(fix1,tx);
580             fiy1             = _mm256_add_pd(fiy1,ty);
581             fiz1             = _mm256_add_pd(fiz1,tz);
582
583             fjx0             = _mm256_add_pd(fjx0,tx);
584             fjy0             = _mm256_add_pd(fjy0,ty);
585             fjz0             = _mm256_add_pd(fjz0,tz);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             r20              = _mm256_mul_pd(rsq20,rinv20);
592             r20              = _mm256_andnot_pd(dummy_mask,r20);
593
594             /* Compute parameters for interactions between i and j atoms */
595             qq20             = _mm256_mul_pd(iq2,jq0);
596
597             /* Calculate table index by multiplying r with table scale and truncate to integer */
598             rt               = _mm256_mul_pd(r20,vftabscale);
599             vfitab           = _mm256_cvttpd_epi32(rt);
600             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
601             vfitab           = _mm_slli_epi32(vfitab,2);
602
603             /* CUBIC SPLINE TABLE ELECTROSTATICS */
604             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
605             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
606             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
607             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
608             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
609             Heps             = _mm256_mul_pd(vfeps,H);
610             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
611             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
612             velec            = _mm256_mul_pd(qq20,VV);
613             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
614             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
615
616             /* Update potential sum for this i atom from the interaction with this j atom. */
617             velec            = _mm256_andnot_pd(dummy_mask,velec);
618             velecsum         = _mm256_add_pd(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_pd(fscal,dx20);
626             ty               = _mm256_mul_pd(fscal,dy20);
627             tz               = _mm256_mul_pd(fscal,dz20);
628
629             /* Update vectorial force */
630             fix2             = _mm256_add_pd(fix2,tx);
631             fiy2             = _mm256_add_pd(fiy2,ty);
632             fiz2             = _mm256_add_pd(fiz2,tz);
633
634             fjx0             = _mm256_add_pd(fjx0,tx);
635             fjy0             = _mm256_add_pd(fjy0,ty);
636             fjz0             = _mm256_add_pd(fjz0,tz);
637
638             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
639             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
640             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
641             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
642
643             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
644
645             /* Inner loop uses 148 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
651                                                  f+i_coord_offset,fshift+i_shift_offset);
652
653         ggid                        = gid[iidx];
654         /* Update potential energies */
655         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
656         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
657
658         /* Increment number of inner iterations */
659         inneriter                  += j_index_end - j_index_start;
660
661         /* Outer loop uses 20 flops */
662     }
663
664     /* Increment number of outer iterations */
665     outeriter        += nri;
666
667     /* Update outer/inner flops */
668
669     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
670 }
671 /*
672  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
673  * Electrostatics interaction: CubicSplineTable
674  * VdW interaction:            LennardJones
675  * Geometry:                   Water3-Particle
676  * Calculate force/pot:        Force
677  */
678 void
679 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
680                     (t_nblist                    * gmx_restrict       nlist,
681                      rvec                        * gmx_restrict          xx,
682                      rvec                        * gmx_restrict          ff,
683                      t_forcerec                  * gmx_restrict          fr,
684                      t_mdatoms                   * gmx_restrict     mdatoms,
685                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
686                      t_nrnb                      * gmx_restrict        nrnb)
687 {
688     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
689      * just 0 for non-waters.
690      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
691      * jnr indices corresponding to data put in the four positions in the SIMD register.
