Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     vftab            = kernel_data->table_elec->data;
110     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = jnrC = jnrD = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116     j_coord_offsetC = 0;
117     j_coord_offsetD = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     for(iidx=0;iidx<4*DIM;iidx++)
123     {
124         scratch[iidx] = 0.0;
125     }
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm256_setzero_pd();
145         fiy0             = _mm256_setzero_pd();
146         fiz0             = _mm256_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
150         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         velecsum         = _mm256_setzero_pd();
154         vvdwsum          = _mm256_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             jnrC             = jjnr[jidx+2];
164             jnrD             = jjnr[jidx+3];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167             j_coord_offsetC  = DIM*jnrC;
168             j_coord_offsetD  = DIM*jnrD;
169
170             /* load j atom coordinates */
171             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                                  x+j_coord_offsetC,x+j_coord_offsetD,
173                                                  &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm256_sub_pd(ix0,jx0);
177             dy00             = _mm256_sub_pd(iy0,jy0);
178             dz00             = _mm256_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
184
185             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
189                                                                  charge+jnrC+0,charge+jnrD+0);
190             vdwjidx0A        = 2*vdwtype[jnrA+0];
191             vdwjidx0B        = 2*vdwtype[jnrB+0];
192             vdwjidx0C        = 2*vdwtype[jnrC+0];
193             vdwjidx0D        = 2*vdwtype[jnrD+0];
194
195             /**************************
196              * CALCULATE INTERACTIONS *
197              **************************/
198
199             r00              = _mm256_mul_pd(rsq00,rinv00);
200
201             /* Compute parameters for interactions between i and j atoms */
202             qq00             = _mm256_mul_pd(iq0,jq0);
203             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
204                                             vdwioffsetptr0+vdwjidx0B,
205                                             vdwioffsetptr0+vdwjidx0C,
206                                             vdwioffsetptr0+vdwjidx0D,
207                                             &c6_00,&c12_00);
208
209             /* Calculate table index by multiplying r with table scale and truncate to integer */
210             rt               = _mm256_mul_pd(r00,vftabscale);
211             vfitab           = _mm256_cvttpd_epi32(rt);
212             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
213             vfitab           = _mm_slli_epi32(vfitab,2);
214
215             /* CUBIC SPLINE TABLE ELECTROSTATICS */
216             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
217             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
218             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
219             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
220             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
221             Heps             = _mm256_mul_pd(vfeps,H);
222             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
223             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
224             velec            = _mm256_mul_pd(qq00,VV);
225             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
226             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
227
228             /* LENNARD-JONES DISPERSION/REPULSION */
229
230             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
231             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
232             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
233             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
234             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velecsum         = _mm256_add_pd(velecsum,velec);
238             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
239
240             fscal            = _mm256_add_pd(felec,fvdw);
241
242             /* Calculate temporary vectorial force */
243             tx               = _mm256_mul_pd(fscal,dx00);
244             ty               = _mm256_mul_pd(fscal,dy00);
245             tz               = _mm256_mul_pd(fscal,dz00);
246
247             /* Update vectorial force */
248             fix0             = _mm256_add_pd(fix0,tx);
249             fiy0             = _mm256_add_pd(fiy0,ty);
250             fiz0             = _mm256_add_pd(fiz0,tz);
251
252             fjptrA             = f+j_coord_offsetA;
253             fjptrB             = f+j_coord_offsetB;
254             fjptrC             = f+j_coord_offsetC;
255             fjptrD             = f+j_coord_offsetD;
256             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
257
258             /* Inner loop uses 56 flops */
259         }
260
261         if(jidx<j_index_end)
262         {
263
264             /* Get j neighbor index, and coordinate index */
265             jnrlistA         = jjnr[jidx];
266             jnrlistB         = jjnr[jidx+1];
267             jnrlistC         = jjnr[jidx+2];
268             jnrlistD         = jjnr[jidx+3];
269             /* Sign of each element will be negative for non-real atoms.
