03341f8da1f87133385a37f054f172a6873bbf26
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_elec->data;
126     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm256_setzero_pd();
161         fiy0             = _mm256_setzero_pd();
162         fiz0             = _mm256_setzero_pd();
163
164         /* Load parameters for i particles */
165         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
166         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170         vvdwsum          = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_pd(ix0,jx0);
193             dy00             = _mm256_sub_pd(iy0,jy0);
194             dz00             = _mm256_sub_pd(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
200
201             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0);
206             vdwjidx0A        = 2*vdwtype[jnrA+0];
207             vdwjidx0B        = 2*vdwtype[jnrB+0];
208             vdwjidx0C        = 2*vdwtype[jnrC+0];
209             vdwjidx0D        = 2*vdwtype[jnrD+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             r00              = _mm256_mul_pd(rsq00,rinv00);
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm256_mul_pd(iq0,jq0);
219             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
220                                             vdwioffsetptr0+vdwjidx0B,
221                                             vdwioffsetptr0+vdwjidx0C,
222                                             vdwioffsetptr0+vdwjidx0D,
223                                             &c6_00,&c12_00);
224
225             /* Calculate table index by multiplying r with table scale and truncate to integer */
226             rt               = _mm256_mul_pd(r00,vftabscale);
227             vfitab           = _mm256_cvttpd_epi32(rt);
228             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
229             vfitab           = _mm_slli_epi32(vfitab,2);
230
231             /* CUBIC SPLINE TABLE ELECTROSTATICS */
232             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
233             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
234             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
235             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
236             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
237             Heps             = _mm256_mul_pd(vfeps,H);
238             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
239             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
240             velec            = _mm256_mul_pd(qq00,VV);
241             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
242             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
243
244             /* LENNARD-JONES DISPERSION/REPULSION */
245
246             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
247             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
248             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
249             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
250             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velecsum         = _mm256_add_pd(velecsum,velec);
254             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
255
256             fscal            = _mm256_add_pd(felec,fvdw);
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm256_mul_pd(fscal,dx00);
260             ty               = _mm256_mul_pd(fscal,dy00);
261             tz               = _mm256_mul_pd(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm256_add_pd(fix0,tx);
265             fiy0             = _mm256_add_pd(fiy0,ty);
266             fiz0             = _mm256_add_pd(fiz0,tz);
267
268             fjptrA             = f+j_coord_offsetA;
269             fjptrB             = f+j_coord_offsetB;
270             fjptrC             = f+j_coord_offsetC;
271             fjptrD             = f+j_coord_offsetD;
272             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
273
274             /* Inner loop uses 56 flops */
275         }
276
277         if(jidx<j_index_end)
278         {
279
280             /* Get j neighbor index, and coordinate index */
281             jnrlistA         = jjnr[jidx];
282             jnrlistB         = jjnr[jidx+1];
283             jnrlistC         = jjnr[jidx+2];
284             jnrlistD         = jjnr[jidx+3];
285             /* Sign of each element will be negative for non-real atoms.
286              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
287              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
288              */
289             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
290
291             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
292             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
293             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
294
295             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
296             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
297             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
298             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
299             j_coord_offsetA  = DIM*jnrA;
300             j_coord_offsetB  = DIM*jnrB;
301             j_coord_offsetC  = DIM*jnrC;
302             j_coord_offsetD  = DIM*jnrD;
303
304             /* load j atom coordinates */
305             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
306                                                  x+j_coord_offsetC,x+j_coord_offsetD,
307                                                  &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _mm256_sub_pd(ix0,jx0);
311             dy00             = _mm256_sub_pd(iy0,jy0);
312             dz00             = _mm256_sub_pd(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
316
317             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
318
319             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