692      */
693     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
694     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
695     int              jnrA,jnrB,jnrC,jnrD;
696     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
697     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
698     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
703     real             scratch[4*DIM];
704     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     real *           vdwioffsetptr0;
706     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     real *           vdwioffsetptr1;
708     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     real *           vdwioffsetptr2;
710     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
712     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
714     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
715     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
716     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
717     real             *charge;
718     int              nvdwtype;
719     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
720     int              *vdwtype;
721     real             *vdwparam;
722     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
723     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
724     __m128i          vfitab;
725     __m128i          ifour       = _mm_set1_epi32(4);
726     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
727     real             *vftab;
728     __m256d          dummy_mask,cutoff_mask;
729     __m128           tmpmask0,tmpmask1;
730     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
731     __m256d          one     = _mm256_set1_pd(1.0);
732     __m256d          two     = _mm256_set1_pd(2.0);
733     x                = xx[0];
734     f                = ff[0];
735
736     nri              = nlist->nri;
737     iinr             = nlist->iinr;
738     jindex           = nlist->jindex;
739     jjnr             = nlist->jjnr;
740     shiftidx         = nlist->shift;
741     gid              = nlist->gid;
742     shiftvec         = fr->shift_vec[0];
743     fshift           = fr->fshift[0];
744     facel            = _mm256_set1_pd(fr->epsfac);
745     charge           = mdatoms->chargeA;
746     nvdwtype         = fr->ntype;
747     vdwparam         = fr->nbfp;
748     vdwtype          = mdatoms->typeA;
749
750     vftab            = kernel_data->table_elec->data;
751     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
752
753     /* Setup water-specific parameters */
754     inr              = nlist->iinr[0];
755     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
756     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
757     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
758     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
759
760     /* Avoid stupid compiler warnings */
761     jnrA = jnrB = jnrC = jnrD = 0;
762     j_coord_offsetA = 0;
763     j_coord_offsetB = 0;
764     j_coord_offsetC = 0;
765     j_coord_offsetD = 0;
766
767     outeriter        = 0;
768     inneriter        = 0;
769
770     for(iidx=0;iidx<4*DIM;iidx++)
771     {
772         scratch[iidx] = 0.0;
773     }
774
775     /* Start outer loop over neighborlists */
776     for(iidx=0; iidx<nri; iidx++)
777     {
778         /* Load shift vector for this list */
779         i_shift_offset   = DIM*shiftidx[iidx];
780
781         /* Load limits for loop over neighbors */
782         j_index_start    = jindex[iidx];
783         j_index_end      = jindex[iidx+1];
784
785         /* Get outer coordinate index */
786         inr              = iinr[iidx];
787         i_coord_offset   = DIM*inr;
788
789         /* Load i particle coords and add shift vector */
790         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
791                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
792
793         fix0             = _mm256_setzero_pd();
794         fiy0             = _mm256_setzero_pd();
795         fiz0             = _mm256_setzero_pd();
796         fix1             = _mm256_setzero_pd();
797         fiy1             = _mm256_setzero_pd();
798         fiz1             = _mm256_setzero_pd();
799         fix2             = _mm256_setzero_pd();
800         fiy2             = _mm256_setzero_pd();
801         fiz2             = _mm256_setzero_pd();
802
803         /* Start inner kernel loop */
804         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
805         {
806
807             /* Get j neighbor index, and coordinate index */
808             jnrA             = jjnr[jidx];
809             jnrB             = jjnr[jidx+1];
810             jnrC             = jjnr[jidx+2];
811             jnrD             = jjnr[jidx+3];
812             j_coord_offsetA  = DIM*jnrA;
813             j_coord_offsetB  = DIM*jnrB;
814             j_coord_offsetC  = DIM*jnrC;
815             j_coord_offsetD  = DIM*jnrD;
816
817             /* load j atom coordinates */
818             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
819                                                  x+j_coord_offsetC,x+j_coord_offsetD,
820                                                  &jx0,&jy0,&jz0);
821
822             /* Calculate displacement vector */
823             dx00             = _mm256_sub_pd(ix0,jx0);
824             dy00             = _mm256_sub_pd(iy0,jy0);
825             dz00             = _mm256_sub_pd(iz0,jz0);
826             dx10             = _mm256_sub_pd(ix1,jx0);
827             dy10             = _mm256_sub_pd(iy1,jy0);
828             dz10             = _mm256_sub_pd(iz1,jz0);
829             dx20             = _mm256_sub_pd(ix2,jx0);
830             dy20             = _mm256_sub_pd(iy2,jy0);
831             dz20             = _mm256_sub_pd(iz2,jz0);
832
833             /* Calculate squared distance and things based on it */
834             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
835             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
836             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
837
838             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
839             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
840             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
841