270              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
271              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
272              */
273             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
274
275             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
276             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
277             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
278
279             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
280             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
281             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
282             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
283             j_coord_offsetA  = DIM*jnrA;
284             j_coord_offsetB  = DIM*jnrB;
285             j_coord_offsetC  = DIM*jnrC;
286             j_coord_offsetD  = DIM*jnrD;
287
288             /* load j atom coordinates */
289             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
290                                                  x+j_coord_offsetC,x+j_coord_offsetD,
291                                                  &jx0,&jy0,&jz0);
292
293             /* Calculate displacement vector */
294             dx00             = _mm256_sub_pd(ix0,jx0);
295             dy00             = _mm256_sub_pd(iy0,jy0);
296             dz00             = _mm256_sub_pd(iz0,jz0);
297
298             /* Calculate squared distance and things based on it */
299             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
300
301             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
302
303             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
304
305             /* Load parameters for j particles */
306             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
307                                                                  charge+jnrC+0,charge+jnrD+0);
308             vdwjidx0A        = 2*vdwtype[jnrA+0];
309             vdwjidx0B        = 2*vdwtype[jnrB+0];
310             vdwjidx0C        = 2*vdwtype[jnrC+0];
311             vdwjidx0D        = 2*vdwtype[jnrD+0];
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             r00              = _mm256_mul_pd(rsq00,rinv00);
318             r00              = _mm256_andnot_pd(dummy_mask,r00);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq00             = _mm256_mul_pd(iq0,jq0);
322             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
323                                             vdwioffsetptr0+vdwjidx0B,
324                                             vdwioffsetptr0+vdwjidx0C,
325                                             vdwioffsetptr0+vdwjidx0D,
326                                             &c6_00,&c12_00);
327
328             /* Calculate table index by multiplying r with table scale and truncate to integer */
329             rt               = _mm256_mul_pd(r00,vftabscale);
330             vfitab           = _mm256_cvttpd_epi32(rt);
331             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
332             vfitab           = _mm_slli_epi32(vfitab,2);
333
334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
335             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
337             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
338             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
339             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
340             Heps             = _mm256_mul_pd(vfeps,H);
341             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
342             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
343             velec            = _mm256_mul_pd(qq00,VV);
344             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
345             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
346
347             /* LENNARD-JONES DISPERSION/REPULSION */
348
349             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
350             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
351             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
352             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
353             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velec            = _mm256_andnot_pd(dummy_mask,velec);
357             velecsum         = _mm256_add_pd(velecsum,velec);
358             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
359             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
360
361             fscal            = _mm256_add_pd(felec,fvdw);
362
363             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
364
365             /* Calculate temporary vectorial force */
366             tx               = _mm256_mul_pd(fscal,dx00);
367             ty               = _mm256_mul_pd(fscal,dy00);
368             tz               = _mm256_mul_pd(fscal,dz00);
369
370             /* Update vectorial force */
371             fix0             = _mm256_add_pd(fix0,tx);
372             fiy0             = _mm256_add_pd(fiy0,ty);
373             fiz0             = _mm256_add_pd(fiz0,tz);
374
375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
379             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
380
381             /* Inner loop uses 57 flops */
382         }
383
384         /* End of innermost loop */
385
386         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
387                                                  f+i_coord_offset,fshift+i_shift_offset);
388
389         ggid                        = gid[iidx];
390         /* Update potential energies */
391         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
392         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
393
394         /* Increment number of inner iterations */
395         inneriter                  += j_index_end - j_index_start;
396
397         /* Outer loop uses 9 flops */
398     }
399
400     /* Increment number of outer iterations */
401     outeriter        += nri;
402
403     /* Update outer/inner flops */
404
405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
406 }
407 /*
408  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
409  * Electrostatics interaction: CubicSplineTable
410  * VdW interaction:            LennardJones
411  * Geometry:                   Particle-Particle
412  * Calculate force/pot:        Force
413  */
414 void
415 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
416                     (t_nblist * gmx_restrict                nlist,
417                      rvec * gmx_restrict                    xx,
418                      rvec * gmx_restrict                    ff,
419                      t_forcerec * gmx_restrict              fr,
420                      t_mdatoms * gmx_restrict               mdatoms,
421                      nb_kernel_data_t * gmx_restrict        kernel_data,
422                      t_nrnb * gmx_restrict                  nrnb)
423 {
424     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
425      * just 0 for non-waters.
426      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
427      * jnr indices corresponding to data put in the four positions in the SIMD register.
