5d72b40ec7cbfbb00632df91775d5ae69ec3299f
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     real *           vdwioffsetptr3;
91     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
98     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
105     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
106     __m128i          vfitab;
107     __m128i          ifour       = _mm_set1_epi32(4);
108     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
109     real             *vftab;
110     __m256d          dummy_mask,cutoff_mask;
111     __m128           tmpmask0,tmpmask1;
112     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
113     __m256d          one     = _mm256_set1_pd(1.0);
114     __m256d          two     = _mm256_set1_pd(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm256_set1_pd(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_elec_vdw->data;
133     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
140     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178         fix1             = _mm256_setzero_pd();
179         fiy1             = _mm256_setzero_pd();
180         fiz1             = _mm256_setzero_pd();
181         fix2             = _mm256_setzero_pd();
182         fiy2             = _mm256_setzero_pd();
183         fiz2             = _mm256_setzero_pd();
184         fix3             = _mm256_setzero_pd();
185         fiy3             = _mm256_setzero_pd();
186         fiz3             = _mm256_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_pd();
190         vvdwsum          = _mm256_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_pd(ix0,jx0);
213             dy00             = _mm256_sub_pd(iy0,jy0);
214             dz00             = _mm256_sub_pd(iz0,jz0);
215             dx10             = _mm256_sub_pd(ix1,jx0);
216             dy10             = _mm256_sub_pd(iy1,jy0);
217             dz10             = _mm256_sub_pd(iz1,jz0);
218             dx20             = _mm256_sub_pd(ix2,jx0);
219             dy20             = _mm256_sub_pd(iy2,jy0);
220             dz20             = _mm256_sub_pd(iz2,jz0);
221             dx30             = _mm256_sub_pd(ix3,jx0);
222             dy30             = _mm256_sub_pd(iy3,jy0);
223             dz30             = _mm256_sub_pd(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
227             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
228             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
229             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
230
231             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
232             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
233             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
234             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
238                                                                  charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm256_setzero_pd();
245             fjy0             = _mm256_setzero_pd();
246             fjz0             = _mm256_setzero_pd();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             r00              = _mm256_mul_pd(rsq00,rinv00);
253
254             /* Compute parameters for interactions between i and j atoms */
255             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             &c6_00,&c12_00);
260
261             /* Calculate table index by multiplying r with table scale and truncate to integer */
262             rt               = _mm256_mul_pd(r00,vftabscale);
263             vfitab           = _mm256_cvttpd_epi32(rt);
264             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
265             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
266
267             /* CUBIC SPLINE TABLE DISPERSION */
268             vfitab           = _mm_add_epi32(vfitab,ifour);
269             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
273             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
274             Heps             = _mm256_mul_pd(vfeps,H);
275             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
276             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
277             vvdw6            = _mm256_mul_pd(c6_00,VV);
278             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
279             fvdw6            = _mm256_mul_pd(c6_00,FF);
280
281             /* CUBIC SPLINE TABLE REPULSION */
282             vfitab           = _mm_add_epi32(vfitab,ifour);
283             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
284             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
285             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
286             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
287             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
288             Heps             = _mm256_mul_pd(vfeps,H);
289             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
290             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
291             vvdw12           = _mm256_mul_pd(c12_00,VV);
292             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
293             fvdw12           = _mm256_mul_pd(c12_00,FF);
294             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
295             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
299
300             fscal            = fvdw;
301
302             /* Calculate temporary vectorial force */
303             tx               = _mm256_mul_pd(fscal,dx00);
304             ty               = _mm256_mul_pd(fscal,dy00);
305             tz               = _mm256_mul_pd(fscal,dz00);
306
307             /* Update vectorial force */
308             fix0             = _mm256_add_pd(fix0,tx);
309             fiy0             = _mm256_add_pd(fiy0,ty);
310             fiz0             = _mm256_add_pd(fiz0,tz);
311
312             fjx0             = _mm256_add_pd(fjx0,tx);
313             fjy0             = _mm256_add_pd(fjy0,ty);
314             fjz0             = _mm256_add_pd(fjz0,tz);
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             r10              = _mm256_mul_pd(rsq10,rinv10);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm256_mul_pd(iq1,jq0);
324
325             /* Calculate table index by multiplying r with table scale and truncate to integer */
326             rt               = _mm256_mul_pd(r10,vftabscale);
327             vfitab           = _mm256_cvttpd_epi32(rt);
328             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
329             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
