Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_elec->data;
129     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
134     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
135     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm256_setzero_pd();
172         fiy0             = _mm256_setzero_pd();
173         fiz0             = _mm256_setzero_pd();
174         fix1             = _mm256_setzero_pd();
175         fiy1             = _mm256_setzero_pd();
176         fiz1             = _mm256_setzero_pd();
177         fix2             = _mm256_setzero_pd();
178         fiy2             = _mm256_setzero_pd();
179         fiz2             = _mm256_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208             dx10             = _mm256_sub_pd(ix1,jx0);
209             dy10             = _mm256_sub_pd(iy1,jy0);
210             dz10             = _mm256_sub_pd(iz1,jz0);
211             dx20             = _mm256_sub_pd(ix2,jx0);
212             dy20             = _mm256_sub_pd(iy2,jy0);
213             dz20             = _mm256_sub_pd(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
219
220             rinv00           = avx256_invsqrt_d(rsq00);
221             rinv10           = avx256_invsqrt_d(rsq10);
222             rinv20           = avx256_invsqrt_d(rsq20);
223
224             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0);
229             vdwjidx0A        = 2*vdwtype[jnrA+0];
230             vdwjidx0B        = 2*vdwtype[jnrB+0];
231             vdwjidx0C        = 2*vdwtype[jnrC+0];
232             vdwjidx0D        = 2*vdwtype[jnrD+0];
233
234             fjx0             = _mm256_setzero_pd();
235             fjy0             = _mm256_setzero_pd();
236             fjz0             = _mm256_setzero_pd();
237
238             /**************************
239              * CALCULATE INTERACTIONS *
240              **************************/
241
242             r00              = _mm256_mul_pd(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm256_mul_pd(iq0,jq0);
246             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
247                                             vdwioffsetptr0+vdwjidx0B,
248                                             vdwioffsetptr0+vdwjidx0C,
249                                             vdwioffsetptr0+vdwjidx0D,
250                                             &c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm256_mul_pd(r00,vftabscale);
254             vfitab           = _mm256_cvttpd_epi32(rt);
255             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
256             vfitab           = _mm_slli_epi32(vfitab,2);
257
258             /* CUBIC SPLINE TABLE ELECTROSTATICS */
259             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
260             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
261             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
262             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
263             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
264             Heps             = _mm256_mul_pd(vfeps,H);
265             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
266             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
267             velec            = _mm256_mul_pd(qq00,VV);
268             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
269             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
270
271             /* LENNARD-JONES DISPERSION/REPULSION */
272
273             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
274             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
275             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
276             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
277             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
278
279             /* Update potential sum for this i atom from the interaction with this j atom. */
280             velecsum         = _mm256_add_pd(velecsum,velec);
281             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
282
283             fscal            = _mm256_add_pd(felec,fvdw);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx00);
287             ty               = _mm256_mul_pd(fscal,dy00);
288             tz               = _mm256_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_pd(fix0,tx);
292             fiy0             = _mm256_add_pd(fiy0,ty);
293             fiz0             = _mm256_add_pd(fiz0,tz);
294
295             fjx0             = _mm256_add_pd(fjx0,tx);
296             fjy0             = _mm256_add_pd(fjy0,ty);
297             fjz0             = _mm256_add_pd(fjz0,tz);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r10              = _mm256_mul_pd(rsq10,rinv10);
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq10             = _mm256_mul_pd(iq1,jq0);
307
308             /* Calculate table index by multiplying r with table scale and truncate to integer */
309             rt               = _mm256_mul_pd(r10,vftabscale);
310             vfitab           = _mm256_cvttpd_epi32(rt);
311             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
312             vfitab           = _mm_slli_epi32(vfitab,2);
313
314             /* CUBIC SPLINE TABLE ELECTROSTATICS */
315             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
316             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
317             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
318             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
319             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
320             Heps             = _mm256_mul_pd(vfeps,H);
321             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
322             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
323             velec            = _mm256_mul_pd(qq10,VV);
324             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
325             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
326
327             /* Update potential sum for this i atom from the interaction with this j atom. */