428      */
429     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
430     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
431     int              jnrA,jnrB,jnrC,jnrD;
432     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
433     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
434     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
435     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
436     real             rcutoff_scalar;
437     real             *shiftvec,*fshift,*x,*f;
438     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
439     real             scratch[4*DIM];
440     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
441     real *           vdwioffsetptr0;
442     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
444     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
446     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
447     real             *charge;
448     int              nvdwtype;
449     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
450     int              *vdwtype;
451     real             *vdwparam;
452     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
453     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
454     __m128i          vfitab;
455     __m128i          ifour       = _mm_set1_epi32(4);
456     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
457     real             *vftab;
458     __m256d          dummy_mask,cutoff_mask;
459     __m128           tmpmask0,tmpmask1;
460     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
461     __m256d          one     = _mm256_set1_pd(1.0);
462     __m256d          two     = _mm256_set1_pd(2.0);
463     x                = xx[0];
464     f                = ff[0];
465
466     nri              = nlist->nri;
467     iinr             = nlist->iinr;
468     jindex           = nlist->jindex;
469     jjnr             = nlist->jjnr;
470     shiftidx         = nlist->shift;
471     gid              = nlist->gid;
472     shiftvec         = fr->shift_vec[0];
473     fshift           = fr->fshift[0];
474     facel            = _mm256_set1_pd(fr->epsfac);
475     charge           = mdatoms->chargeA;
476     nvdwtype         = fr->ntype;
477     vdwparam         = fr->nbfp;
478     vdwtype          = mdatoms->typeA;
479
480     vftab            = kernel_data->table_elec->data;
481     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
482
483     /* Avoid stupid compiler warnings */
484     jnrA = jnrB = jnrC = jnrD = 0;
485     j_coord_offsetA = 0;
486     j_coord_offsetB = 0;
487     j_coord_offsetC = 0;
488     j_coord_offsetD = 0;
489
490     outeriter        = 0;
491     inneriter        = 0;
492
493     for(iidx=0;iidx<4*DIM;iidx++)
494     {
495         scratch[iidx] = 0.0;
496     }
497
498     /* Start outer loop over neighborlists */
499     for(iidx=0; iidx<nri; iidx++)
500     {
501         /* Load shift vector for this list */
502         i_shift_offset   = DIM*shiftidx[iidx];
503
504         /* Load limits for loop over neighbors */
505         j_index_start    = jindex[iidx];
506         j_index_end      = jindex[iidx+1];
507
508         /* Get outer coordinate index */
509         inr              = iinr[iidx];
510         i_coord_offset   = DIM*inr;
511
512         /* Load i particle coords and add shift vector */
513         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
514
515         fix0             = _mm256_setzero_pd();
516         fiy0             = _mm256_setzero_pd();
517         fiz0             = _mm256_setzero_pd();
518
519         /* Load parameters for i particles */
520         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
521         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             jnrC             = jjnr[jidx+2];
531             jnrD             = jjnr[jidx+3];
532             j_coord_offsetA  = DIM*jnrA;
533             j_coord_offsetB  = DIM*jnrB;
534             j_coord_offsetC  = DIM*jnrC;
535             j_coord_offsetD  = DIM*jnrD;
536
537             /* load j atom coordinates */
538             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
539                                                  x+j_coord_offsetC,x+j_coord_offsetD,
540                                                  &jx0,&jy0,&jz0);
541
542             /* Calculate displacement vector */
543             dx00             = _mm256_sub_pd(ix0,jx0);
544             dy00             = _mm256_sub_pd(iy0,jy0);
545             dz00             = _mm256_sub_pd(iz0,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
549
550             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
551
552             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
553
554             /* Load parameters for j particles */
555             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
556                                                                  charge+jnrC+0,charge+jnrD+0);
557             vdwjidx0A        = 2*vdwtype[jnrA+0];
558             vdwjidx0B        = 2*vdwtype[jnrB+0];
559             vdwjidx0C        = 2*vdwtype[jnrC+0];
560             vdwjidx0D        = 2*vdwtype[jnrD+0];
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             r00              = _mm256_mul_pd(rsq00,rinv00);
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq00             = _mm256_mul_pd(iq0,jq0);
570             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
571                                             vdwioffsetptr0+vdwjidx0B,
572                                             vdwioffsetptr0+vdwjidx0C,
573                                             vdwioffsetptr0+vdwjidx0D,
574                                             &c6_00,&c12_00);
575
576             /* Calculate table index by multiplying r with table scale and truncate to integer */
577             rt               = _mm256_mul_pd(r00,vftabscale);
578             vfitab           = _mm256_cvttpd_epi32(rt);
579             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
580             vfitab           = _mm_slli_epi32(vfitab,2);
581
582             /* CUBIC SPLINE TABLE ELECTROSTATICS */
583             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
584             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
585             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
586             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
587             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
588             Heps             = _mm256_mul_pd(vfeps,H);
589             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
590             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
591             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
592
593             /* LENNARD-JONES DISPERSION/REPULSION */
594
595             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
596             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
597
598             fscal            = _mm256_add_pd(felec,fvdw);
599
600             /* Calculate temporary vectorial force */
601             tx               = _mm256_mul_pd(fscal,dx00);
602             ty               = _mm256_mul_pd(fscal,dy00);
603             tz               = _mm256_mul_pd(fscal,dz00);
604
605             /* Update vectorial force */
606             fix0             = _mm256_add_pd(fix0,tx);
607             fiy0             = _mm256_add_pd(fiy0,ty);
608             fiz0             = _mm256_add_pd(fiz0,tz);
609
610             fjptrA             = f+j_coord_offsetA;
611             fjptrB             = f+j_coord_offsetB;
612             fjptrC             = f+j_coord_offsetC;
613             fjptrD             = f+j_coord_offsetD;
614             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
615
616             /* Inner loop uses 47 flops */
617         }
618
619         if(jidx<j_index_end)
620         {
621
622             /* Get j neighbor index, and coordinate index */
623             jnrlistA         = jjnr[jidx];
624             jnrlistB         = jjnr[jidx+1];
625             jnrlistC         = jjnr[jidx+2];
626             jnrlistD         = jjnr[jidx+3];
627             /* Sign of each element will be negative for non-real atoms.