330
331             /* CUBIC SPLINE TABLE ELECTROSTATICS */
332             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
333             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
334             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
335             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
336             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
337             Heps             = _mm256_mul_pd(vfeps,H);
338             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
339             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
340             velec            = _mm256_mul_pd(qq10,VV);
341             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
342             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_pd(fscal,dx10);
351             ty               = _mm256_mul_pd(fscal,dy10);
352             tz               = _mm256_mul_pd(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm256_add_pd(fix1,tx);
356             fiy1             = _mm256_add_pd(fiy1,ty);
357             fiz1             = _mm256_add_pd(fiz1,tz);
358
359             fjx0             = _mm256_add_pd(fjx0,tx);
360             fjy0             = _mm256_add_pd(fjy0,ty);
361             fjz0             = _mm256_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm256_mul_pd(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm256_mul_pd(iq2,jq0);
371
372             /* Calculate table index by multiplying r with table scale and truncate to integer */
373             rt               = _mm256_mul_pd(r20,vftabscale);
374             vfitab           = _mm256_cvttpd_epi32(rt);
375             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
376             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
377
378             /* CUBIC SPLINE TABLE ELECTROSTATICS */
379             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
380             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
381             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
382             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
383             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
384             Heps             = _mm256_mul_pd(vfeps,H);
385             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
386             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
387             velec            = _mm256_mul_pd(qq20,VV);
388             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
389             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
390
391             /* Update potential sum for this i atom from the interaction with this j atom. */
392             velecsum         = _mm256_add_pd(velecsum,velec);
393
394             fscal            = felec;
395
396             /* Calculate temporary vectorial force */
397             tx               = _mm256_mul_pd(fscal,dx20);
398             ty               = _mm256_mul_pd(fscal,dy20);
399             tz               = _mm256_mul_pd(fscal,dz20);
400
401             /* Update vectorial force */
402             fix2             = _mm256_add_pd(fix2,tx);
403             fiy2             = _mm256_add_pd(fiy2,ty);
404             fiz2             = _mm256_add_pd(fiz2,tz);
405
406             fjx0             = _mm256_add_pd(fjx0,tx);
407             fjy0             = _mm256_add_pd(fjy0,ty);
408             fjz0             = _mm256_add_pd(fjz0,tz);
409
410             /**************************
411              * CALCULATE INTERACTIONS *
412              **************************/
413
414             r30              = _mm256_mul_pd(rsq30,rinv30);
415
416             /* Compute parameters for interactions between i and j atoms */
417             qq30             = _mm256_mul_pd(iq3,jq0);
418
419             /* Calculate table index by multiplying r with table scale and truncate to integer */
420             rt               = _mm256_mul_pd(r30,vftabscale);
421             vfitab           = _mm256_cvttpd_epi32(rt);
422             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
423             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
424
425             /* CUBIC SPLINE TABLE ELECTROSTATICS */
426             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
427             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
428             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
429             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
430             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
431             Heps             = _mm256_mul_pd(vfeps,H);
432             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
433             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
434             velec            = _mm256_mul_pd(qq30,VV);
435             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
436             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
437
438             /* Update potential sum for this i atom from the interaction with this j atom. */
439             velecsum         = _mm256_add_pd(velecsum,velec);
440
441             fscal            = felec;
442
443             /* Calculate temporary vectorial force */
444             tx               = _mm256_mul_pd(fscal,dx30);
445             ty               = _mm256_mul_pd(fscal,dy30);
446             tz               = _mm256_mul_pd(fscal,dz30);
447
448             /* Update vectorial force */
449             fix3             = _mm256_add_pd(fix3,tx);
450             fiy3             = _mm256_add_pd(fiy3,ty);
451             fiz3             = _mm256_add_pd(fiz3,tz);
452
453             fjx0             = _mm256_add_pd(fjx0,tx);
454             fjy0             = _mm256_add_pd(fjy0,ty);
455             fjz0             = _mm256_add_pd(fjz0,tz);
456
457             fjptrA             = f+j_coord_offsetA;
458             fjptrB             = f+j_coord_offsetB;
459             fjptrC             = f+j_coord_offsetC;
460             fjptrD             = f+j_coord_offsetD;
461
462             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
463
464             /* Inner loop uses 188 flops */
465         }
466
467         if(jidx<j_index_end)
468         {
469
470             /* Get j neighbor index, and coordinate index */
471             jnrlistA         = jjnr[jidx];
472             jnrlistB         = jjnr[jidx+1];
473             jnrlistC         = jjnr[jidx+2];
474             jnrlistD         = jjnr[jidx+3];
475             /* Sign of each element will be negative for non-real atoms.