842             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
843
844             /* Load parameters for j particles */
845             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
846                                                                  charge+jnrC+0,charge+jnrD+0);
847             vdwjidx0A        = 2*vdwtype[jnrA+0];
848             vdwjidx0B        = 2*vdwtype[jnrB+0];
849             vdwjidx0C        = 2*vdwtype[jnrC+0];
850             vdwjidx0D        = 2*vdwtype[jnrD+0];
851
852             fjx0             = _mm256_setzero_pd();
853             fjy0             = _mm256_setzero_pd();
854             fjz0             = _mm256_setzero_pd();
855
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             r00              = _mm256_mul_pd(rsq00,rinv00);
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq00             = _mm256_mul_pd(iq0,jq0);
864             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
865                                             vdwioffsetptr0+vdwjidx0B,
866                                             vdwioffsetptr0+vdwjidx0C,
867                                             vdwioffsetptr0+vdwjidx0D,
868                                             &c6_00,&c12_00);
869
870             /* Calculate table index by multiplying r with table scale and truncate to integer */
871             rt               = _mm256_mul_pd(r00,vftabscale);
872             vfitab           = _mm256_cvttpd_epi32(rt);
873             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
874             vfitab           = _mm_slli_epi32(vfitab,2);
875
876             /* CUBIC SPLINE TABLE ELECTROSTATICS */
877             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
878             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
879             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
880             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
881             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
882             Heps             = _mm256_mul_pd(vfeps,H);
883             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
884             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
885             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
886
887             /* LENNARD-JONES DISPERSION/REPULSION */
888
889             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
890             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
891
892             fscal            = _mm256_add_pd(felec,fvdw);
893
894             /* Calculate temporary vectorial force */
895             tx               = _mm256_mul_pd(fscal,dx00);
896             ty               = _mm256_mul_pd(fscal,dy00);
897             tz               = _mm256_mul_pd(fscal,dz00);
898
899             /* Update vectorial force */
900             fix0             = _mm256_add_pd(fix0,tx);
901             fiy0             = _mm256_add_pd(fiy0,ty);
902             fiz0             = _mm256_add_pd(fiz0,tz);
903
904             fjx0             = _mm256_add_pd(fjx0,tx);
905             fjy0             = _mm256_add_pd(fjy0,ty);
906             fjz0             = _mm256_add_pd(fjz0,tz);
907
908             /**************************
909              * CALCULATE INTERACTIONS *
910              **************************/
911
912             r10              = _mm256_mul_pd(rsq10,rinv10);
913
914             /* Compute parameters for interactions between i and j atoms */
915             qq10             = _mm256_mul_pd(iq1,jq0);
916
917             /* Calculate table index by multiplying r with table scale and truncate to integer */
918             rt               = _mm256_mul_pd(r10,vftabscale);
919             vfitab           = _mm256_cvttpd_epi32(rt);
920             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
921             vfitab           = _mm_slli_epi32(vfitab,2);
922
923             /* CUBIC SPLINE TABLE ELECTROSTATICS */
924             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
925             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
926             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
927             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
928             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
929             Heps             = _mm256_mul_pd(vfeps,H);
930             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
931             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
932             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
933
934             fscal            = felec;
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm256_mul_pd(fscal,dx10);
938             ty               = _mm256_mul_pd(fscal,dy10);
939             tz               = _mm256_mul_pd(fscal,dz10);
940
941             /* Update vectorial force */
942             fix1             = _mm256_add_pd(fix1,tx);
943             fiy1             = _mm256_add_pd(fiy1,ty);
944             fiz1             = _mm256_add_pd(fiz1,tz);
945
946             fjx0             = _mm256_add_pd(fjx0,tx);
947             fjy0             = _mm256_add_pd(fjy0,ty);
948             fjz0             = _mm256_add_pd(fjz0,tz);
949
950             /**************************
951              * CALCULATE INTERACTIONS *
952              **************************/
953
954             r20              = _mm256_mul_pd(rsq20,rinv20);
955
956             /* Compute parameters for interactions between i and j atoms */
957             qq20             = _mm256_mul_pd(iq2,jq0);
958
959             /* Calculate table index by multiplying r with table scale and truncate to integer */
960             rt               = _mm256_mul_pd(r20,vftabscale);
961             vfitab           = _mm256_cvttpd_epi32(rt);
962             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
963             vfitab           = _mm_slli_epi32(vfitab,2);
964
965             /* CUBIC SPLINE TABLE ELECTROSTATICS */
966             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
967             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
968             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
969             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
970             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
