efe3f102c73701df6c85116931b441920714c3b8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec->data;
124     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm256_setzero_pd();
168         vvdwsum          = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
203                                                                  charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm256_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm256_mul_pd(iq0,jq0);
217             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
218                                             vdwioffsetptr0+vdwjidx0B,
219                                             vdwioffsetptr0+vdwjidx0C,
220                                             vdwioffsetptr0+vdwjidx0D,
221                                             &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm256_mul_pd(r00,vftabscale);
225             vfitab           = _mm256_cvttpd_epi32(rt);
226             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
227             vfitab           = _mm_slli_epi32(vfitab,2);
228
229             /* CUBIC SPLINE TABLE ELECTROSTATICS */
230             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
231             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
232             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
233             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
234             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
235             Heps             = _mm256_mul_pd(vfeps,H);
236             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
237             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
238             velec            = _mm256_mul_pd(qq00,VV);
239             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
240             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
245             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
246             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
247             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
248             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
249
250             /* Update potential sum for this i atom from the interaction with this j atom. */
251             velecsum         = _mm256_add_pd(velecsum,velec);
252             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
253
254             fscal            = _mm256_add_pd(felec,fvdw);
255
256             /* Calculate temporary vectorial force */
257             tx               = _mm256_mul_pd(fscal,dx00);
258             ty               = _mm256_mul_pd(fscal,dy00);
259             tz               = _mm256_mul_pd(fscal,dz00);
260
261             /* Update vectorial force */
262             fix0             = _mm256_add_pd(fix0,tx);
263             fiy0             = _mm256_add_pd(fiy0,ty);
264             fiz0             = _mm256_add_pd(fiz0,tz);
265
266             fjptrA             = f+j_coord_offsetA;
267             fjptrB             = f+j_coord_offsetB;
268             fjptrC             = f+j_coord_offsetC;
269             fjptrD             = f+j_coord_offsetD;
270             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
271
272             /* Inner loop uses 56 flops */
273         }
274
275         if(jidx<j_index_end)
276         {
277
278             /* Get j neighbor index, and coordinate index */
279             jnrlistA         = jjnr[jidx];
280             jnrlistB         = jjnr[jidx+1];
281             jnrlistC         = jjnr[jidx+2];
282             jnrlistD         = jjnr[jidx+3];
283             /* Sign of each element will be negative for non-real atoms.
284              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
285              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
286              */
287             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
288
289             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
290             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
291             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
292
293             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
294             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
295             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
296             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
297             j_coord_offsetA  = DIM*jnrA;
298             j_coord_offsetB  = DIM*jnrB;
299             j_coord_offsetC  = DIM*jnrC;
300             j_coord_offsetD  = DIM*jnrD;
301
302             /* load j atom coordinates */
303             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
304                                                  x+j_coord_offsetC,x+j_coord_offsetD,
305                                                  &jx0,&jy0,&jz0);
306
307             /* Calculate displacement vector */
308             dx00             = _mm256_sub_pd(ix0,jx0);
309             dy00             = _mm256_sub_pd(iy0,jy0);
310             dz00             = _mm256_sub_pd(iz0,jz0);
311
312             /* Calculate squared distance and things based on it */
313             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
314
315             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
316
317             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
318
319             /* Load parameters for j particles */
320             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
321                                                                  charge+jnrC+0,charge+jnrD+0);
322             vdwjidx0A        = 2*vdwtype[jnrA+0];
323             vdwjidx0B        = 2*vdwtype[jnrB+0];