476              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
477              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
478              */
479             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
480
481             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
482             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
483             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
484
485             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
486             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
487             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
488             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
489             j_coord_offsetA  = DIM*jnrA;
490             j_coord_offsetB  = DIM*jnrB;
491             j_coord_offsetC  = DIM*jnrC;
492             j_coord_offsetD  = DIM*jnrD;
493
494             /* load j atom coordinates */
495             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  &jx0,&jy0,&jz0);
498
499             /* Calculate displacement vector */
500             dx00             = _mm256_sub_pd(ix0,jx0);
501             dy00             = _mm256_sub_pd(iy0,jy0);
502             dz00             = _mm256_sub_pd(iz0,jz0);
503             dx10             = _mm256_sub_pd(ix1,jx0);
504             dy10             = _mm256_sub_pd(iy1,jy0);
505             dz10             = _mm256_sub_pd(iz1,jz0);
506             dx20             = _mm256_sub_pd(ix2,jx0);
507             dy20             = _mm256_sub_pd(iy2,jy0);
508             dz20             = _mm256_sub_pd(iz2,jz0);
509             dx30             = _mm256_sub_pd(ix3,jx0);
510             dy30             = _mm256_sub_pd(iy3,jy0);
511             dz30             = _mm256_sub_pd(iz3,jz0);
512
513             /* Calculate squared distance and things based on it */
514             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
515             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
516             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
517             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
518
519             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
520             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
521             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
522             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
523
524             /* Load parameters for j particles */
525             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
526                                                                  charge+jnrC+0,charge+jnrD+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529             vdwjidx0C        = 2*vdwtype[jnrC+0];
530             vdwjidx0D        = 2*vdwtype[jnrD+0];
531
532             fjx0             = _mm256_setzero_pd();
533             fjy0             = _mm256_setzero_pd();
534             fjz0             = _mm256_setzero_pd();
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r00              = _mm256_mul_pd(rsq00,rinv00);
541             r00              = _mm256_andnot_pd(dummy_mask,r00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
545                                             vdwioffsetptr0+vdwjidx0B,
546                                             vdwioffsetptr0+vdwjidx0C,
547                                             vdwioffsetptr0+vdwjidx0D,
548                                             &c6_00,&c12_00);
549
550             /* Calculate table index by multiplying r with table scale and truncate to integer */
551             rt               = _mm256_mul_pd(r00,vftabscale);
552             vfitab           = _mm256_cvttpd_epi32(rt);
553             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
554             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
555
556             /* CUBIC SPLINE TABLE DISPERSION */
557             vfitab           = _mm_add_epi32(vfitab,ifour);
558             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
559             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
560             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
561             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
562             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
563             Heps             = _mm256_mul_pd(vfeps,H);
564             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
565             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
566             vvdw6            = _mm256_mul_pd(c6_00,VV);
567             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
568             fvdw6            = _mm256_mul_pd(c6_00,FF);
569
570             /* CUBIC SPLINE TABLE REPULSION */
571             vfitab           = _mm_add_epi32(vfitab,ifour);
572             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
573             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
574             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
575             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
576             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
577             Heps             = _mm256_mul_pd(vfeps,H);
578             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
579             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
580             vvdw12           = _mm256_mul_pd(c12_00,VV);
581             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
582             fvdw12           = _mm256_mul_pd(c12_00,FF);
583             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
584             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
585
586             /* Update potential sum for this i atom from the interaction with this j atom. */
587             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
588             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
589
590             fscal            = fvdw;
591
592             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm256_mul_pd(fscal,dx00);
596             ty               = _mm256_mul_pd(fscal,dy00);
597             tz               = _mm256_mul_pd(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm256_add_pd(fix0,tx);
601             fiy0             = _mm256_add_pd(fiy0,ty);
602             fiz0             = _mm256_add_pd(fiz0,tz);
603
604             fjx0             = _mm256_add_pd(fjx0,tx);
605             fjy0             = _mm256_add_pd(fjy0,ty);
606             fjz0             = _mm256_add_pd(fjz0,tz);
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             r10              = _mm256_mul_pd(rsq10,rinv10);
613             r10              = _mm256_andnot_pd(dummy_mask,r10);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq10             = _mm256_mul_pd(iq1,jq0);
617
618             /* Calculate table index by multiplying r with table scale and truncate to integer */
619             rt               = _mm256_mul_pd(r10,vftabscale);
620             vfitab           = _mm256_cvttpd_epi32(rt);
621             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
622             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
623
624             /* CUBIC SPLINE TABLE ELECTROSTATICS */
625             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
626             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
627             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
628             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
629             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
630             Heps             = _mm256_mul_pd(vfeps,H);
631             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
632             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
633             velec            = _mm256_mul_pd(qq10,VV);
634             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
635             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm256_andnot_pd(dummy_mask,velec);