628              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
629              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
630              */
631             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
632
633             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
634             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
635             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
636
637             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
638             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
639             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
640             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
641             j_coord_offsetA  = DIM*jnrA;
642             j_coord_offsetB  = DIM*jnrB;
643             j_coord_offsetC  = DIM*jnrC;
644             j_coord_offsetD  = DIM*jnrD;
645
646             /* load j atom coordinates */
647             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
648                                                  x+j_coord_offsetC,x+j_coord_offsetD,
649                                                  &jx0,&jy0,&jz0);
650
651             /* Calculate displacement vector */
652             dx00             = _mm256_sub_pd(ix0,jx0);
653             dy00             = _mm256_sub_pd(iy0,jy0);
654             dz00             = _mm256_sub_pd(iz0,jz0);
655
656             /* Calculate squared distance and things based on it */
657             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
658
659             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
660
661             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
662
663             /* Load parameters for j particles */
664             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
665                                                                  charge+jnrC+0,charge+jnrD+0);
666             vdwjidx0A        = 2*vdwtype[jnrA+0];
667             vdwjidx0B        = 2*vdwtype[jnrB+0];
668             vdwjidx0C        = 2*vdwtype[jnrC+0];
669             vdwjidx0D        = 2*vdwtype[jnrD+0];
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             r00              = _mm256_mul_pd(rsq00,rinv00);
676             r00              = _mm256_andnot_pd(dummy_mask,r00);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq00             = _mm256_mul_pd(iq0,jq0);
680             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
681                                             vdwioffsetptr0+vdwjidx0B,
682                                             vdwioffsetptr0+vdwjidx0C,
683                                             vdwioffsetptr0+vdwjidx0D,
684                                             &c6_00,&c12_00);
685
686             /* Calculate table index by multiplying r with table scale and truncate to integer */
687             rt               = _mm256_mul_pd(r00,vftabscale);
688             vfitab           = _mm256_cvttpd_epi32(rt);
689             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
690             vfitab           = _mm_slli_epi32(vfitab,2);
691
692             /* CUBIC SPLINE TABLE ELECTROSTATICS */
693             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
694             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
695             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
696             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
697             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
698             Heps             = _mm256_mul_pd(vfeps,H);
699             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
700             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
701             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
702
703             /* LENNARD-JONES DISPERSION/REPULSION */
704
705             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
706             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
707
708             fscal            = _mm256_add_pd(felec,fvdw);
709
710             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
711
712             /* Calculate temporary vectorial force */
713             tx               = _mm256_mul_pd(fscal,dx00);
714             ty               = _mm256_mul_pd(fscal,dy00);
715             tz               = _mm256_mul_pd(fscal,dz00);
716
717             /* Update vectorial force */
718             fix0             = _mm256_add_pd(fix0,tx);
719             fiy0             = _mm256_add_pd(fiy0,ty);
720             fiz0             = _mm256_add_pd(fiz0,tz);
721
722             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
723             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
724             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
725             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
726             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
727
728             /* Inner loop uses 48 flops */
729         }
730
731         /* End of innermost loop */
732
733         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
734                                                  f+i_coord_offset,fshift+i_shift_offset);
735
736         /* Increment number of inner iterations */
737         inneriter                  += j_index_end - j_index_start;
738
739         /* Outer loop uses 7 flops */
740     }
741
742     /* Increment number of outer iterations */
743     outeriter        += nri;
744
745     /* Update outer/inner flops */
746
747     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
748 }