324             vdwjidx0C        = 2*vdwtype[jnrC+0];
325             vdwjidx0D        = 2*vdwtype[jnrD+0];
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r00              = _mm256_mul_pd(rsq00,rinv00);
332             r00              = _mm256_andnot_pd(dummy_mask,r00);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq00             = _mm256_mul_pd(iq0,jq0);
336             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
337                                             vdwioffsetptr0+vdwjidx0B,
338                                             vdwioffsetptr0+vdwjidx0C,
339                                             vdwioffsetptr0+vdwjidx0D,
340                                             &c6_00,&c12_00);
341
342             /* Calculate table index by multiplying r with table scale and truncate to integer */
343             rt               = _mm256_mul_pd(r00,vftabscale);
344             vfitab           = _mm256_cvttpd_epi32(rt);
345             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
346             vfitab           = _mm_slli_epi32(vfitab,2);
347
348             /* CUBIC SPLINE TABLE ELECTROSTATICS */
349             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
350             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
351             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
352             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
353             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
354             Heps             = _mm256_mul_pd(vfeps,H);
355             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
356             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
357             velec            = _mm256_mul_pd(qq00,VV);
358             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
359             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
360
361             /* LENNARD-JONES DISPERSION/REPULSION */
362
363             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
364             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
365             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
366             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
367             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
368
369             /* Update potential sum for this i atom from the interaction with this j atom. */
370             velec            = _mm256_andnot_pd(dummy_mask,velec);
371             velecsum         = _mm256_add_pd(velecsum,velec);
372             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
373             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
374
375             fscal            = _mm256_add_pd(felec,fvdw);
376
377             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
378
379             /* Calculate temporary vectorial force */
380             tx               = _mm256_mul_pd(fscal,dx00);
381             ty               = _mm256_mul_pd(fscal,dy00);
382             tz               = _mm256_mul_pd(fscal,dz00);
383
384             /* Update vectorial force */
385             fix0             = _mm256_add_pd(fix0,tx);
386             fiy0             = _mm256_add_pd(fiy0,ty);
387             fiz0             = _mm256_add_pd(fiz0,tz);
388
389             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
390             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
391             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
392             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
393             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
394
395             /* Inner loop uses 57 flops */
396         }
397
398         /* End of innermost loop */
399
400         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
401                                                  f+i_coord_offset,fshift+i_shift_offset);
402
403         ggid                        = gid[iidx];
404         /* Update potential energies */
405         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
406         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
407
408         /* Increment number of inner iterations */
409         inneriter                  += j_index_end - j_index_start;
410
411         /* Outer loop uses 9 flops */
412     }
413
414     /* Increment number of outer iterations */
415     outeriter        += nri;
416
417     /* Update outer/inner flops */
418
419     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
420 }
421 /*
422  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
423  * Electrostatics interaction: CubicSplineTable
424  * VdW interaction:            LennardJones
425  * Geometry:                   Particle-Particle
426  * Calculate force/pot:        Force
427  */
428 void
429 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
430                     (t_nblist                    * gmx_restrict       nlist,
431                      rvec                        * gmx_restrict          xx,
432                      rvec                        * gmx_restrict          ff,
433                      t_forcerec                  * gmx_restrict          fr,
434                      t_mdatoms                   * gmx_restrict     mdatoms,
435                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
436                      t_nrnb                      * gmx_restrict        nrnb)
437 {
438     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
439      * just 0 for non-waters.
440      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
441      * jnr indices corresponding to data put in the four positions in the SIMD register.