639             velecsum         = _mm256_add_pd(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm256_mul_pd(fscal,dx10);
647             ty               = _mm256_mul_pd(fscal,dy10);
648             tz               = _mm256_mul_pd(fscal,dz10);
649
650             /* Update vectorial force */
651             fix1             = _mm256_add_pd(fix1,tx);
652             fiy1             = _mm256_add_pd(fiy1,ty);
653             fiz1             = _mm256_add_pd(fiz1,tz);
654
655             fjx0             = _mm256_add_pd(fjx0,tx);
656             fjy0             = _mm256_add_pd(fjy0,ty);
657             fjz0             = _mm256_add_pd(fjz0,tz);
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             r20              = _mm256_mul_pd(rsq20,rinv20);
664             r20              = _mm256_andnot_pd(dummy_mask,r20);
665
666             /* Compute parameters for interactions between i and j atoms */
667             qq20             = _mm256_mul_pd(iq2,jq0);
668
669             /* Calculate table index by multiplying r with table scale and truncate to integer */
670             rt               = _mm256_mul_pd(r20,vftabscale);
671             vfitab           = _mm256_cvttpd_epi32(rt);
672             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
673             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
674
675             /* CUBIC SPLINE TABLE ELECTROSTATICS */
676             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
677             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
678             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
679             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
680             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
681             Heps             = _mm256_mul_pd(vfeps,H);
682             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
683             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
684             velec            = _mm256_mul_pd(qq20,VV);
685             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
686             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
687
688             /* Update potential sum for this i atom from the interaction with this j atom. */
689             velec            = _mm256_andnot_pd(dummy_mask,velec);
690             velecsum         = _mm256_add_pd(velecsum,velec);
691
692             fscal            = felec;
693
694             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm256_mul_pd(fscal,dx20);
698             ty               = _mm256_mul_pd(fscal,dy20);
699             tz               = _mm256_mul_pd(fscal,dz20);
700
701             /* Update vectorial force */
702             fix2             = _mm256_add_pd(fix2,tx);
703             fiy2             = _mm256_add_pd(fiy2,ty);
704             fiz2             = _mm256_add_pd(fiz2,tz);
705
706             fjx0             = _mm256_add_pd(fjx0,tx);
707             fjy0             = _mm256_add_pd(fjy0,ty);
708             fjz0             = _mm256_add_pd(fjz0,tz);
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             r30              = _mm256_mul_pd(rsq30,rinv30);
715             r30              = _mm256_andnot_pd(dummy_mask,r30);
716
717             /* Compute parameters for interactions between i and j atoms */
718             qq30             = _mm256_mul_pd(iq3,jq0);
719
720             /* Calculate table index by multiplying r with table scale and truncate to integer */
721             rt               = _mm256_mul_pd(r30,vftabscale);
722             vfitab           = _mm256_cvttpd_epi32(rt);
723             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
724             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
725
726             /* CUBIC SPLINE TABLE ELECTROSTATICS */
727             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
728             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
729             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
730             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
731             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
732             Heps             = _mm256_mul_pd(vfeps,H);
733             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
734             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
735             velec            = _mm256_mul_pd(qq30,VV);
736             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
737             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
738
739             /* Update potential sum for this i atom from the interaction with this j atom. */
740             velec            = _mm256_andnot_pd(dummy_mask,velec);
741             velecsum         = _mm256_add_pd(velecsum,velec);
742
743             fscal            = felec;
744
745             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
746
747             /* Calculate temporary vectorial force */
748             tx               = _mm256_mul_pd(fscal,dx30);
749             ty               = _mm256_mul_pd(fscal,dy30);
750             tz               = _mm256_mul_pd(fscal,dz30);
751
752             /* Update vectorial force */
753             fix3             = _mm256_add_pd(fix3,tx);
754             fiy3             = _mm256_add_pd(fiy3,ty);
755             fiz3             = _mm256_add_pd(fiz3,tz);
756
757             fjx0             = _mm256_add_pd(fjx0,tx);
758             fjy0             = _mm256_add_pd(fjy0,ty);
759             fjz0             = _mm256_add_pd(fjz0,tz);
760
761             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
762             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
763             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
764             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
765
766             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
767
768             /* Inner loop uses 192 flops */
769         }
770
771         /* End of innermost loop */
772
773         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
774                                                  f+i_coord_offset,fshift+i_shift_offset);
775
776         ggid                        = gid[iidx];
777         /* Update potential energies */
778         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
779         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
780
781         /* Increment number of inner iterations */
782         inneriter                  += j_index_end - j_index_start;
783
784         /* Outer loop uses 26 flops */
785     }
786
787     /* Increment number of outer iterations */
788     outeriter        += nri;
789
790     /* Update outer/inner flops */
791
792     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*192);
793 }
794 /*
795  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_double
796  * Electrostatics interaction: CubicSplineTable
797  * VdW interaction:            CubicSplineTable
798  * Geometry:                   Water4-Particle
799  * Calculate force/pot:        Force
800  */
801 void
802 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_double
803                     (t_nblist                    * gmx_restrict       nlist,
804                      rvec                        * gmx_restrict          xx,
805                      rvec                        * gmx_restrict          ff,
806                      t_forcerec                  * gmx_restrict          fr,
807                      t_mdatoms                   * gmx_restrict     mdatoms,
808                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
809                      t_nrnb                      * gmx_restrict        nrnb)
810 {
811     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
812      * just 0 for non-waters.
813      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
814      * jnr indices corresponding to data put in the four positions in the SIMD register.
