Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     real *           vdwioffsetptr3;
93     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
94     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
95     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
96     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
97     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
98     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
99     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
100     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
101     real             *charge;
102     int              nvdwtype;
103     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
104     int              *vdwtype;
105     real             *vdwparam;
106     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
107     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
108     __m128i          vfitab;
109     __m128i          ifour       = _mm_set1_epi32(4);
110     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
111     real             *vftab;
112     __m256d          dummy_mask,cutoff_mask;
113     __m128           tmpmask0,tmpmask1;
114     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
115     __m256d          one     = _mm256_set1_pd(1.0);
116     __m256d          two     = _mm256_set1_pd(2.0);
117     x                = xx[0];
118     f                = ff[0];
119
120     nri              = nlist->nri;
121     iinr             = nlist->iinr;
122     jindex           = nlist->jindex;
123     jjnr             = nlist->jjnr;
124     shiftidx         = nlist->shift;
125     gid              = nlist->gid;
126     shiftvec         = fr->shift_vec[0];
127     fshift           = fr->fshift[0];
128     facel            = _mm256_set1_pd(fr->epsfac);
129     charge           = mdatoms->chargeA;
130     nvdwtype         = fr->ntype;
131     vdwparam         = fr->nbfp;
132     vdwtype          = mdatoms->typeA;
133
134     vftab            = kernel_data->table_elec_vdw->data;
135     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
136
137     /* Setup water-specific parameters */
138     inr              = nlist->iinr[0];
139     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
140     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
141     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
142     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150
151     outeriter        = 0;
152     inneriter        = 0;
153
154     for(iidx=0;iidx<4*DIM;iidx++)
155     {
156         scratch[iidx] = 0.0;
157     }
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
175                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
176
177         fix0             = _mm256_setzero_pd();
178         fiy0             = _mm256_setzero_pd();
179         fiz0             = _mm256_setzero_pd();
180         fix1             = _mm256_setzero_pd();
181         fiy1             = _mm256_setzero_pd();
182         fiz1             = _mm256_setzero_pd();
183         fix2             = _mm256_setzero_pd();
184         fiy2             = _mm256_setzero_pd();
185         fiz2             = _mm256_setzero_pd();
186         fix3             = _mm256_setzero_pd();
187         fiy3             = _mm256_setzero_pd();
188         fiz3             = _mm256_setzero_pd();
189
190         /* Reset potential sums */
191         velecsum         = _mm256_setzero_pd();
192         vvdwsum          = _mm256_setzero_pd();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
210                                                  x+j_coord_offsetC,x+j_coord_offsetD,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_pd(ix0,jx0);
215             dy00             = _mm256_sub_pd(iy0,jy0);
216             dz00             = _mm256_sub_pd(iz0,jz0);
217             dx10             = _mm256_sub_pd(ix1,jx0);
218             dy10             = _mm256_sub_pd(iy1,jy0);
219             dz10             = _mm256_sub_pd(iz1,jz0);
220             dx20             = _mm256_sub_pd(ix2,jx0);
221             dy20             = _mm256_sub_pd(iy2,jy0);
222             dz20             = _mm256_sub_pd(iz2,jz0);
223             dx30             = _mm256_sub_pd(ix3,jx0);
224             dy30             = _mm256_sub_pd(iy3,jy0);
225             dz30             = _mm256_sub_pd(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
229             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
230             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
231             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
232
233             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
234             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
235             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
236             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
237
238             /* Load parameters for j particles */
239             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
240                                                                  charge+jnrC+0,charge+jnrD+0);
241             vdwjidx0A        = 2*vdwtype[jnrA+0];
242             vdwjidx0B        = 2*vdwtype[jnrB+0];
243             vdwjidx0C        = 2*vdwtype[jnrC+0];
244             vdwjidx0D        = 2*vdwtype[jnrD+0];
245
246             fjx0             = _mm256_setzero_pd();
247             fjy0             = _mm256_setzero_pd();
248             fjz0             = _mm256_setzero_pd();
249
250             /**************************
251              * CALCULATE INTERACTIONS *
252              **************************/
253
254             r00              = _mm256_mul_pd(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
258                                             vdwioffsetptr0+vdwjidx0B,