328             velecsum         = _mm256_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             /* Calculate temporary vectorial force */
333             tx               = _mm256_mul_pd(fscal,dx10);
334             ty               = _mm256_mul_pd(fscal,dy10);
335             tz               = _mm256_mul_pd(fscal,dz10);
336
337             /* Update vectorial force */
338             fix1             = _mm256_add_pd(fix1,tx);
339             fiy1             = _mm256_add_pd(fiy1,ty);
340             fiz1             = _mm256_add_pd(fiz1,tz);
341
342             fjx0             = _mm256_add_pd(fjx0,tx);
343             fjy0             = _mm256_add_pd(fjy0,ty);
344             fjz0             = _mm256_add_pd(fjz0,tz);
345
346             /**************************
347              * CALCULATE INTERACTIONS *
348              **************************/
349
350             r20              = _mm256_mul_pd(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm256_mul_pd(iq2,jq0);
354
355             /* Calculate table index by multiplying r with table scale and truncate to integer */
356             rt               = _mm256_mul_pd(r20,vftabscale);
357             vfitab           = _mm256_cvttpd_epi32(rt);
358             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
359             vfitab           = _mm_slli_epi32(vfitab,2);
360
361             /* CUBIC SPLINE TABLE ELECTROSTATICS */
362             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
363             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
364             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
365             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
366             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
367             Heps             = _mm256_mul_pd(vfeps,H);
368             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
369             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
370             velec            = _mm256_mul_pd(qq20,VV);
371             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
372             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velecsum         = _mm256_add_pd(velecsum,velec);
376
377             fscal            = felec;
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_pd(fscal,dx20);
381             ty               = _mm256_mul_pd(fscal,dy20);
382             tz               = _mm256_mul_pd(fscal,dz20);
383
384             /* Update vectorial force */
385             fix2             = _mm256_add_pd(fix2,tx);
386             fiy2             = _mm256_add_pd(fiy2,ty);
387             fiz2             = _mm256_add_pd(fiz2,tz);
388
389             fjx0             = _mm256_add_pd(fjx0,tx);
390             fjy0             = _mm256_add_pd(fjy0,ty);
391             fjz0             = _mm256_add_pd(fjz0,tz);
392
393             fjptrA             = f+j_coord_offsetA;
394             fjptrB             = f+j_coord_offsetB;
395             fjptrC             = f+j_coord_offsetC;
396             fjptrD             = f+j_coord_offsetD;
397
398             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
399
400             /* Inner loop uses 145 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
414              */
415             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416
417             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
418             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
419             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
420
421             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
422             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
423             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
424             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
425             j_coord_offsetA  = DIM*jnrA;
426             j_coord_offsetB  = DIM*jnrB;
427             j_coord_offsetC  = DIM*jnrC;
428             j_coord_offsetD  = DIM*jnrD;
429
430             /* load j atom coordinates */
431             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
432                                                  x+j_coord_offsetC,x+j_coord_offsetD,
433                                                  &jx0,&jy0,&jz0);
434
435             /* Calculate displacement vector */
436             dx00             = _mm256_sub_pd(ix0,jx0);
437             dy00             = _mm256_sub_pd(iy0,jy0);
438             dz00             = _mm256_sub_pd(iz0,jz0);
439             dx10             = _mm256_sub_pd(ix1,jx0);
440             dy10             = _mm256_sub_pd(iy1,jy0);
441             dz10             = _mm256_sub_pd(iz1,jz0);
442             dx20             = _mm256_sub_pd(ix2,jx0);
443             dy20             = _mm256_sub_pd(iy2,jy0);
444             dz20             = _mm256_sub_pd(iz2,jz0);
445
446             /* Calculate squared distance and things based on it */
447             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
448             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
449             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
450
451             rinv00           = avx256_invsqrt_d(rsq00);
452             rinv10           = avx256_invsqrt_d(rsq10);
453             rinv20           = avx256_invsqrt_d(rsq20);
454
455             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
456
457             /* Load parameters for j particles */
458             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
459                                                                  charge+jnrC+0,charge+jnrD+0);
460             vdwjidx0A        = 2*vdwtype[jnrA+0];
461             vdwjidx0B        = 2*vdwtype[jnrB+0];
462             vdwjidx0C        = 2*vdwtype[jnrC+0];
463             vdwjidx0D        = 2*vdwtype[jnrD+0];
464
465             fjx0             = _mm256_setzero_pd();
466             fjy0             = _mm256_setzero_pd();
467             fjz0             = _mm256_setzero_pd();
468
469             /**************************
470              * CALCULATE INTERACTIONS *
471              **************************/