815      */
816     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
817     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
818     int              jnrA,jnrB,jnrC,jnrD;
819     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
820     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
821     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
822     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
823     real             rcutoff_scalar;
824     real             *shiftvec,*fshift,*x,*f;
825     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
826     real             scratch[4*DIM];
827     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
828     real *           vdwioffsetptr0;
829     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
830     real *           vdwioffsetptr1;
831     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
832     real *           vdwioffsetptr2;
833     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
834     real *           vdwioffsetptr3;
835     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
836     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
837     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
838     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
839     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
840     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
841     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
842     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
843     real             *charge;
844     int              nvdwtype;
845     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
846     int              *vdwtype;
847     real             *vdwparam;
848     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
849     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
850     __m128i          vfitab;
851     __m128i          ifour       = _mm_set1_epi32(4);
852     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
853     real             *vftab;
854     __m256d          dummy_mask,cutoff_mask;
855     __m128           tmpmask0,tmpmask1;
856     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
857     __m256d          one     = _mm256_set1_pd(1.0);
858     __m256d          two     = _mm256_set1_pd(2.0);
859     x                = xx[0];
860     f                = ff[0];
861
862     nri              = nlist->nri;
863     iinr             = nlist->iinr;
864     jindex           = nlist->jindex;
865     jjnr             = nlist->jjnr;
866     shiftidx         = nlist->shift;
867     gid              = nlist->gid;
868     shiftvec         = fr->shift_vec[0];
869     fshift           = fr->fshift[0];
870     facel            = _mm256_set1_pd(fr->epsfac);
871     charge           = mdatoms->chargeA;
872     nvdwtype         = fr->ntype;
873     vdwparam         = fr->nbfp;
874     vdwtype          = mdatoms->typeA;
875
876     vftab            = kernel_data->table_elec_vdw->data;
877     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
878
879     /* Setup water-specific parameters */
880     inr              = nlist->iinr[0];
881     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
882     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
883     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
884     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
885
886     /* Avoid stupid compiler warnings */
887     jnrA = jnrB = jnrC = jnrD = 0;
888     j_coord_offsetA = 0;
889     j_coord_offsetB = 0;
890     j_coord_offsetC = 0;
891     j_coord_offsetD = 0;
892
893     outeriter        = 0;
894     inneriter        = 0;
895
896     for(iidx=0;iidx<4*DIM;iidx++)
897     {
898         scratch[iidx] = 0.0;
899     }
900
901     /* Start outer loop over neighborlists */
902     for(iidx=0; iidx<nri; iidx++)
903     {
904         /* Load shift vector for this list */
905         i_shift_offset   = DIM*shiftidx[iidx];
906
907         /* Load limits for loop over neighbors */
908         j_index_start    = jindex[iidx];
909         j_index_end      = jindex[iidx+1];
910
911         /* Get outer coordinate index */
912         inr              = iinr[iidx];
913         i_coord_offset   = DIM*inr;
914
915         /* Load i particle coords and add shift vector */
916         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
917                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
918
919         fix0             = _mm256_setzero_pd();
920         fiy0             = _mm256_setzero_pd();
921         fiz0             = _mm256_setzero_pd();
922         fix1             = _mm256_setzero_pd();
923         fiy1             = _mm256_setzero_pd();
924         fiz1             = _mm256_setzero_pd();
925         fix2             = _mm256_setzero_pd();
926         fiy2             = _mm256_setzero_pd();
927         fiz2             = _mm256_setzero_pd();
928         fix3             = _mm256_setzero_pd();
929         fiy3             = _mm256_setzero_pd();
930         fiz3             = _mm256_setzero_pd();
931
932         /* Start inner kernel loop */
933         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
934         {
935
936             /* Get j neighbor index, and coordinate index */
937             jnrA             = jjnr[jidx];
938             jnrB             = jjnr[jidx+1];
939             jnrC             = jjnr[jidx+2];
940             jnrD             = jjnr[jidx+3];
941             j_coord_offsetA  = DIM*jnrA;
942             j_coord_offsetB  = DIM*jnrB;
943             j_coord_offsetC  = DIM*jnrC;
944             j_coord_offsetD  = DIM*jnrD;
945
946             /* load j atom coordinates */
947             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
948                                                  x+j_coord_offsetC,x+j_coord_offsetD,
949                                                  &jx0,&jy0,&jz0);
950
951             /* Calculate displacement vector */
952             dx00             = _mm256_sub_pd(ix0,jx0);
953             dy00             = _mm256_sub_pd(iy0,jy0);
954             dz00             = _mm256_sub_pd(iz0,jz0);
955             dx10             = _mm256_sub_pd(ix1,jx0);
956             dy10             = _mm256_sub_pd(iy1,jy0);
957             dz10             = _mm256_sub_pd(iz1,jz0);
958             dx20             = _mm256_sub_pd(ix2,jx0);
959             dy20             = _mm256_sub_pd(iy2,jy0);
960             dz20             = _mm256_sub_pd(iz2,jz0);
961             dx30             = _mm256_sub_pd(ix3,jx0);
962             dy30             = _mm256_sub_pd(iy3,jy0);
963             dz30             = _mm256_sub_pd(iz3,jz0);
964
965             /* Calculate squared distance and things based on it */
966             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
967             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
968             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
969             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
970
971             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
972             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
973             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
974             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
975
976             /* Load parameters for j particles */
977             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
978                                                                  charge+jnrC+0,charge+jnrD+0);
979             vdwjidx0A        = 2*vdwtype[jnrA+0];
980             vdwjidx0B        = 2*vdwtype[jnrB+0];
981             vdwjidx0C        = 2*vdwtype[jnrC+0];
982             vdwjidx0D        = 2*vdwtype[jnrD+0];
983
984             fjx0             = _mm256_setzero_pd();
985             fjy0             = _mm256_setzero_pd();
986             fjz0             = _mm256_setzero_pd();
987
988             /**************************
989              * CALCULATE INTERACTIONS *
990              **************************/
991
992             r00              = _mm256_mul_pd(rsq00,rinv00);
993
994             /* Compute parameters for interactions between i and j atoms */
995             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
996                                             vdwioffsetptr0+vdwjidx0B,
997                                             vdwioffsetptr0+vdwjidx0C,
998                                             vdwioffsetptr0+vdwjidx0D,
999                                             &c6_00,&c12_00);
1000
1001             /* Calculate table index by multiplying r with table scale and truncate to integer */
1002             rt               = _mm256_mul_pd(r00,vftabscale);
1003             vfitab           = _mm256_cvttpd_epi32(rt);
1004             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1005             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1006
1007             /* CUBIC SPLINE TABLE DISPERSION */