971             Heps             = _mm256_mul_pd(vfeps,H);
972             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
973             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
974             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
975
976             fscal            = felec;
977
978             /* Calculate temporary vectorial force */
979             tx               = _mm256_mul_pd(fscal,dx20);
980             ty               = _mm256_mul_pd(fscal,dy20);
981             tz               = _mm256_mul_pd(fscal,dz20);
982
983             /* Update vectorial force */
984             fix2             = _mm256_add_pd(fix2,tx);
985             fiy2             = _mm256_add_pd(fiy2,ty);
986             fiz2             = _mm256_add_pd(fiz2,tz);
987
988             fjx0             = _mm256_add_pd(fjx0,tx);
989             fjy0             = _mm256_add_pd(fjy0,ty);
990             fjz0             = _mm256_add_pd(fjz0,tz);
991
992             fjptrA             = f+j_coord_offsetA;
993             fjptrB             = f+j_coord_offsetB;
994             fjptrC             = f+j_coord_offsetC;
995             fjptrD             = f+j_coord_offsetD;
996
997             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
998
999             /* Inner loop uses 128 flops */
1000         }
1001
1002         if(jidx<j_index_end)
1003         {
1004
1005             /* Get j neighbor index, and coordinate index */
1006             jnrlistA         = jjnr[jidx];
1007             jnrlistB         = jjnr[jidx+1];
1008             jnrlistC         = jjnr[jidx+2];
1009             jnrlistD         = jjnr[jidx+3];
1010             /* Sign of each element will be negative for non-real atoms.
1011              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1012              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1013              */
1014             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1015
1016             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1017             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1018             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1019
1020             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1021             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1022             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1023             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1024             j_coord_offsetA  = DIM*jnrA;
1025             j_coord_offsetB  = DIM*jnrB;
1026             j_coord_offsetC  = DIM*jnrC;
1027             j_coord_offsetD  = DIM*jnrD;
1028
1029             /* load j atom coordinates */
1030             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1031                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1032                                                  &jx0,&jy0,&jz0);
1033
1034             /* Calculate displacement vector */
1035             dx00             = _mm256_sub_pd(ix0,jx0);
1036             dy00             = _mm256_sub_pd(iy0,jy0);
1037             dz00             = _mm256_sub_pd(iz0,jz0);
1038             dx10             = _mm256_sub_pd(ix1,jx0);
1039             dy10             = _mm256_sub_pd(iy1,jy0);
1040             dz10             = _mm256_sub_pd(iz1,jz0);
1041             dx20             = _mm256_sub_pd(ix2,jx0);
1042             dy20             = _mm256_sub_pd(iy2,jy0);
1043             dz20             = _mm256_sub_pd(iz2,jz0);
1044
1045             /* Calculate squared distance and things based on it */
1046             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1047             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1048             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1049
1050             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1051             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1052             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1053
1054             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1055
1056             /* Load parameters for j particles */
1057             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1058                                                                  charge+jnrC+0,charge+jnrD+0);
1059             vdwjidx0A        = 2*vdwtype[jnrA+0];
1060             vdwjidx0B        = 2*vdwtype[jnrB+0];
1061             vdwjidx0C        = 2*vdwtype[jnrC+0];
1062             vdwjidx0D        = 2*vdwtype[jnrD+0];
1063
1064             fjx0             = _mm256_setzero_pd();
1065             fjy0             = _mm256_setzero_pd();
1066             fjz0             = _mm256_setzero_pd();
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             r00              = _mm256_mul_pd(rsq00,rinv00);
1073             r00              = _mm256_andnot_pd(dummy_mask,r00);
1074
1075             /* Compute parameters for interactions between i and j atoms */
1076             qq00             = _mm256_mul_pd(iq0,jq0);
1077             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1078                                             vdwioffsetptr0+vdwjidx0B,
1079                                             vdwioffsetptr0+vdwjidx0C,
1080                                             vdwioffsetptr0+vdwjidx0D,
1081                                             &c6_00,&c12_00);
1082
1083             /* Calculate table index by multiplying r with table scale and truncate to integer */
1084             rt               = _mm256_mul_pd(r00,vftabscale);
1085             vfitab           = _mm256_cvttpd_epi32(rt);
1086             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1087             vfitab           = _mm_slli_epi32(vfitab,2);
1088
1089             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1090             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1091             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1092             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1093             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1094             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1095             Heps             = _mm256_mul_pd(vfeps,H);