320
321             /* Load parameters for j particles */
322             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
323                                                                  charge+jnrC+0,charge+jnrD+0);
324             vdwjidx0A        = 2*vdwtype[jnrA+0];
325             vdwjidx0B        = 2*vdwtype[jnrB+0];
326             vdwjidx0C        = 2*vdwtype[jnrC+0];
327             vdwjidx0D        = 2*vdwtype[jnrD+0];
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r00              = _mm256_mul_pd(rsq00,rinv00);
334             r00              = _mm256_andnot_pd(dummy_mask,r00);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq00             = _mm256_mul_pd(iq0,jq0);
338             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
339                                             vdwioffsetptr0+vdwjidx0B,
340                                             vdwioffsetptr0+vdwjidx0C,
341                                             vdwioffsetptr0+vdwjidx0D,
342                                             &c6_00,&c12_00);
343
344             /* Calculate table index by multiplying r with table scale and truncate to integer */
345             rt               = _mm256_mul_pd(r00,vftabscale);
346             vfitab           = _mm256_cvttpd_epi32(rt);
347             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
348             vfitab           = _mm_slli_epi32(vfitab,2);
349
350             /* CUBIC SPLINE TABLE ELECTROSTATICS */
351             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
352             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
353             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
354             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
355             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
356             Heps             = _mm256_mul_pd(vfeps,H);
357             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
358             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
359             velec            = _mm256_mul_pd(qq00,VV);
360             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
361             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
362
363             /* LENNARD-JONES DISPERSION/REPULSION */
364
365             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
366             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
367             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
368             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
369             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
370
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velec            = _mm256_andnot_pd(dummy_mask,velec);
373             velecsum         = _mm256_add_pd(velecsum,velec);
374             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
375             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
376
377             fscal            = _mm256_add_pd(felec,fvdw);
378
379             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
380
381             /* Calculate temporary vectorial force */
382             tx               = _mm256_mul_pd(fscal,dx00);
383             ty               = _mm256_mul_pd(fscal,dy00);
384             tz               = _mm256_mul_pd(fscal,dz00);
385
386             /* Update vectorial force */
387             fix0             = _mm256_add_pd(fix0,tx);
388             fiy0             = _mm256_add_pd(fiy0,ty);
389             fiz0             = _mm256_add_pd(fiz0,tz);
390
391             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
392             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
393             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
394             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
395             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
396
397             /* Inner loop uses 57 flops */
398         }
399
400         /* End of innermost loop */
401
402         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
403                                                  f+i_coord_offset,fshift+i_shift_offset);
404
405         ggid                        = gid[iidx];
406         /* Update potential energies */
407         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
408         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
409
410         /* Increment number of inner iterations */
411         inneriter                  += j_index_end - j_index_start;
412
413         /* Outer loop uses 9 flops */
414     }
415
416     /* Increment number of outer iterations */
417     outeriter        += nri;
418
419     /* Update outer/inner flops */
420
421     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
422 }
423 /*
424  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
425  * Electrostatics interaction: CubicSplineTable
426  * VdW interaction:            LennardJones
427  * Geometry:                   Particle-Particle
428  * Calculate force/pot:        Force
429  */
430 void
431 nb_kernel_ElecCSTab_VdwLJ_GeomP1P1_F_avx_256_double
432                     (t_nblist                    * gmx_restrict       nlist,
433                      rvec                        * gmx_restrict          xx,
434                      rvec                        * gmx_restrict          ff,
435                      t_forcerec                  * gmx_restrict          fr,
436                      t_mdatoms                   * gmx_restrict     mdatoms,
437                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
438                      t_nrnb                      * gmx_restrict        nrnb)
439 {
440     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
441      * just 0 for non-waters.
442      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
443      * jnr indices corresponding to data put in the four positions in the SIMD register.