1008             vfitab           = _mm_add_epi32(vfitab,ifour);
1009             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1010             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1011             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1012             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1013             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1014             Heps             = _mm256_mul_pd(vfeps,H);
1015             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1016             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1017             fvdw6            = _mm256_mul_pd(c6_00,FF);
1018
1019             /* CUBIC SPLINE TABLE REPULSION */
1020             vfitab           = _mm_add_epi32(vfitab,ifour);
1021             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1022             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1023             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1024             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1025             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1026             Heps             = _mm256_mul_pd(vfeps,H);
1027             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1028             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1029             fvdw12           = _mm256_mul_pd(c12_00,FF);
1030             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1031
1032             fscal            = fvdw;
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_pd(fscal,dx00);
1036             ty               = _mm256_mul_pd(fscal,dy00);
1037             tz               = _mm256_mul_pd(fscal,dz00);
1038
1039             /* Update vectorial force */
1040             fix0             = _mm256_add_pd(fix0,tx);
1041             fiy0             = _mm256_add_pd(fiy0,ty);
1042             fiz0             = _mm256_add_pd(fiz0,tz);
1043
1044             fjx0             = _mm256_add_pd(fjx0,tx);
1045             fjy0             = _mm256_add_pd(fjy0,ty);
1046             fjz0             = _mm256_add_pd(fjz0,tz);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r10              = _mm256_mul_pd(rsq10,rinv10);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq10             = _mm256_mul_pd(iq1,jq0);
1056
1057             /* Calculate table index by multiplying r with table scale and truncate to integer */
1058             rt               = _mm256_mul_pd(r10,vftabscale);
1059             vfitab           = _mm256_cvttpd_epi32(rt);
1060             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1061             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1062
1063             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1064             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1065             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1066             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1067             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1068             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1069             Heps             = _mm256_mul_pd(vfeps,H);
1070             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1071             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1072             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1073
1074             fscal            = felec;
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx10);
1078             ty               = _mm256_mul_pd(fscal,dy10);
1079             tz               = _mm256_mul_pd(fscal,dz10);
1080
1081             /* Update vectorial force */
1082             fix1             = _mm256_add_pd(fix1,tx);
1083             fiy1             = _mm256_add_pd(fiy1,ty);
1084             fiz1             = _mm256_add_pd(fiz1,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             /**************************
1091              * CALCULATE INTERACTIONS *
1092              **************************/
1093
1094             r20              = _mm256_mul_pd(rsq20,rinv20);
1095
1096             /* Compute parameters for interactions between i and j atoms */
1097             qq20             = _mm256_mul_pd(iq2,jq0);
1098
1099             /* Calculate table index by multiplying r with table scale and truncate to integer */
1100             rt               = _mm256_mul_pd(r20,vftabscale);
1101             vfitab           = _mm256_cvttpd_epi32(rt);
1102             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1103             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1104
1105             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1106             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1107             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1108             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1109             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1110             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1111             Heps             = _mm256_mul_pd(vfeps,H);
1112             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1113             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1114             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1115
1116             fscal            = felec;
1117
1118             /* Calculate temporary vectorial force */
1119             tx               = _mm256_mul_pd(fscal,dx20);
1120             ty               = _mm256_mul_pd(fscal,dy20);
1121             tz               = _mm256_mul_pd(fscal,dz20);
1122
1123             /* Update vectorial force */
1124             fix2             = _mm256_add_pd(fix2,tx);
1125             fiy2             = _mm256_add_pd(fiy2,ty);
1126             fiz2             = _mm256_add_pd(fiz2,tz);
1127
1128             fjx0             = _mm256_add_pd(fjx0,tx);
1129             fjy0             = _mm256_add_pd(fjy0,ty);
1130             fjz0             = _mm256_add_pd(fjz0,tz);
1131
1132             /**************************
1133              * CALCULATE INTERACTIONS *
1134              **************************/
1135
1136             r30              = _mm256_mul_pd(rsq30,rinv30);
1137
1138             /* Compute parameters for interactions between i and j atoms */
1139             qq30             = _mm256_mul_pd(iq3,jq0);
1140
1141             /* Calculate table index by multiplying r with table scale and truncate to integer */
1142             rt               = _mm256_mul_pd(r30,vftabscale);
1143             vfitab           = _mm256_cvttpd_epi32(rt);
1144             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1145             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1146
1147             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1148             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1149             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1150             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1151             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1152             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1153             Heps             = _mm256_mul_pd(vfeps,H);
1154             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1155             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1156             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1157
1158             fscal            = felec;
1159
1160             /* Calculate temporary vectorial force */
1161             tx               = _mm256_mul_pd(fscal,dx30);
1162             ty               = _mm256_mul_pd(fscal,dy30);
1163             tz               = _mm256_mul_pd(fscal,dz30);
1164
1165             /* Update vectorial force */
1166             fix3             = _mm256_add_pd(fix3,tx);
1167             fiy3             = _mm256_add_pd(fiy3,ty);
1168             fiz3             = _mm256_add_pd(fiz3,tz);
1169
1170             fjx0             = _mm256_add_pd(fjx0,tx);
1171             fjy0             = _mm256_add_pd(fjy0,ty);
1172             fjz0             = _mm256_add_pd(fjz0,tz);
1173
1174             fjptrA             = f+j_coord_offsetA;
1175             fjptrB             = f+j_coord_offsetB;
1176             fjptrC             = f+j_coord_offsetC;
1177             fjptrD             = f+j_coord_offsetD;
1178
1179             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1180
1181             /* Inner loop uses 168 flops */
1182         }
1183
1184         if(jidx<j_index_end)
1185         {
1186
1187             /* Get j neighbor index, and coordinate index */
1188             jnrlistA         = jjnr[jidx];
1189             jnrlistB         = jjnr[jidx+1];
1190             jnrlistC         = jjnr[jidx+2];
1191             jnrlistD         = jjnr[jidx+3];
1192             /* Sign of each element will be negative for non-real atoms.
