Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_elec->data;
123     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_pd();
158         fiy0             = _mm256_setzero_pd();
159         fiz0             = _mm256_setzero_pd();
160
161         /* Load parameters for i particles */
162         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
163         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm256_setzero_pd();
167         vvdwsum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = avx256_invsqrt_d(rsq00);
197
198             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
202                                                                  charge+jnrC+0,charge+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
217                                             vdwioffsetptr0+vdwjidx0B,
218                                             vdwioffsetptr0+vdwjidx0C,
219                                             vdwioffsetptr0+vdwjidx0D,
220                                             &c6_00,&c12_00);
221
222             /* Calculate table index by multiplying r with table scale and truncate to integer */
223             rt               = _mm256_mul_pd(r00,vftabscale);
224             vfitab           = _mm256_cvttpd_epi32(rt);
225             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
226             vfitab           = _mm_slli_epi32(vfitab,2);
227
228             /* CUBIC SPLINE TABLE ELECTROSTATICS */
229             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
230             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
231             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
232             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
233             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
234             Heps             = _mm256_mul_pd(vfeps,H);
235             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
236             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
237             velec            = _mm256_mul_pd(qq00,VV);
238             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
239             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
240
241             /* LENNARD-JONES DISPERSION/REPULSION */
242
243             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
244             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
245             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
246             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
247             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             velecsum         = _mm256_add_pd(velecsum,velec);
251             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
252
253             fscal            = _mm256_add_pd(felec,fvdw);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_pd(fscal,dx00);
257             ty               = _mm256_mul_pd(fscal,dy00);
258             tz               = _mm256_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm256_add_pd(fix0,tx);
262             fiy0             = _mm256_add_pd(fiy0,ty);
263             fiz0             = _mm256_add_pd(fiz0,tz);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
270
271             /* Inner loop uses 56 flops */
272         }
273
274         if(jidx<j_index_end)
275         {
276
277             /* Get j neighbor index, and coordinate index */
278             jnrlistA         = jjnr[jidx];
279             jnrlistB         = jjnr[jidx+1];
280             jnrlistC         = jjnr[jidx+2];
281             jnrlistD         = jjnr[jidx+3];
282             /* Sign of each element will be negative for non-real atoms.
283              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
285              */
286             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287
288             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
289             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
290             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
291
292             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
293             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
294             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
295             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300
301             /* load j atom coordinates */
302             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
303                                                  x+j_coord_offsetC,x+j_coord_offsetD,
304                                                  &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm256_sub_pd(ix0,jx0);
308             dy00             = _mm256_sub_pd(iy0,jy0);
309             dz00             = _mm256_sub_pd(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
313
314             rinv00           = avx256_invsqrt_d(rsq00);
315
316             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
320                                                                  charge+jnrC+0,charge+jnrD+0);
321             vdwjidx0A        = 2*vdwtype[jnrA+0];
322             vdwjidx0B        = 2*vdwtype[jnrB+0];
323             vdwjidx0C        = 2*vdwtype[jnrC+0];
324             vdwjidx0D        = 2*vdwtype[jnrD+0];
325
326             /**************************
327              * CALCULATE INTERACTIONS *
328              **************************/
329
330             r00              = _mm256_mul_pd(rsq00,rinv00);
331             r00              = _mm256_andnot_pd(dummy_mask,r00);
332
333             /* Compute parameters for interactions between i and j atoms */
334             qq00             = _mm256_mul_pd(iq0,jq0);
335             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
336                                             vdwioffsetptr0+vdwjidx0B,
337                                             vdwioffsetptr0+vdwjidx0C,
338                                             vdwioffsetptr0+vdwjidx0D,
339                                             &c6_00,&c12_00);
340
341             /* Calculate table index by multiplying r with table scale and truncate to integer */
342             rt               = _mm256_mul_pd(r00,vftabscale);
343             vfitab           = _mm256_cvttpd_epi32(rt);
344             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