472
473             r00              = _mm256_mul_pd(rsq00,rinv00);
474             r00              = _mm256_andnot_pd(dummy_mask,r00);
475
476             /* Compute parameters for interactions between i and j atoms */
477             qq00             = _mm256_mul_pd(iq0,jq0);
478             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
479                                             vdwioffsetptr0+vdwjidx0B,
480                                             vdwioffsetptr0+vdwjidx0C,
481                                             vdwioffsetptr0+vdwjidx0D,
482                                             &c6_00,&c12_00);
483
484             /* Calculate table index by multiplying r with table scale and truncate to integer */
485             rt               = _mm256_mul_pd(r00,vftabscale);
486             vfitab           = _mm256_cvttpd_epi32(rt);
487             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
488             vfitab           = _mm_slli_epi32(vfitab,2);
489
490             /* CUBIC SPLINE TABLE ELECTROSTATICS */
491             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
492             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
493             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
494             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
495             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
496             Heps             = _mm256_mul_pd(vfeps,H);
497             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
498             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
499             velec            = _mm256_mul_pd(qq00,VV);
500             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
501             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
506             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
507             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
508             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
509             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm256_andnot_pd(dummy_mask,velec);
513             velecsum         = _mm256_add_pd(velecsum,velec);
514             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
515             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
516
517             fscal            = _mm256_add_pd(felec,fvdw);
518
519             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
520
521             /* Calculate temporary vectorial force */
522             tx               = _mm256_mul_pd(fscal,dx00);
523             ty               = _mm256_mul_pd(fscal,dy00);
524             tz               = _mm256_mul_pd(fscal,dz00);
525
526             /* Update vectorial force */
527             fix0             = _mm256_add_pd(fix0,tx);
528             fiy0             = _mm256_add_pd(fiy0,ty);
529             fiz0             = _mm256_add_pd(fiz0,tz);
530
531             fjx0             = _mm256_add_pd(fjx0,tx);
532             fjy0             = _mm256_add_pd(fjy0,ty);
533             fjz0             = _mm256_add_pd(fjz0,tz);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             r10              = _mm256_mul_pd(rsq10,rinv10);
540             r10              = _mm256_andnot_pd(dummy_mask,r10);
541
542             /* Compute parameters for interactions between i and j atoms */
543             qq10             = _mm256_mul_pd(iq1,jq0);
544
545             /* Calculate table index by multiplying r with table scale and truncate to integer */
546             rt               = _mm256_mul_pd(r10,vftabscale);
547             vfitab           = _mm256_cvttpd_epi32(rt);
548             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
549             vfitab           = _mm_slli_epi32(vfitab,2);
550
551             /* CUBIC SPLINE TABLE ELECTROSTATICS */
552             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
553             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
554             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
555             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
556             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
557             Heps             = _mm256_mul_pd(vfeps,H);
558             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
559             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
560             velec            = _mm256_mul_pd(qq10,VV);
561             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
562             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
563
564             /* Update potential sum for this i atom from the interaction with this j atom. */
565             velec            = _mm256_andnot_pd(dummy_mask,velec);
566             velecsum         = _mm256_add_pd(velecsum,velec);
567
568             fscal            = felec;
569
570             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
571
572             /* Calculate temporary vectorial force */
573             tx               = _mm256_mul_pd(fscal,dx10);
574             ty               = _mm256_mul_pd(fscal,dy10);
575             tz               = _mm256_mul_pd(fscal,dz10);
576
577             /* Update vectorial force */
578             fix1             = _mm256_add_pd(fix1,tx);
579             fiy1             = _mm256_add_pd(fiy1,ty);
580             fiz1             = _mm256_add_pd(fiz1,tz);
581
582             fjx0             = _mm256_add_pd(fjx0,tx);
583             fjy0             = _mm256_add_pd(fjy0,ty);
584             fjz0             = _mm256_add_pd(fjz0,tz);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             r20              = _mm256_mul_pd(rsq20,rinv20);
591             r20              = _mm256_andnot_pd(dummy_mask,r20);
592
593             /* Compute parameters for interactions between i and j atoms */
594             qq20             = _mm256_mul_pd(iq2,jq0);
595
596             /* Calculate table index by multiplying r with table scale and truncate to integer */
597             rt               = _mm256_mul_pd(r20,vftabscale);
598             vfitab           = _mm256_cvttpd_epi32(rt);