442      */
443     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
444     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
445     int              jnrA,jnrB,jnrC,jnrD;
446     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
447     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
448     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
453     real             scratch[4*DIM];
454     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     real *           vdwioffsetptr0;
456     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
458     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
467     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
468     __m128i          vfitab;
469     __m128i          ifour       = _mm_set1_epi32(4);
470     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
471     real             *vftab;
472     __m256d          dummy_mask,cutoff_mask;
473     __m128           tmpmask0,tmpmask1;
474     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
475     __m256d          one     = _mm256_set1_pd(1.0);
476     __m256d          two     = _mm256_set1_pd(2.0);
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = _mm256_set1_pd(fr->epsfac);
489     charge           = mdatoms->chargeA;
490     nvdwtype         = fr->ntype;
491     vdwparam         = fr->nbfp;
492     vdwtype          = mdatoms->typeA;
493
494     vftab            = kernel_data->table_elec->data;
495     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
496
497     /* Avoid stupid compiler warnings */
498     jnrA = jnrB = jnrC = jnrD = 0;
499     j_coord_offsetA = 0;
500     j_coord_offsetB = 0;
501     j_coord_offsetC = 0;
502     j_coord_offsetD = 0;
503
504     outeriter        = 0;
505     inneriter        = 0;
506
507     for(iidx=0;iidx<4*DIM;iidx++)
508     {
509         scratch[iidx] = 0.0;
510     }
511
512     /* Start outer loop over neighborlists */
513     for(iidx=0; iidx<nri; iidx++)
514     {
515         /* Load shift vector for this list */
516         i_shift_offset   = DIM*shiftidx[iidx];
517
518         /* Load limits for loop over neighbors */
519         j_index_start    = jindex[iidx];
520         j_index_end      = jindex[iidx+1];
521
522         /* Get outer coordinate index */
523         inr              = iinr[iidx];
524         i_coord_offset   = DIM*inr;
525
526         /* Load i particle coords and add shift vector */
527         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
528
529         fix0             = _mm256_setzero_pd();
530         fiy0             = _mm256_setzero_pd();
531         fiz0             = _mm256_setzero_pd();
532
533         /* Load parameters for i particles */
534         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
535         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
536
537         /* Start inner kernel loop */
538         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
539         {
540
541             /* Get j neighbor index, and coordinate index */
542             jnrA             = jjnr[jidx];
543             jnrB             = jjnr[jidx+1];
544             jnrC             = jjnr[jidx+2];
545             jnrD             = jjnr[jidx+3];
546             j_coord_offsetA  = DIM*jnrA;
547             j_coord_offsetB  = DIM*jnrB;
548             j_coord_offsetC  = DIM*jnrC;
549             j_coord_offsetD  = DIM*jnrD;
550
551             /* load j atom coordinates */
552             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
553                                                  x+j_coord_offsetC,x+j_coord_offsetD,
554                                                  &jx0,&jy0,&jz0);
555
556             /* Calculate displacement vector */
557             dx00             = _mm256_sub_pd(ix0,jx0);
558             dy00             = _mm256_sub_pd(iy0,jy0);
559             dz00             = _mm256_sub_pd(iz0,jz0);
560
561             /* Calculate squared distance and things based on it */
562             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
563
564             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
565
566             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
567
568             /* Load parameters for j particles */
569             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
570                                                                  charge+jnrC+0,charge+jnrD+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572             vdwjidx0B        = 2*vdwtype[jnrB+0];
573             vdwjidx0C        = 2*vdwtype[jnrC+0];
574             vdwjidx0D        = 2*vdwtype[jnrD+0];
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r00              = _mm256_mul_pd(rsq00,rinv00);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq00             = _mm256_mul_pd(iq0,jq0);
584             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
585                                             vdwioffsetptr0+vdwjidx0B,
586                                             vdwioffsetptr0+vdwjidx0C,
587                                             vdwioffsetptr0+vdwjidx0D,
588                                             &c6_00,&c12_00);
589
590             /* Calculate table index by multiplying r with table scale and truncate to integer */
591             rt               = _mm256_mul_pd(r00,vftabscale);
592             vfitab           = _mm256_cvttpd_epi32(rt);
593             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
594             vfitab           = _mm_slli_epi32(vfitab,2);
595
596             /* CUBIC SPLINE TABLE ELECTROSTATICS */
597             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
598             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
599             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
600             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
601             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
602             Heps             = _mm256_mul_pd(vfeps,H);
603             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
604             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
605             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
606
607             /* LENNARD-JONES DISPERSION/REPULSION */
608
609             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
610             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
611
612             fscal            = _mm256_add_pd(felec,fvdw);
613
614             /* Calculate temporary vectorial force */
615             tx               = _mm256_mul_pd(fscal,dx00);
616             ty               = _mm256_mul_pd(fscal,dy00);
617             tz               = _mm256_mul_pd(fscal,dz00);
618
619             /* Update vectorial force */
620             fix0             = _mm256_add_pd(fix0,tx);
621             fiy0             = _mm256_add_pd(fiy0,ty);
622             fiz0             = _mm256_add_pd(fiz0,tz);
623
624             fjptrA             = f+j_coord_offsetA;
625             fjptrB             = f+j_coord_offsetB;
626             fjptrC             = f+j_coord_offsetC;
627             fjptrD             = f+j_coord_offsetD;
628             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
629
630             /* Inner loop uses 47 flops */
631         }
632
633         if(jidx<j_index_end)
634         {
635
636             /* Get j neighbor index, and coordinate index */
637             jnrlistA         = jjnr[jidx];
638             jnrlistB         = jjnr[jidx+1];
639             jnrlistC         = jjnr[jidx+2];
640             jnrlistD         = jjnr[jidx+3];
641             /* Sign of each element will be negative for non-real atoms.