345             vfitab           = _mm_slli_epi32(vfitab,2);
346
347             /* CUBIC SPLINE TABLE ELECTROSTATICS */
348             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
349             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
350             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
351             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
352             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
353             Heps             = _mm256_mul_pd(vfeps,H);
354             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
355             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
356             velec            = _mm256_mul_pd(qq00,VV);
357             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
358             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
359
360             /* LENNARD-JONES DISPERSION/REPULSION */
361
362             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
363             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
364             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
365             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
366             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm256_andnot_pd(dummy_mask,velec);
370             velecsum         = _mm256_add_pd(velecsum,velec);
371             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
372             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
373
374             fscal            = _mm256_add_pd(felec,fvdw);
375
376             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_pd(fscal,dx00);
380             ty               = _mm256_mul_pd(fscal,dy00);
381             tz               = _mm256_mul_pd(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm256_add_pd(fix0,tx);
385             fiy0             = _mm256_add_pd(fiy0,ty);
386             fiz0             = _mm256_add_pd(fiz0,tz);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
393
394             /* Inner loop uses 57 flops */
395         }
396
397         /* End of innermost loop */
398
399         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
400                                                  f+i_coord_offset,fshift+i_shift_offset);
401
402         ggid                        = gid[iidx];
403         /* Update potential energies */
404         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
405         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
406
407         /* Increment number of inner iterations */
408         inneriter                  += j_index_end - j_index_start;
409
410         /* Outer loop uses 9 flops */
411     }
412
413     /* Increment number of outer iterations */
414     outeriter        += nri;
415
416     /* Update outer/inner flops */
417
418     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
419 }
420 /*
421  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
422  * Electrostatics interaction: CubicSplineTable
423  * VdW interaction:            LennardJones
424  * Geometry:                   Particle-Particle
425  * Calculate force/pot:        Force
426  */
427 void
428 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
429                     (t_nblist                    * gmx_restrict       nlist,
430                      rvec                        * gmx_restrict          xx,
431                      rvec                        * gmx_restrict          ff,
432                      struct t_forcerec           * gmx_restrict          fr,
433                      t_mdatoms                   * gmx_restrict     mdatoms,
434                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
435                      t_nrnb                      * gmx_restrict        nrnb)
436 {
437     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
438      * just 0 for non-waters.
439      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
440      * jnr indices corresponding to data put in the four positions in the SIMD register.
441      */
442     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
443     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
444     int              jnrA,jnrB,jnrC,jnrD;
445     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
446     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
447     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
448     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
449     real             rcutoff_scalar;
450     real             *shiftvec,*fshift,*x,*f;
451     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
452     real             scratch[4*DIM];
453     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
454     real *           vdwioffsetptr0;
455     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
456     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
457     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
458     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
459     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
460     real             *charge;
461     int              nvdwtype;
462     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
463     int              *vdwtype;
464     real             *vdwparam;
465     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
466     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
467     __m128i          vfitab;
468     __m128i          ifour       = _mm_set1_epi32(4);
469     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
470     real             *vftab;
471     __m256d          dummy_mask,cutoff_mask;
472     __m128           tmpmask0,tmpmask1;
473     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
474     __m256d          one     = _mm256_set1_pd(1.0);
475     __m256d          two     = _mm256_set1_pd(2.0);
476     x                = xx[0];
477     f                = ff[0];
478
479     nri              = nlist->nri;
480     iinr             = nlist->iinr;
481     jindex           = nlist->jindex;
482     jjnr             = nlist->jjnr;
483     shiftidx         = nlist->shift;
484     gid              = nlist->gid;
485     shiftvec         = fr->shift_vec[0];
486     fshift           = fr->fshift[0];
487     facel            = _mm256_set1_pd(fr->ic->epsfac);
488     charge           = mdatoms->chargeA;