599             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
600             vfitab           = _mm_slli_epi32(vfitab,2);
601
602             /* CUBIC SPLINE TABLE ELECTROSTATICS */
603             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
604             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
605             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
606             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
607             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
608             Heps             = _mm256_mul_pd(vfeps,H);
609             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
610             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
611             velec            = _mm256_mul_pd(qq20,VV);
612             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
613             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm256_andnot_pd(dummy_mask,velec);
617             velecsum         = _mm256_add_pd(velecsum,velec);
618
619             fscal            = felec;
620
621             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
622
623             /* Calculate temporary vectorial force */
624             tx               = _mm256_mul_pd(fscal,dx20);
625             ty               = _mm256_mul_pd(fscal,dy20);
626             tz               = _mm256_mul_pd(fscal,dz20);
627
628             /* Update vectorial force */
629             fix2             = _mm256_add_pd(fix2,tx);
630             fiy2             = _mm256_add_pd(fiy2,ty);
631             fiz2             = _mm256_add_pd(fiz2,tz);
632
633             fjx0             = _mm256_add_pd(fjx0,tx);
634             fjy0             = _mm256_add_pd(fjy0,ty);
635             fjz0             = _mm256_add_pd(fjz0,tz);
636
637             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
638             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
639             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
640             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
641
642             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
643
644             /* Inner loop uses 148 flops */
645         }
646
647         /* End of innermost loop */
648
649         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
650                                                  f+i_coord_offset,fshift+i_shift_offset);
651
652         ggid                        = gid[iidx];
653         /* Update potential energies */
654         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
655         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 20 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
669 }
670 /*
671  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
672  * Electrostatics interaction: CubicSplineTable
673  * VdW interaction:            LennardJones
674  * Geometry:                   Water3-Particle
675  * Calculate force/pot:        Force
676  */
677 void
678 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
679                     (t_nblist                    * gmx_restrict       nlist,
680                      rvec                        * gmx_restrict          xx,
681                      rvec                        * gmx_restrict          ff,
682                      struct t_forcerec           * gmx_restrict          fr,
683                      t_mdatoms                   * gmx_restrict     mdatoms,
684                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
685                      t_nrnb                      * gmx_restrict        nrnb)
686 {
687     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
688      * just 0 for non-waters.
689      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
690      * jnr indices corresponding to data put in the four positions in the SIMD register.
691      */
692     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
693     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
694     int              jnrA,jnrB,jnrC,jnrD;
695     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
696     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
697     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
698     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
699     real             rcutoff_scalar;
700     real             *shiftvec,*fshift,*x,*f;
701     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
702     real             scratch[4*DIM];
703     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
704     real *           vdwioffsetptr0;
705     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706     real *           vdwioffsetptr1;
707     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708     real *           vdwioffsetptr2;
709     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
711     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
712     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
713     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
714     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
715     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
716     real             *charge;
717     int              nvdwtype;
718     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
719     int              *vdwtype;
720     real             *vdwparam;
721     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
722     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
723     __m128i          vfitab;
724     __m128i          ifour       = _mm_set1_epi32(4);
725     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
726     real             *vftab;
727     __m256d          dummy_mask,cutoff_mask;
728     __m128           tmpmask0,tmpmask1;
729     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
730     __m256d          one     = _mm256_set1_pd(1.0);
731     __m256d          two     = _mm256_set1_pd(2.0);
732     x                = xx[0];
733     f                = ff[0];
734
735     nri              = nlist->nri;
736     iinr             = nlist->iinr;
737     jindex           = nlist->jindex;
738     jjnr             = nlist->jjnr;