259                                             vdwioffsetptr0+vdwjidx0C,
260                                             vdwioffsetptr0+vdwjidx0D,
261                                             &c6_00,&c12_00);
262
263             /* Calculate table index by multiplying r with table scale and truncate to integer */
264             rt               = _mm256_mul_pd(r00,vftabscale);
265             vfitab           = _mm256_cvttpd_epi32(rt);
266             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
267             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
268
269             /* CUBIC SPLINE TABLE DISPERSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             vvdw6            = _mm256_mul_pd(c6_00,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             fvdw6            = _mm256_mul_pd(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw12           = _mm256_mul_pd(c12_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw12           = _mm256_mul_pd(c12_00,FF);
296             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
297             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_pd(fscal,dx00);
306             ty               = _mm256_mul_pd(fscal,dy00);
307             tz               = _mm256_mul_pd(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm256_add_pd(fix0,tx);
311             fiy0             = _mm256_add_pd(fiy0,ty);
312             fiz0             = _mm256_add_pd(fiz0,tz);
313
314             fjx0             = _mm256_add_pd(fjx0,tx);
315             fjy0             = _mm256_add_pd(fjy0,ty);
316             fjz0             = _mm256_add_pd(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r10              = _mm256_mul_pd(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm256_mul_pd(iq1,jq0);
326
327             /* Calculate table index by multiplying r with table scale and truncate to integer */
328             rt               = _mm256_mul_pd(r10,vftabscale);
329             vfitab           = _mm256_cvttpd_epi32(rt);
330             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
331             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
332
333             /* CUBIC SPLINE TABLE ELECTROSTATICS */
334             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
335             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
336             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
337             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
338             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
339             Heps             = _mm256_mul_pd(vfeps,H);
340             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
341             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
342             velec            = _mm256_mul_pd(qq10,VV);
343             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
344             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velecsum         = _mm256_add_pd(velecsum,velec);
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx10);
353             ty               = _mm256_mul_pd(fscal,dy10);
354             tz               = _mm256_mul_pd(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm256_add_pd(fix1,tx);
358             fiy1             = _mm256_add_pd(fiy1,ty);
359             fiz1             = _mm256_add_pd(fiz1,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             r20              = _mm256_mul_pd(rsq20,rinv20);
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm256_mul_pd(iq2,jq0);
373
374             /* Calculate table index by multiplying r with table scale and truncate to integer */
375             rt               = _mm256_mul_pd(r20,vftabscale);
376             vfitab           = _mm256_cvttpd_epi32(rt);
377             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
378             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
379
380             /* CUBIC SPLINE TABLE ELECTROSTATICS */
381             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
385             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
386             Heps             = _mm256_mul_pd(vfeps,H);
387             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
388             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
389             velec            = _mm256_mul_pd(qq20,VV);
390             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
391             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velecsum         = _mm256_add_pd(velecsum,velec);
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = _mm256_mul_pd(fscal,dx20);
400             ty               = _mm256_mul_pd(fscal,dy20);
401             tz               = _mm256_mul_pd(fscal,dz20);
402
403             /* Update vectorial force */
404             fix2             = _mm256_add_pd(fix2,tx);
405             fiy2             = _mm256_add_pd(fiy2,ty);
406             fiz2             = _mm256_add_pd(fiz2,tz);
407
408             fjx0             = _mm256_add_pd(fjx0,tx);
409             fjy0             = _mm256_add_pd(fjy0,ty);
410             fjz0             = _mm256_add_pd(fjz0,tz);
411
412             /**************************
413              * CALCULATE INTERACTIONS *
414              **************************/
415
416             r30              = _mm256_mul_pd(rsq30,rinv30);
417
418             /* Compute parameters for interactions between i and j atoms */
419             qq30             = _mm256_mul_pd(iq3,jq0);
420
421             /* Calculate table index by multiplying r with table scale and truncate to integer */
422             rt               = _mm256_mul_pd(r30,vftabscale);
423             vfitab           = _mm256_cvttpd_epi32(rt);