1193              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1194              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1195              */
1196             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1197
1198             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1199             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1200             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1201
1202             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1203             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1204             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1205             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1206             j_coord_offsetA  = DIM*jnrA;
1207             j_coord_offsetB  = DIM*jnrB;
1208             j_coord_offsetC  = DIM*jnrC;
1209             j_coord_offsetD  = DIM*jnrD;
1210
1211             /* load j atom coordinates */
1212             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1214                                                  &jx0,&jy0,&jz0);
1215
1216             /* Calculate displacement vector */
1217             dx00             = _mm256_sub_pd(ix0,jx0);
1218             dy00             = _mm256_sub_pd(iy0,jy0);
1219             dz00             = _mm256_sub_pd(iz0,jz0);
1220             dx10             = _mm256_sub_pd(ix1,jx0);
1221             dy10             = _mm256_sub_pd(iy1,jy0);
1222             dz10             = _mm256_sub_pd(iz1,jz0);
1223             dx20             = _mm256_sub_pd(ix2,jx0);
1224             dy20             = _mm256_sub_pd(iy2,jy0);
1225             dz20             = _mm256_sub_pd(iz2,jz0);
1226             dx30             = _mm256_sub_pd(ix3,jx0);
1227             dy30             = _mm256_sub_pd(iy3,jy0);
1228             dz30             = _mm256_sub_pd(iz3,jz0);
1229
1230             /* Calculate squared distance and things based on it */
1231             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1232             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1233             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1234             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1235
1236             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1237             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1238             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1239             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1240
1241             /* Load parameters for j particles */
1242             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1243                                                                  charge+jnrC+0,charge+jnrD+0);
1244             vdwjidx0A        = 2*vdwtype[jnrA+0];
1245             vdwjidx0B        = 2*vdwtype[jnrB+0];
1246             vdwjidx0C        = 2*vdwtype[jnrC+0];
1247             vdwjidx0D        = 2*vdwtype[jnrD+0];
1248
1249             fjx0             = _mm256_setzero_pd();
1250             fjy0             = _mm256_setzero_pd();
1251             fjz0             = _mm256_setzero_pd();
1252
1253             /**************************
1254              * CALCULATE INTERACTIONS *
1255              **************************/
1256
1257             r00              = _mm256_mul_pd(rsq00,rinv00);
1258             r00              = _mm256_andnot_pd(dummy_mask,r00);
1259
1260             /* Compute parameters for interactions between i and j atoms */
1261             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1262                                             vdwioffsetptr0+vdwjidx0B,
1263                                             vdwioffsetptr0+vdwjidx0C,
1264                                             vdwioffsetptr0+vdwjidx0D,
1265                                             &c6_00,&c12_00);
1266
1267             /* Calculate table index by multiplying r with table scale and truncate to integer */
1268             rt               = _mm256_mul_pd(r00,vftabscale);
1269             vfitab           = _mm256_cvttpd_epi32(rt);
1270             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1271             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1272
1273             /* CUBIC SPLINE TABLE DISPERSION */
1274             vfitab           = _mm_add_epi32(vfitab,ifour);
1275             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1276             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1277             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1278             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1279             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1280             Heps             = _mm256_mul_pd(vfeps,H);
1281             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1282             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1283             fvdw6            = _mm256_mul_pd(c6_00,FF);
1284
1285             /* CUBIC SPLINE TABLE REPULSION */
1286             vfitab           = _mm_add_epi32(vfitab,ifour);
1287             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1288             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1289             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1290             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1291             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1292             Heps             = _mm256_mul_pd(vfeps,H);
1293             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1295             fvdw12           = _mm256_mul_pd(c12_00,FF);
1296             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1297
1298             fscal            = fvdw;
1299
1300             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1301
1302             /* Calculate temporary vectorial force */
1303             tx               = _mm256_mul_pd(fscal,dx00);
1304             ty               = _mm256_mul_pd(fscal,dy00);
1305             tz               = _mm256_mul_pd(fscal,dz00);
1306
1307             /* Update vectorial force */
1308             fix0             = _mm256_add_pd(fix0,tx);
1309             fiy0             = _mm256_add_pd(fiy0,ty);
1310             fiz0             = _mm256_add_pd(fiz0,tz);
1311
1312             fjx0             = _mm256_add_pd(fjx0,tx);
1313             fjy0             = _mm256_add_pd(fjy0,ty);
1314             fjz0             = _mm256_add_pd(fjz0,tz);
1315
1316             /**************************
1317              * CALCULATE INTERACTIONS *
1318              **************************/
1319
1320             r10              = _mm256_mul_pd(rsq10,rinv10);
1321             r10              = _mm256_andnot_pd(dummy_mask,r10);
1322
1323             /* Compute parameters for interactions between i and j atoms */
1324             qq10             = _mm256_mul_pd(iq1,jq0);
1325
1326             /* Calculate table index by multiplying r with table scale and truncate to integer */
1327             rt               = _mm256_mul_pd(r10,vftabscale);
1328             vfitab           = _mm256_cvttpd_epi32(rt);