489     nvdwtype         = fr->ntype;
490     vdwparam         = fr->nbfp;
491     vdwtype          = mdatoms->typeA;
492
493     vftab            = kernel_data->table_elec->data;
494     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
495
496     /* Avoid stupid compiler warnings */
497     jnrA = jnrB = jnrC = jnrD = 0;
498     j_coord_offsetA = 0;
499     j_coord_offsetB = 0;
500     j_coord_offsetC = 0;
501     j_coord_offsetD = 0;
502
503     outeriter        = 0;
504     inneriter        = 0;
505
506     for(iidx=0;iidx<4*DIM;iidx++)
507     {
508         scratch[iidx] = 0.0;
509     }
510
511     /* Start outer loop over neighborlists */
512     for(iidx=0; iidx<nri; iidx++)
513     {
514         /* Load shift vector for this list */
515         i_shift_offset   = DIM*shiftidx[iidx];
516
517         /* Load limits for loop over neighbors */
518         j_index_start    = jindex[iidx];
519         j_index_end      = jindex[iidx+1];
520
521         /* Get outer coordinate index */
522         inr              = iinr[iidx];
523         i_coord_offset   = DIM*inr;
524
525         /* Load i particle coords and add shift vector */
526         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
527
528         fix0             = _mm256_setzero_pd();
529         fiy0             = _mm256_setzero_pd();
530         fiz0             = _mm256_setzero_pd();
531
532         /* Load parameters for i particles */
533         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
534         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
535
536         /* Start inner kernel loop */
537         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
538         {
539
540             /* Get j neighbor index, and coordinate index */
541             jnrA             = jjnr[jidx];
542             jnrB             = jjnr[jidx+1];
543             jnrC             = jjnr[jidx+2];
544             jnrD             = jjnr[jidx+3];
545             j_coord_offsetA  = DIM*jnrA;
546             j_coord_offsetB  = DIM*jnrB;
547             j_coord_offsetC  = DIM*jnrC;
548             j_coord_offsetD  = DIM*jnrD;
549
550             /* load j atom coordinates */
551             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
552                                                  x+j_coord_offsetC,x+j_coord_offsetD,
553                                                  &jx0,&jy0,&jz0);
554
555             /* Calculate displacement vector */
556             dx00             = _mm256_sub_pd(ix0,jx0);
557             dy00             = _mm256_sub_pd(iy0,jy0);
558             dz00             = _mm256_sub_pd(iz0,jz0);
559
560             /* Calculate squared distance and things based on it */
561             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
562
563             rinv00           = avx256_invsqrt_d(rsq00);
564
565             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
566
567             /* Load parameters for j particles */
568             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
569                                                                  charge+jnrC+0,charge+jnrD+0);
570             vdwjidx0A        = 2*vdwtype[jnrA+0];
571             vdwjidx0B        = 2*vdwtype[jnrB+0];
572             vdwjidx0C        = 2*vdwtype[jnrC+0];
573             vdwjidx0D        = 2*vdwtype[jnrD+0];
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r00              = _mm256_mul_pd(rsq00,rinv00);
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm256_mul_pd(iq0,jq0);
583             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
584                                             vdwioffsetptr0+vdwjidx0B,
585                                             vdwioffsetptr0+vdwjidx0C,
586                                             vdwioffsetptr0+vdwjidx0D,
587                                             &c6_00,&c12_00);
588
589             /* Calculate table index by multiplying r with table scale and truncate to integer */
590             rt               = _mm256_mul_pd(r00,vftabscale);
591             vfitab           = _mm256_cvttpd_epi32(rt);
592             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
593             vfitab           = _mm_slli_epi32(vfitab,2);
594
595             /* CUBIC SPLINE TABLE ELECTROSTATICS */
596             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
597             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
598             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
599             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
600             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
601             Heps             = _mm256_mul_pd(vfeps,H);
602             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
603             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
604             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
605
606             /* LENNARD-JONES DISPERSION/REPULSION */
607
608             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
609             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
610
611             fscal            = _mm256_add_pd(felec,fvdw);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm256_mul_pd(fscal,dx00);
615             ty               = _mm256_mul_pd(fscal,dy00);
616             tz               = _mm256_mul_pd(fscal,dz00);
617
618             /* Update vectorial force */
619             fix0             = _mm256_add_pd(fix0,tx);
620             fiy0             = _mm256_add_pd(fiy0,ty);
621             fiz0             = _mm256_add_pd(fiz0,tz);
622
623             fjptrA             = f+j_coord_offsetA;
624             fjptrB             = f+j_coord_offsetB;
625             fjptrC             = f+j_coord_offsetC;
626             fjptrD             = f+j_coord_offsetD;
627             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
628
629             /* Inner loop uses 47 flops */
630         }
631
632         if(jidx<j_index_end)
633         {
634
635             /* Get j neighbor index, and coordinate index */
636             jnrlistA         = jjnr[jidx];
637             jnrlistB         = jjnr[jidx+1];
638             jnrlistC         = jjnr[jidx+2];
639             jnrlistD         = jjnr[jidx+3];
640             /* Sign of each element will be negative for non-real atoms.