424             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
425             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
426
427             /* CUBIC SPLINE TABLE ELECTROSTATICS */
428             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
429             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
430             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
431             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
432             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
433             Heps             = _mm256_mul_pd(vfeps,H);
434             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
435             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
436             velec            = _mm256_mul_pd(qq30,VV);
437             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
438             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
439
440             /* Update potential sum for this i atom from the interaction with this j atom. */
441             velecsum         = _mm256_add_pd(velecsum,velec);
442
443             fscal            = felec;
444
445             /* Calculate temporary vectorial force */
446             tx               = _mm256_mul_pd(fscal,dx30);
447             ty               = _mm256_mul_pd(fscal,dy30);
448             tz               = _mm256_mul_pd(fscal,dz30);
449
450             /* Update vectorial force */
451             fix3             = _mm256_add_pd(fix3,tx);
452             fiy3             = _mm256_add_pd(fiy3,ty);
453             fiz3             = _mm256_add_pd(fiz3,tz);
454
455             fjx0             = _mm256_add_pd(fjx0,tx);
456             fjy0             = _mm256_add_pd(fjy0,ty);
457             fjz0             = _mm256_add_pd(fjz0,tz);
458
459             fjptrA             = f+j_coord_offsetA;
460             fjptrB             = f+j_coord_offsetB;
461             fjptrC             = f+j_coord_offsetC;
462             fjptrD             = f+j_coord_offsetD;
463
464             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
465
466             /* Inner loop uses 188 flops */
467         }
468
469         if(jidx<j_index_end)
470         {
471
472             /* Get j neighbor index, and coordinate index */
473             jnrlistA         = jjnr[jidx];
474             jnrlistB         = jjnr[jidx+1];
475             jnrlistC         = jjnr[jidx+2];
476             jnrlistD         = jjnr[jidx+3];
477             /* Sign of each element will be negative for non-real atoms.
478              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
479              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
480              */
481             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
482
483             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
484             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
485             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
486
487             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
488             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
489             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
490             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
491             j_coord_offsetA  = DIM*jnrA;
492             j_coord_offsetB  = DIM*jnrB;
493             j_coord_offsetC  = DIM*jnrC;
494             j_coord_offsetD  = DIM*jnrD;
495
496             /* load j atom coordinates */
497             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
498                                                  x+j_coord_offsetC,x+j_coord_offsetD,
499                                                  &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm256_sub_pd(ix0,jx0);
503             dy00             = _mm256_sub_pd(iy0,jy0);
504             dz00             = _mm256_sub_pd(iz0,jz0);
505             dx10             = _mm256_sub_pd(ix1,jx0);
506             dy10             = _mm256_sub_pd(iy1,jy0);
507             dz10             = _mm256_sub_pd(iz1,jz0);
508             dx20             = _mm256_sub_pd(ix2,jx0);
509             dy20             = _mm256_sub_pd(iy2,jy0);
510             dz20             = _mm256_sub_pd(iz2,jz0);
511             dx30             = _mm256_sub_pd(ix3,jx0);
512             dy30             = _mm256_sub_pd(iy3,jy0);
513             dz30             = _mm256_sub_pd(iz3,jz0);
514
515             /* Calculate squared distance and things based on it */
516             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
517             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
518             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
519             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
520
521             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
522             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
523             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
524             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
525
526             /* Load parameters for j particles */
527             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
528                                                                  charge+jnrC+0,charge+jnrD+0);
529             vdwjidx0A        = 2*vdwtype[jnrA+0];
530             vdwjidx0B        = 2*vdwtype[jnrB+0];
531             vdwjidx0C        = 2*vdwtype[jnrC+0];
532             vdwjidx0D        = 2*vdwtype[jnrD+0];
533
534             fjx0             = _mm256_setzero_pd();
535             fjy0             = _mm256_setzero_pd();
536             fjz0             = _mm256_setzero_pd();
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _mm256_mul_pd(rsq00,rinv00);