739     shiftidx         = nlist->shift;
740     gid              = nlist->gid;
741     shiftvec         = fr->shift_vec[0];
742     fshift           = fr->fshift[0];
743     facel            = _mm256_set1_pd(fr->ic->epsfac);
744     charge           = mdatoms->chargeA;
745     nvdwtype         = fr->ntype;
746     vdwparam         = fr->nbfp;
747     vdwtype          = mdatoms->typeA;
748
749     vftab            = kernel_data->table_elec->data;
750     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
751
752     /* Setup water-specific parameters */
753     inr              = nlist->iinr[0];
754     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
755     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
756     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
757     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
758
759     /* Avoid stupid compiler warnings */
760     jnrA = jnrB = jnrC = jnrD = 0;
761     j_coord_offsetA = 0;
762     j_coord_offsetB = 0;
763     j_coord_offsetC = 0;
764     j_coord_offsetD = 0;
765
766     outeriter        = 0;
767     inneriter        = 0;
768
769     for(iidx=0;iidx<4*DIM;iidx++)
770     {
771         scratch[iidx] = 0.0;
772     }
773
774     /* Start outer loop over neighborlists */
775     for(iidx=0; iidx<nri; iidx++)
776     {
777         /* Load shift vector for this list */
778         i_shift_offset   = DIM*shiftidx[iidx];
779
780         /* Load limits for loop over neighbors */
781         j_index_start    = jindex[iidx];
782         j_index_end      = jindex[iidx+1];
783
784         /* Get outer coordinate index */
785         inr              = iinr[iidx];
786         i_coord_offset   = DIM*inr;
787
788         /* Load i particle coords and add shift vector */
789         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
790                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
791
792         fix0             = _mm256_setzero_pd();
793         fiy0             = _mm256_setzero_pd();
794         fiz0             = _mm256_setzero_pd();
795         fix1             = _mm256_setzero_pd();
796         fiy1             = _mm256_setzero_pd();
797         fiz1             = _mm256_setzero_pd();
798         fix2             = _mm256_setzero_pd();
799         fiy2             = _mm256_setzero_pd();
800         fiz2             = _mm256_setzero_pd();
801
802         /* Start inner kernel loop */
803         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
804         {
805
806             /* Get j neighbor index, and coordinate index */
807             jnrA             = jjnr[jidx];
808             jnrB             = jjnr[jidx+1];
809             jnrC             = jjnr[jidx+2];
810             jnrD             = jjnr[jidx+3];
811             j_coord_offsetA  = DIM*jnrA;
812             j_coord_offsetB  = DIM*jnrB;
813             j_coord_offsetC  = DIM*jnrC;
814             j_coord_offsetD  = DIM*jnrD;
815
816             /* load j atom coordinates */
817             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
818                                                  x+j_coord_offsetC,x+j_coord_offsetD,
819                                                  &jx0,&jy0,&jz0);
820
821             /* Calculate displacement vector */
822             dx00             = _mm256_sub_pd(ix0,jx0);
823             dy00             = _mm256_sub_pd(iy0,jy0);
824             dz00             = _mm256_sub_pd(iz0,jz0);
825             dx10             = _mm256_sub_pd(ix1,jx0);
826             dy10             = _mm256_sub_pd(iy1,jy0);
827             dz10             = _mm256_sub_pd(iz1,jz0);
828             dx20             = _mm256_sub_pd(ix2,jx0);
829             dy20             = _mm256_sub_pd(iy2,jy0);
830             dz20             = _mm256_sub_pd(iz2,jz0);
831
832             /* Calculate squared distance and things based on it */
833             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
834             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
835             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
836
837             rinv00           = avx256_invsqrt_d(rsq00);
838             rinv10           = avx256_invsqrt_d(rsq10);
839             rinv20           = avx256_invsqrt_d(rsq20);
840
841             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
842
843             /* Load parameters for j particles */
844             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
845                                                                  charge+jnrC+0,charge+jnrD+0);
846             vdwjidx0A        = 2*vdwtype[jnrA+0];
847             vdwjidx0B        = 2*vdwtype[jnrB+0];
848             vdwjidx0C        = 2*vdwtype[jnrC+0];
849             vdwjidx0D        = 2*vdwtype[jnrD+0];
850
851             fjx0             = _mm256_setzero_pd();
852             fjy0             = _mm256_setzero_pd();
853             fjz0             = _mm256_setzero_pd();
854
855             /**************************
856              * CALCULATE INTERACTIONS *
857              **************************/
858
859             r00              = _mm256_mul_pd(rsq00,rinv00);
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq00             = _mm256_mul_pd(iq0,jq0);
863             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
864                                             vdwioffsetptr0+vdwjidx0B,
865                                             vdwioffsetptr0+vdwjidx0C,
866                                             vdwioffsetptr0+vdwjidx0D,
867                                             &c6_00,&c12_00);
868
869             /* Calculate table index by multiplying r with table scale and truncate to integer */
870             rt               = _mm256_mul_pd(r00,vftabscale);
871             vfitab           = _mm256_cvttpd_epi32(rt);
872             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
873             vfitab           = _mm_slli_epi32(vfitab,2);
874
875             /* CUBIC SPLINE TABLE ELECTROSTATICS */
876             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
877             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