642              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
643              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
644              */
645             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
646
647             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
648             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
649             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
650
651             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
652             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
653             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
654             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
655             j_coord_offsetA  = DIM*jnrA;
656             j_coord_offsetB  = DIM*jnrB;
657             j_coord_offsetC  = DIM*jnrC;
658             j_coord_offsetD  = DIM*jnrD;
659
660             /* load j atom coordinates */
661             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
662                                                  x+j_coord_offsetC,x+j_coord_offsetD,
663                                                  &jx0,&jy0,&jz0);
664
665             /* Calculate displacement vector */
666             dx00             = _mm256_sub_pd(ix0,jx0);
667             dy00             = _mm256_sub_pd(iy0,jy0);
668             dz00             = _mm256_sub_pd(iz0,jz0);
669
670             /* Calculate squared distance and things based on it */
671             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
672
673             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
674
675             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
676
677             /* Load parameters for j particles */
678             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
679                                                                  charge+jnrC+0,charge+jnrD+0);
680             vdwjidx0A        = 2*vdwtype[jnrA+0];
681             vdwjidx0B        = 2*vdwtype[jnrB+0];
682             vdwjidx0C        = 2*vdwtype[jnrC+0];
683             vdwjidx0D        = 2*vdwtype[jnrD+0];
684
685             /**************************
686              * CALCULATE INTERACTIONS *
687              **************************/
688
689             r00              = _mm256_mul_pd(rsq00,rinv00);
690             r00              = _mm256_andnot_pd(dummy_mask,r00);
691
692             /* Compute parameters for interactions between i and j atoms */
693             qq00             = _mm256_mul_pd(iq0,jq0);
694             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
695                                             vdwioffsetptr0+vdwjidx0B,
696                                             vdwioffsetptr0+vdwjidx0C,
697                                             vdwioffsetptr0+vdwjidx0D,
698                                             &c6_00,&c12_00);
699
700             /* Calculate table index by multiplying r with table scale and truncate to integer */
701             rt               = _mm256_mul_pd(r00,vftabscale);
702             vfitab           = _mm256_cvttpd_epi32(rt);
703             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
704             vfitab           = _mm_slli_epi32(vfitab,2);
705
706             /* CUBIC SPLINE TABLE ELECTROSTATICS */
707             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
708             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
709             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
710             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
711             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
712             Heps             = _mm256_mul_pd(vfeps,H);
713             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
714             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
715             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
716
717             /* LENNARD-JONES DISPERSION/REPULSION */
718
719             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
720             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
721
722             fscal            = _mm256_add_pd(felec,fvdw);
723
724             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
725
726             /* Calculate temporary vectorial force */
727             tx               = _mm256_mul_pd(fscal,dx00);
728             ty               = _mm256_mul_pd(fscal,dy00);
729             tz               = _mm256_mul_pd(fscal,dz00);
730
731             /* Update vectorial force */
732             fix0             = _mm256_add_pd(fix0,tx);
733             fiy0             = _mm256_add_pd(fiy0,ty);
734             fiz0             = _mm256_add_pd(fiz0,tz);
735
736             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
737             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
738             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
739             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
740             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
741
742             /* Inner loop uses 48 flops */
743         }
744
745         /* End of innermost loop */
746
747         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
748                                                  f+i_coord_offset,fshift+i_shift_offset);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 7 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
762 }