543             r00              = _mm256_andnot_pd(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
547                                             vdwioffsetptr0+vdwjidx0B,
548                                             vdwioffsetptr0+vdwjidx0C,
549                                             vdwioffsetptr0+vdwjidx0D,
550                                             &c6_00,&c12_00);
551
552             /* Calculate table index by multiplying r with table scale and truncate to integer */
553             rt               = _mm256_mul_pd(r00,vftabscale);
554             vfitab           = _mm256_cvttpd_epi32(rt);
555             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
556             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
557
558             /* CUBIC SPLINE TABLE DISPERSION */
559             vfitab           = _mm_add_epi32(vfitab,ifour);
560             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
561             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
562             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
563             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
564             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
565             Heps             = _mm256_mul_pd(vfeps,H);
566             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
567             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
568             vvdw6            = _mm256_mul_pd(c6_00,VV);
569             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
570             fvdw6            = _mm256_mul_pd(c6_00,FF);
571
572             /* CUBIC SPLINE TABLE REPULSION */
573             vfitab           = _mm_add_epi32(vfitab,ifour);
574             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
575             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
576             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
577             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
578             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
579             Heps             = _mm256_mul_pd(vfeps,H);
580             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
581             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
582             vvdw12           = _mm256_mul_pd(c12_00,VV);
583             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
584             fvdw12           = _mm256_mul_pd(c12_00,FF);
585             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
586             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
587
588             /* Update potential sum for this i atom from the interaction with this j atom. */
589             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
590             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
591
592             fscal            = fvdw;
593
594             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
595
596             /* Calculate temporary vectorial force */
597             tx               = _mm256_mul_pd(fscal,dx00);
598             ty               = _mm256_mul_pd(fscal,dy00);
599             tz               = _mm256_mul_pd(fscal,dz00);
600
601             /* Update vectorial force */
602             fix0             = _mm256_add_pd(fix0,tx);
603             fiy0             = _mm256_add_pd(fiy0,ty);
604             fiz0             = _mm256_add_pd(fiz0,tz);
605
606             fjx0             = _mm256_add_pd(fjx0,tx);
607             fjy0             = _mm256_add_pd(fjy0,ty);
608             fjz0             = _mm256_add_pd(fjz0,tz);
609
610             /**************************
611              * CALCULATE INTERACTIONS *
612              **************************/
613
614             r10              = _mm256_mul_pd(rsq10,rinv10);
615             r10              = _mm256_andnot_pd(dummy_mask,r10);
616
617             /* Compute parameters for interactions between i and j atoms */
618             qq10             = _mm256_mul_pd(iq1,jq0);
619
620             /* Calculate table index by multiplying r with table scale and truncate to integer */
621             rt               = _mm256_mul_pd(r10,vftabscale);
622             vfitab           = _mm256_cvttpd_epi32(rt);
623             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
624             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
625
626             /* CUBIC SPLINE TABLE ELECTROSTATICS */
627             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
628             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
629             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
630             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
631             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
632             Heps             = _mm256_mul_pd(vfeps,H);
633             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
634             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
635             velec            = _mm256_mul_pd(qq10,VV);
636             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
637             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
638
639             /* Update potential sum for this i atom from the interaction with this j atom. */
640             velec            = _mm256_andnot_pd(dummy_mask,velec);
641             velecsum         = _mm256_add_pd(velecsum,velec);
642
643             fscal            = felec;
644
645             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
646
647             /* Calculate temporary vectorial force */
648             tx               = _mm256_mul_pd(fscal,dx10);
649             ty               = _mm256_mul_pd(fscal,dy10);
650             tz               = _mm256_mul_pd(fscal,dz10);
651