878             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
879             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
880             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
881             Heps             = _mm256_mul_pd(vfeps,H);
882             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
883             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
884             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
885
886             /* LENNARD-JONES DISPERSION/REPULSION */
887
888             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
889             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
890
891             fscal            = _mm256_add_pd(felec,fvdw);
892
893             /* Calculate temporary vectorial force */
894             tx               = _mm256_mul_pd(fscal,dx00);
895             ty               = _mm256_mul_pd(fscal,dy00);
896             tz               = _mm256_mul_pd(fscal,dz00);
897
898             /* Update vectorial force */
899             fix0             = _mm256_add_pd(fix0,tx);
900             fiy0             = _mm256_add_pd(fiy0,ty);
901             fiz0             = _mm256_add_pd(fiz0,tz);
902
903             fjx0             = _mm256_add_pd(fjx0,tx);
904             fjy0             = _mm256_add_pd(fjy0,ty);
905             fjz0             = _mm256_add_pd(fjz0,tz);
906
907             /**************************
908              * CALCULATE INTERACTIONS *
909              **************************/
910
911             r10              = _mm256_mul_pd(rsq10,rinv10);
912
913             /* Compute parameters for interactions between i and j atoms */
914             qq10             = _mm256_mul_pd(iq1,jq0);
915
916             /* Calculate table index by multiplying r with table scale and truncate to integer */
917             rt               = _mm256_mul_pd(r10,vftabscale);
918             vfitab           = _mm256_cvttpd_epi32(rt);
919             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
920             vfitab           = _mm_slli_epi32(vfitab,2);
921
922             /* CUBIC SPLINE TABLE ELECTROSTATICS */
923             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
924             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
925             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
926             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
927             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
928             Heps             = _mm256_mul_pd(vfeps,H);
929             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
930             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
931             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
932
933             fscal            = felec;
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm256_mul_pd(fscal,dx10);
937             ty               = _mm256_mul_pd(fscal,dy10);
938             tz               = _mm256_mul_pd(fscal,dz10);
939
940             /* Update vectorial force */
941             fix1             = _mm256_add_pd(fix1,tx);
942             fiy1             = _mm256_add_pd(fiy1,ty);
943             fiz1             = _mm256_add_pd(fiz1,tz);
944
945             fjx0             = _mm256_add_pd(fjx0,tx);
946             fjy0             = _mm256_add_pd(fjy0,ty);
947             fjz0             = _mm256_add_pd(fjz0,tz);
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             r20              = _mm256_mul_pd(rsq20,rinv20);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq20             = _mm256_mul_pd(iq2,jq0);
957
958             /* Calculate table index by multiplying r with table scale and truncate to integer */
959             rt               = _mm256_mul_pd(r20,vftabscale);
960             vfitab           = _mm256_cvttpd_epi32(rt);
961             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
962             vfitab           = _mm_slli_epi32(vfitab,2);
963
964             /* CUBIC SPLINE TABLE ELECTROSTATICS */
965             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
966             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
967             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
968             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
969             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
970             Heps             = _mm256_mul_pd(vfeps,H);
971             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
972             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
973             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
974
975             fscal            = felec;
976
977             /* Calculate temporary vectorial force */
978             tx               = _mm256_mul_pd(fscal,dx20);
979             ty               = _mm256_mul_pd(fscal,dy20);
980             tz               = _mm256_mul_pd(fscal,dz20);
981
982             /* Update vectorial force */
983             fix2             = _mm256_add_pd(fix2,tx);
984             fiy2             = _mm256_add_pd(fiy2,ty);
985             fiz2             = _mm256_add_pd(fiz2,tz);
986
987             fjx0             = _mm256_add_pd(fjx0,tx);
988             fjy0             = _mm256_add_pd(fjy0,ty);
989             fjz0             = _mm256_add_pd(fjz0,tz);
990
991             fjptrA             = f+j_coord_offsetA;
992             fjptrB             = f+j_coord_offsetB;
993             fjptrC             = f+j_coord_offsetC;
994             fjptrD             = f+j_coord_offsetD;
995
996             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
997
998             /* Inner loop uses 128 flops */
999         }
1000
1001         if(jidx<j_index_end)
1002         {
1003
1004             /* Get j neighbor index, and coordinate index */
1005             jnrlistA         = jjnr[jidx];
1006             jnrlistB         = jjnr[jidx+1];
1007             jnrlistC         = jjnr[jidx+2];
1008             jnrlistD         = jjnr[jidx+3];
1009             /* Sign of each element will be negative for non-real atoms.