444      */
445     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
446     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
447     int              jnrA,jnrB,jnrC,jnrD;
448     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
449     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
450     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
451     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
452     real             rcutoff_scalar;
453     real             *shiftvec,*fshift,*x,*f;
454     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
455     real             scratch[4*DIM];
456     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
457     real *           vdwioffsetptr0;
458     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
459     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
460     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
461     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
462     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
463     real             *charge;
464     int              nvdwtype;
465     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
466     int              *vdwtype;
467     real             *vdwparam;
468     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
469     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
470     __m128i          vfitab;
471     __m128i          ifour       = _mm_set1_epi32(4);
472     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
473     real             *vftab;
474     __m256d          dummy_mask,cutoff_mask;
475     __m128           tmpmask0,tmpmask1;
476     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
477     __m256d          one     = _mm256_set1_pd(1.0);
478     __m256d          two     = _mm256_set1_pd(2.0);
479     x                = xx[0];
480     f                = ff[0];
481
482     nri              = nlist->nri;
483     iinr             = nlist->iinr;
484     jindex           = nlist->jindex;
485     jjnr             = nlist->jjnr;
486     shiftidx         = nlist->shift;
487     gid              = nlist->gid;
488     shiftvec         = fr->shift_vec[0];
489     fshift           = fr->fshift[0];
490     facel            = _mm256_set1_pd(fr->epsfac);
491     charge           = mdatoms->chargeA;
492     nvdwtype         = fr->ntype;
493     vdwparam         = fr->nbfp;
494     vdwtype          = mdatoms->typeA;
495
496     vftab            = kernel_data->table_elec->data;
497     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
498
499     /* Avoid stupid compiler warnings */
500     jnrA = jnrB = jnrC = jnrD = 0;
501     j_coord_offsetA = 0;
502     j_coord_offsetB = 0;
503     j_coord_offsetC = 0;
504     j_coord_offsetD = 0;
505
506     outeriter        = 0;
507     inneriter        = 0;
508
509     for(iidx=0;iidx<4*DIM;iidx++)
510     {
511         scratch[iidx] = 0.0;
512     }
513
514     /* Start outer loop over neighborlists */
515     for(iidx=0; iidx<nri; iidx++)
516     {
517         /* Load shift vector for this list */
518         i_shift_offset   = DIM*shiftidx[iidx];
519
520         /* Load limits for loop over neighbors */
521         j_index_start    = jindex[iidx];
522         j_index_end      = jindex[iidx+1];
523
524         /* Get outer coordinate index */
525         inr              = iinr[iidx];
526         i_coord_offset   = DIM*inr;
527
528         /* Load i particle coords and add shift vector */
529         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
530
531         fix0             = _mm256_setzero_pd();
532         fiy0             = _mm256_setzero_pd();
533         fiz0             = _mm256_setzero_pd();
534
535         /* Load parameters for i particles */
536         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
537         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
538
539         /* Start inner kernel loop */
540         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
541         {
542
543             /* Get j neighbor index, and coordinate index */
544             jnrA             = jjnr[jidx];
545             jnrB             = jjnr[jidx+1];
546             jnrC             = jjnr[jidx+2];
547             jnrD             = jjnr[jidx+3];
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550             j_coord_offsetC  = DIM*jnrC;
551             j_coord_offsetD  = DIM*jnrD;
552
553             /* load j atom coordinates */
554             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
555                                                  x+j_coord_offsetC,x+j_coord_offsetD,
556                                                  &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm256_sub_pd(ix0,jx0);
560             dy00             = _mm256_sub_pd(iy0,jy0);
561             dz00             = _mm256_sub_pd(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
565
566             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
567
568             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
569
570             /* Load parameters for j particles */
571             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
572                                                                  charge+jnrC+0,charge+jnrD+0);
573             vdwjidx0A        = 2*vdwtype[jnrA+0];
574             vdwjidx0B        = 2*vdwtype[jnrB+0];
575             vdwjidx0C        = 2*vdwtype[jnrC+0];
576             vdwjidx0D        = 2*vdwtype[jnrD+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = _mm256_mul_pd(rsq00,rinv00);
583
584             /* Compute parameters for interactions between i and j atoms */
585             qq00             = _mm256_mul_pd(iq0,jq0);
586             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
587                                             vdwioffsetptr0+vdwjidx0B,
588                                             vdwioffsetptr0+vdwjidx0C,
589                                             vdwioffsetptr0+vdwjidx0D,
590                                             &c6_00,&c12_00);
591
592             /* Calculate table index by multiplying r with table scale and truncate to integer */
593             rt               = _mm256_mul_pd(r00,vftabscale);
594             vfitab           = _mm256_cvttpd_epi32(rt);
595             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
596             vfitab           = _mm_slli_epi32(vfitab,2);
597
598             /* CUBIC SPLINE TABLE ELECTROSTATICS */
599             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
600             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
601             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
602             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
603             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
604             Heps             = _mm256_mul_pd(vfeps,H);
605             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
606             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
607             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
608
609             /* LENNARD-JONES DISPERSION/REPULSION */
610
611             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
612             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
613
614             fscal            = _mm256_add_pd(felec,fvdw);
615
616             /* Calculate temporary vectorial force */
617             tx               = _mm256_mul_pd(fscal,dx00);
618             ty               = _mm256_mul_pd(fscal,dy00);
619             tz               = _mm256_mul_pd(fscal,dz00);
620
621             /* Update vectorial force */
622             fix0             = _mm256_add_pd(fix0,tx);
623             fiy0             = _mm256_add_pd(fiy0,ty);
624             fiz0             = _mm256_add_pd(fiz0,tz);
625
626             fjptrA             = f+j_coord_offsetA;
627             fjptrB             = f+j_coord_offsetB;
628             fjptrC             = f+j_coord_offsetC;
629             fjptrD             = f+j_coord_offsetD;
630             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
631
632             /* Inner loop uses 47 flops */
633         }
634
635         if(jidx<j_index_end)
636         {
637
638             /* Get j neighbor index, and coordinate index */
639             jnrlistA         = jjnr[jidx];
640             jnrlistB         = jjnr[jidx+1];
641             jnrlistC         = jjnr[jidx+2];
642             jnrlistD         = jjnr[jidx+3];
643             /* Sign of each element will be negative for non-real atoms.