1096             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1097             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1098             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1099
1100             /* LENNARD-JONES DISPERSION/REPULSION */
1101
1102             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1103             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1104
1105             fscal            = _mm256_add_pd(felec,fvdw);
1106
1107             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm256_mul_pd(fscal,dx00);
1111             ty               = _mm256_mul_pd(fscal,dy00);
1112             tz               = _mm256_mul_pd(fscal,dz00);
1113
1114             /* Update vectorial force */
1115             fix0             = _mm256_add_pd(fix0,tx);
1116             fiy0             = _mm256_add_pd(fiy0,ty);
1117             fiz0             = _mm256_add_pd(fiz0,tz);
1118
1119             fjx0             = _mm256_add_pd(fjx0,tx);
1120             fjy0             = _mm256_add_pd(fjy0,ty);
1121             fjz0             = _mm256_add_pd(fjz0,tz);
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             r10              = _mm256_mul_pd(rsq10,rinv10);
1128             r10              = _mm256_andnot_pd(dummy_mask,r10);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq10             = _mm256_mul_pd(iq1,jq0);
1132
1133             /* Calculate table index by multiplying r with table scale and truncate to integer */
1134             rt               = _mm256_mul_pd(r10,vftabscale);
1135             vfitab           = _mm256_cvttpd_epi32(rt);
1136             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1137             vfitab           = _mm_slli_epi32(vfitab,2);
1138
1139             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1140             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1141             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1142             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1143             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1144             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1145             Heps             = _mm256_mul_pd(vfeps,H);
1146             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1147             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1148             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1149
1150             fscal            = felec;
1151
1152             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_pd(fscal,dx10);
1156             ty               = _mm256_mul_pd(fscal,dy10);
1157             tz               = _mm256_mul_pd(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm256_add_pd(fix1,tx);
1161             fiy1             = _mm256_add_pd(fiy1,ty);
1162             fiz1             = _mm256_add_pd(fiz1,tz);
1163
1164             fjx0             = _mm256_add_pd(fjx0,tx);
1165             fjy0             = _mm256_add_pd(fjy0,ty);
1166             fjz0             = _mm256_add_pd(fjz0,tz);
1167
1168             /**************************
1169              * CALCULATE INTERACTIONS *
1170              **************************/
1171
1172             r20              = _mm256_mul_pd(rsq20,rinv20);
1173             r20              = _mm256_andnot_pd(dummy_mask,r20);
1174
1175             /* Compute parameters for interactions between i and j atoms */
1176             qq20             = _mm256_mul_pd(iq2,jq0);
1177
1178             /* Calculate table index by multiplying r with table scale and truncate to integer */
1179             rt               = _mm256_mul_pd(r20,vftabscale);
1180             vfitab           = _mm256_cvttpd_epi32(rt);
1181             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1182             vfitab           = _mm_slli_epi32(vfitab,2);
1183
1184             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1185             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1186             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1187             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1188             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1189             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1190             Heps             = _mm256_mul_pd(vfeps,H);
1191             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1192             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1193             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1194
1195             fscal            = felec;
1196
1197             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1198
1199             /* Calculate temporary vectorial force */
1200             tx               = _mm256_mul_pd(fscal,dx20);
1201             ty               = _mm256_mul_pd(fscal,dy20);
1202             tz               = _mm256_mul_pd(fscal,dz20);
1203
1204             /* Update vectorial force */
1205             fix2             = _mm256_add_pd(fix2,tx);
1206             fiy2             = _mm256_add_pd(fiy2,ty);
1207             fiz2             = _mm256_add_pd(fiz2,tz);
1208
1209             fjx0             = _mm256_add_pd(fjx0,tx);
1210             fjy0             = _mm256_add_pd(fjy0,ty);
1211             fjz0             = _mm256_add_pd(fjz0,tz);
1212
1213             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1214             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1215             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1216             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1217
1218             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1219
1220             /* Inner loop uses 131 flops */
1221         }
1222
1223         /* End of innermost loop */
1224
1225         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1226                                                  f+i_coord_offset,fshift+i_shift_offset);
1227
1228         /* Increment number of inner iterations */
1229         inneriter                  += j_index_end - j_index_start;
1230
1231         /* Outer loop uses 18 flops */
1232     }
1233
1234     /* Increment number of outer iterations */
1235     outeriter        += nri;
1236
1237     /* Update outer/inner flops */
1238
1239     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1240 }