1329             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1330             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1331
1332             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1333             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1334             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1335             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1336             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1337             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1338             Heps             = _mm256_mul_pd(vfeps,H);
1339             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1340             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1341             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1342
1343             fscal            = felec;
1344
1345             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1346
1347             /* Calculate temporary vectorial force */
1348             tx               = _mm256_mul_pd(fscal,dx10);
1349             ty               = _mm256_mul_pd(fscal,dy10);
1350             tz               = _mm256_mul_pd(fscal,dz10);
1351
1352             /* Update vectorial force */
1353             fix1             = _mm256_add_pd(fix1,tx);
1354             fiy1             = _mm256_add_pd(fiy1,ty);
1355             fiz1             = _mm256_add_pd(fiz1,tz);
1356
1357             fjx0             = _mm256_add_pd(fjx0,tx);
1358             fjy0             = _mm256_add_pd(fjy0,ty);
1359             fjz0             = _mm256_add_pd(fjz0,tz);
1360
1361             /**************************
1362              * CALCULATE INTERACTIONS *
1363              **************************/
1364
1365             r20              = _mm256_mul_pd(rsq20,rinv20);
1366             r20              = _mm256_andnot_pd(dummy_mask,r20);
1367
1368             /* Compute parameters for interactions between i and j atoms */
1369             qq20             = _mm256_mul_pd(iq2,jq0);
1370
1371             /* Calculate table index by multiplying r with table scale and truncate to integer */
1372             rt               = _mm256_mul_pd(r20,vftabscale);
1373             vfitab           = _mm256_cvttpd_epi32(rt);
1374             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1375             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1376
1377             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1378             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1379             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1380             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1381             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1382             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1383             Heps             = _mm256_mul_pd(vfeps,H);
1384             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1385             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1386             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1387
1388             fscal            = felec;
1389
1390             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1391
1392             /* Calculate temporary vectorial force */
1393             tx               = _mm256_mul_pd(fscal,dx20);
1394             ty               = _mm256_mul_pd(fscal,dy20);
1395             tz               = _mm256_mul_pd(fscal,dz20);
1396
1397             /* Update vectorial force */
1398             fix2             = _mm256_add_pd(fix2,tx);
1399             fiy2             = _mm256_add_pd(fiy2,ty);
1400             fiz2             = _mm256_add_pd(fiz2,tz);
1401
1402             fjx0             = _mm256_add_pd(fjx0,tx);
1403             fjy0             = _mm256_add_pd(fjy0,ty);
1404             fjz0             = _mm256_add_pd(fjz0,tz);
1405
1406             /**************************
1407              * CALCULATE INTERACTIONS *
1408              **************************/
1409
1410             r30              = _mm256_mul_pd(rsq30,rinv30);
1411             r30              = _mm256_andnot_pd(dummy_mask,r30);
1412
1413             /* Compute parameters for interactions between i and j atoms */
1414             qq30             = _mm256_mul_pd(iq3,jq0);
1415
1416             /* Calculate table index by multiplying r with table scale and truncate to integer */
1417             rt               = _mm256_mul_pd(r30,vftabscale);
1418             vfitab           = _mm256_cvttpd_epi32(rt);
1419             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1420             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1421
1422             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1423             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1424             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1425             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1426             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1427             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1428             Heps             = _mm256_mul_pd(vfeps,H);
1429             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1430             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1431             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1432
1433             fscal            = felec;
1434
1435             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1436
1437             /* Calculate temporary vectorial force */
1438             tx               = _mm256_mul_pd(fscal,dx30);
1439             ty               = _mm256_mul_pd(fscal,dy30);
1440             tz               = _mm256_mul_pd(fscal,dz30);
1441
1442             /* Update vectorial force */
1443             fix3             = _mm256_add_pd(fix3,tx);
1444             fiy3             = _mm256_add_pd(fiy3,ty);
1445             fiz3             = _mm256_add_pd(fiz3,tz);
1446
1447             fjx0             = _mm256_add_pd(fjx0,tx);
1448             fjy0             = _mm256_add_pd(fjy0,ty);
1449             fjz0             = _mm256_add_pd(fjz0,tz);
1450
1451             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1452             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1453             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1454             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1455
1456             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1457
1458             /* Inner loop uses 172 flops */
1459         }
1460
1461         /* End of innermost loop */
1462
1463         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1464                                                  f+i_coord_offset,fshift+i_shift_offset);
1465
1466         /* Increment number of inner iterations */
1467         inneriter                  += j_index_end - j_index_start;
1468
1469         /* Outer loop uses 24 flops */
1470     }
1471
1472     /* Increment number of outer iterations */
1473     outeriter        += nri;
1474
1475     /* Update outer/inner flops */
1476
1477     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*172);
1478 }