644              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
645              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
646              */
647             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
648
649             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
650             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
651             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
652
653             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
654             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
655             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
656             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
657             j_coord_offsetA  = DIM*jnrA;
658             j_coord_offsetB  = DIM*jnrB;
659             j_coord_offsetC  = DIM*jnrC;
660             j_coord_offsetD  = DIM*jnrD;
661
662             /* load j atom coordinates */
663             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
664                                                  x+j_coord_offsetC,x+j_coord_offsetD,
665                                                  &jx0,&jy0,&jz0);
666
667             /* Calculate displacement vector */
668             dx00             = _mm256_sub_pd(ix0,jx0);
669             dy00             = _mm256_sub_pd(iy0,jy0);
670             dz00             = _mm256_sub_pd(iz0,jz0);
671
672             /* Calculate squared distance and things based on it */
673             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
674
675             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
676
677             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
678
679             /* Load parameters for j particles */
680             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
681                                                                  charge+jnrC+0,charge+jnrD+0);
682             vdwjidx0A        = 2*vdwtype[jnrA+0];
683             vdwjidx0B        = 2*vdwtype[jnrB+0];
684             vdwjidx0C        = 2*vdwtype[jnrC+0];
685             vdwjidx0D        = 2*vdwtype[jnrD+0];
686
687             /**************************
688              * CALCULATE INTERACTIONS *
689              **************************/
690
691             r00              = _mm256_mul_pd(rsq00,rinv00);
692             r00              = _mm256_andnot_pd(dummy_mask,r00);
693
694             /* Compute parameters for interactions between i and j atoms */
695             qq00             = _mm256_mul_pd(iq0,jq0);
696             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
697                                             vdwioffsetptr0+vdwjidx0B,
698                                             vdwioffsetptr0+vdwjidx0C,
699                                             vdwioffsetptr0+vdwjidx0D,
700                                             &c6_00,&c12_00);
701
702             /* Calculate table index by multiplying r with table scale and truncate to integer */
703             rt               = _mm256_mul_pd(r00,vftabscale);
704             vfitab           = _mm256_cvttpd_epi32(rt);
705             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
706             vfitab           = _mm_slli_epi32(vfitab,2);
707
708             /* CUBIC SPLINE TABLE ELECTROSTATICS */
709             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
710             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
711             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
712             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
713             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
714             Heps             = _mm256_mul_pd(vfeps,H);
715             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
716             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
717             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
718
719             /* LENNARD-JONES DISPERSION/REPULSION */
720
721             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
722             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
723
724             fscal            = _mm256_add_pd(felec,fvdw);
725
726             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
727
728             /* Calculate temporary vectorial force */
729             tx               = _mm256_mul_pd(fscal,dx00);
730             ty               = _mm256_mul_pd(fscal,dy00);
731             tz               = _mm256_mul_pd(fscal,dz00);
732
733             /* Update vectorial force */
734             fix0             = _mm256_add_pd(fix0,tx);
735             fiy0             = _mm256_add_pd(fiy0,ty);
736             fiz0             = _mm256_add_pd(fiz0,tz);
737
738             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
739             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
740             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
741             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
742             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
743
744             /* Inner loop uses 48 flops */
745         }
746
747         /* End of innermost loop */
748
749         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
750                                                  f+i_coord_offset,fshift+i_shift_offset);
751
752         /* Increment number of inner iterations */
753         inneriter                  += j_index_end - j_index_start;
754
755         /* Outer loop uses 7 flops */
756     }
757
758     /* Increment number of outer iterations */
759     outeriter        += nri;
760
761     /* Update outer/inner flops */
762
763     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*48);
764 }