641              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
642              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
643              */
644             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
645
646             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
647             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
648             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
649
650             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
651             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
652             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
653             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
654             j_coord_offsetA  = DIM*jnrA;
655             j_coord_offsetB  = DIM*jnrB;
656             j_coord_offsetC  = DIM*jnrC;
657             j_coord_offsetD  = DIM*jnrD;
658
659             /* load j atom coordinates */
660             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
661                                                  x+j_coord_offsetC,x+j_coord_offsetD,
662                                                  &jx0,&jy0,&jz0);
663
664             /* Calculate displacement vector */
665             dx00             = _mm256_sub_pd(ix0,jx0);
666             dy00             = _mm256_sub_pd(iy0,jy0);
667             dz00             = _mm256_sub_pd(iz0,jz0);
668
669             /* Calculate squared distance and things based on it */
670             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
671
672             rinv00           = avx256_invsqrt_d(rsq00);
673
674             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
675
676             /* Load parameters for j particles */
677             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
678                                                                  charge+jnrC+0,charge+jnrD+0);
679             vdwjidx0A        = 2*vdwtype[jnrA+0];
680             vdwjidx0B        = 2*vdwtype[jnrB+0];
681             vdwjidx0C        = 2*vdwtype[jnrC+0];
682             vdwjidx0D        = 2*vdwtype[jnrD+0];
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             r00              = _mm256_mul_pd(rsq00,rinv00);
689             r00              = _mm256_andnot_pd(dummy_mask,r00);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq00             = _mm256_mul_pd(iq0,jq0);
693             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
694                                             vdwioffsetptr0+vdwjidx0B,
695                                             vdwioffsetptr0+vdwjidx0C,
696                                             vdwioffsetptr0+vdwjidx0D,
697                                             &c6_00,&c12_00);
698
699             /* Calculate table index by multiplying r with table scale and truncate to integer */
700             rt               = _mm256_mul_pd(r00,vftabscale);
701             vfitab           = _mm256_cvttpd_epi32(rt);
702             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
703             vfitab           = _mm_slli_epi32(vfitab,2);
704
705             /* CUBIC SPLINE TABLE ELECTROSTATICS */
706             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
707             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
708             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
709             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
710             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
711             Heps             = _mm256_mul_pd(vfeps,H);
712             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
713             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
714             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
715
716             /* LENNARD-JONES DISPERSION/REPULSION */
717
718             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
719             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
720
721             fscal            = _mm256_add_pd(felec,fvdw);
722
723             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
724
725             /* Calculate temporary vectorial force */
726             tx               = _mm256_mul_pd(fscal,dx00);
727             ty               = _mm256_mul_pd(fscal,dy00);
728             tz               = _mm256_mul_pd(fscal,dz00);
729
730             /* Update vectorial force */
731             fix0             = _mm256_add_pd(fix0,tx);
732             fiy0             = _mm256_add_pd(fiy0,ty);
733             fiz0             = _mm256_add_pd(fiz0,tz);
734
735             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
736             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
737             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
738             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
739             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
740
741             /* Inner loop uses 48 flops */
742         }
743
744         /* End of innermost loop */
745
746         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
747                                                  f+i_coord_offset,fshift+i_shift_offset);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 7 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
761 }