1010              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1011              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1012              */
1013             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1014
1015             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1016             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1017             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1018
1019             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1020             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1021             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1022             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1023             j_coord_offsetA  = DIM*jnrA;
1024             j_coord_offsetB  = DIM*jnrB;
1025             j_coord_offsetC  = DIM*jnrC;
1026             j_coord_offsetD  = DIM*jnrD;
1027
1028             /* load j atom coordinates */
1029             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1030                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1031                                                  &jx0,&jy0,&jz0);
1032
1033             /* Calculate displacement vector */
1034             dx00             = _mm256_sub_pd(ix0,jx0);
1035             dy00             = _mm256_sub_pd(iy0,jy0);
1036             dz00             = _mm256_sub_pd(iz0,jz0);
1037             dx10             = _mm256_sub_pd(ix1,jx0);
1038             dy10             = _mm256_sub_pd(iy1,jy0);
1039             dz10             = _mm256_sub_pd(iz1,jz0);
1040             dx20             = _mm256_sub_pd(ix2,jx0);
1041             dy20             = _mm256_sub_pd(iy2,jy0);
1042             dz20             = _mm256_sub_pd(iz2,jz0);
1043
1044             /* Calculate squared distance and things based on it */
1045             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1046             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1047             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1048
1049             rinv00           = avx256_invsqrt_d(rsq00);
1050             rinv10           = avx256_invsqrt_d(rsq10);
1051             rinv20           = avx256_invsqrt_d(rsq20);
1052
1053             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1054
1055             /* Load parameters for j particles */
1056             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1057                                                                  charge+jnrC+0,charge+jnrD+0);
1058             vdwjidx0A        = 2*vdwtype[jnrA+0];
1059             vdwjidx0B        = 2*vdwtype[jnrB+0];
1060             vdwjidx0C        = 2*vdwtype[jnrC+0];
1061             vdwjidx0D        = 2*vdwtype[jnrD+0];
1062
1063             fjx0             = _mm256_setzero_pd();
1064             fjy0             = _mm256_setzero_pd();
1065             fjz0             = _mm256_setzero_pd();
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r00              = _mm256_mul_pd(rsq00,rinv00);
1072             r00              = _mm256_andnot_pd(dummy_mask,r00);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq00             = _mm256_mul_pd(iq0,jq0);
1076             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1077                                             vdwioffsetptr0+vdwjidx0B,
1078                                             vdwioffsetptr0+vdwjidx0C,
1079                                             vdwioffsetptr0+vdwjidx0D,
1080                                             &c6_00,&c12_00);
1081
1082             /* Calculate table index by multiplying r with table scale and truncate to integer */
1083             rt               = _mm256_mul_pd(r00,vftabscale);
1084             vfitab           = _mm256_cvttpd_epi32(rt);
1085             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1086             vfitab           = _mm_slli_epi32(vfitab,2);
1087
1088             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1089             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1090             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1091             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1092             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1093             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1094             Heps             = _mm256_mul_pd(vfeps,H);
1095             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1096             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1097             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1098
1099             /* LENNARD-JONES DISPERSION/REPULSION */
1100
1101             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1102             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1103
1104             fscal            = _mm256_add_pd(felec,fvdw);
1105
1106             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm256_mul_pd(fscal,dx00);
1110             ty               = _mm256_mul_pd(fscal,dy00);
1111             tz               = _mm256_mul_pd(fscal,dz00);
1112
1113             /* Update vectorial force */
1114             fix0             = _mm256_add_pd(fix0,tx);
1115             fiy0             = _mm256_add_pd(fiy0,ty);
1116             fiz0             = _mm256_add_pd(fiz0,tz);
1117
1118             fjx0             = _mm256_add_pd(fjx0,tx);
1119             fjy0             = _mm256_add_pd(fjy0,ty);
1120             fjz0             = _mm256_add_pd(fjz0,tz);
1121
1122             /**************************
1123              * CALCULATE INTERACTIONS *
1124              **************************/
1125
1126             r10              = _mm256_mul_pd(rsq10,rinv10);
1127             r10              = _mm256_andnot_pd(dummy_mask,r10);
1128
1129             /* Compute parameters for interactions between i and j atoms */
1130             qq10             = _mm256_mul_pd(iq1,jq0);
1131
1132             /* Calculate table index by multiplying r with table scale and truncate to integer */
1133             rt               = _mm256_mul_pd(r10,vftabscale);
1134             vfitab           = _mm256_cvttpd_epi32(rt);
1135             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1136             vfitab           = _mm_slli_epi32(vfitab,2);
1137
1138             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1139             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1140             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1141             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1142             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1143             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1144             Heps             = _mm256_mul_pd(vfeps,H);
1145             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1146             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1147             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm256_mul_pd(fscal,dx10);
1155             ty               = _mm256_mul_pd(fscal,dy10);
1156             tz               = _mm256_mul_pd(fscal,dz10);
1157
1158             /* Update vectorial force */
1159             fix1             = _mm256_add_pd(fix1,tx);
1160             fiy1             = _mm256_add_pd(fiy1,ty);
1161             fiz1             = _mm256_add_pd(fiz1,tz);
1162
1163             fjx0             = _mm256_add_pd(fjx0,tx);
1164             fjy0             = _mm256_add_pd(fjy0,ty);
1165             fjz0             = _mm256_add_pd(fjz0,tz);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             r20              = _mm256_mul_pd(rsq20,rinv20);
1172             r20              = _mm256_andnot_pd(dummy_mask,r20);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq20             = _mm256_mul_pd(iq2,jq0);
1176
1177             /* Calculate table index by multiplying r with table scale and truncate to integer */
1178             rt               = _mm256_mul_pd(r20,vftabscale);
1179             vfitab           = _mm256_cvttpd_epi32(rt);
1180             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1181             vfitab           = _mm_slli_epi32(vfitab,2);
1182
1183             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1184             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1185             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1186             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1187             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1188             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1189             Heps             = _mm256_mul_pd(vfeps,H);
1190             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1191             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1192             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1193
1194             fscal            = felec;
1195
1196             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1197
1198             /* Calculate temporary vectorial force */
1199             tx               = _mm256_mul_pd(fscal,dx20);
1200             ty               = _mm256_mul_pd(fscal,dy20);
1201             tz               = _mm256_mul_pd(fscal,dz20);
1202
1203             /* Update vectorial force */
1204             fix2             = _mm256_add_pd(fix2,tx);
1205             fiy2             = _mm256_add_pd(fiy2,ty);
1206             fiz2             = _mm256_add_pd(fiz2,tz);
1207
1208             fjx0             = _mm256_add_pd(fjx0,tx);
1209             fjy0             = _mm256_add_pd(fjy0,ty);
1210             fjz0             = _mm256_add_pd(fjz0,tz);
1211
1212             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1213             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1214             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1215             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1216
1217             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1218
1219             /* Inner loop uses 131 flops */
1220         }
1221
1222         /* End of innermost loop */
1223
1224         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1225                                                  f+i_coord_offset,fshift+i_shift_offset);
1226
1227         /* Increment number of inner iterations */
1228         inneriter                  += j_index_end - j_index_start;
1229
1230         /* Outer loop uses 18 flops */
1231     }
1232
1233     /* Increment number of outer iterations */
1234     outeriter        += nri;
1235
1236     /* Update outer/inner flops */
1237
1238     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1239 }