652             /* Update vectorial force */
653             fix1             = _mm256_add_pd(fix1,tx);
654             fiy1             = _mm256_add_pd(fiy1,ty);
655             fiz1             = _mm256_add_pd(fiz1,tz);
656
657             fjx0             = _mm256_add_pd(fjx0,tx);
658             fjy0             = _mm256_add_pd(fjy0,ty);
659             fjz0             = _mm256_add_pd(fjz0,tz);
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r20              = _mm256_mul_pd(rsq20,rinv20);
666             r20              = _mm256_andnot_pd(dummy_mask,r20);
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq20             = _mm256_mul_pd(iq2,jq0);
670
671             /* Calculate table index by multiplying r with table scale and truncate to integer */
672             rt               = _mm256_mul_pd(r20,vftabscale);
673             vfitab           = _mm256_cvttpd_epi32(rt);
674             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
675             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
676
677             /* CUBIC SPLINE TABLE ELECTROSTATICS */
678             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
679             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
680             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
681             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
682             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
683             Heps             = _mm256_mul_pd(vfeps,H);
684             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
685             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
686             velec            = _mm256_mul_pd(qq20,VV);
687             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
688             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
689
690             /* Update potential sum for this i atom from the interaction with this j atom. */
691             velec            = _mm256_andnot_pd(dummy_mask,velec);
692             velecsum         = _mm256_add_pd(velecsum,velec);
693
694             fscal            = felec;
695
696             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
697
698             /* Calculate temporary vectorial force */
699             tx               = _mm256_mul_pd(fscal,dx20);
700             ty               = _mm256_mul_pd(fscal,dy20);
701             tz               = _mm256_mul_pd(fscal,dz20);
702
703             /* Update vectorial force */
704             fix2             = _mm256_add_pd(fix2,tx);
705             fiy2             = _mm256_add_pd(fiy2,ty);
706             fiz2             = _mm256_add_pd(fiz2,tz);
707
708             fjx0             = _mm256_add_pd(fjx0,tx);
709             fjy0             = _mm256_add_pd(fjy0,ty);
710             fjz0             = _mm256_add_pd(fjz0,tz);
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             r30              = _mm256_mul_pd(rsq30,rinv30);
717             r30              = _mm256_andnot_pd(dummy_mask,r30);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq30             = _mm256_mul_pd(iq3,jq0);
721
722             /* Calculate table index by multiplying r with table scale and truncate to integer */
723             rt               = _mm256_mul_pd(r30,vftabscale);
724             vfitab           = _mm256_cvttpd_epi32(rt);
725             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
726             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
727
728             /* CUBIC SPLINE TABLE ELECTROSTATICS */
729             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
730             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
731             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
732             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
733             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
734             Heps             = _mm256_mul_pd(vfeps,H);
735             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
736             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
737             velec            = _mm256_mul_pd(qq30,VV);
738             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
739             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
740
741             /* Update potential sum for this i atom from the interaction with this j atom. */
742             velec            = _mm256_andnot_pd(dummy_mask,velec);
743             velecsum         = _mm256_add_pd(velecsum,velec);
744
745             fscal            = felec;
746
747             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm256_mul_pd(fscal,dx30);
751             ty               = _mm256_mul_pd(fscal,dy30);
752             tz               = _mm256_mul_pd(fscal,dz30);
753
754             /* Update vectorial force */
755             fix3             = _mm256_add_pd(fix3,tx);
756             fiy3             = _mm256_add_pd(fiy3,ty);
757             fiz3             = _mm256_add_pd(fiz3,tz);
758
759             fjx0             = _mm256_add_pd(fjx0,tx);
760             fjy0             = _mm256_add_pd(fjy0,ty);
761             fjz0             = _mm256_add_pd(fjz0,tz);
762
763             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
764             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
765             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
766             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
767
768             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
769
770             /* Inner loop uses 192 flops */
771         }
772
773         /* End of innermost loop */
774
775         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
776                                                  f+i_coord_offset,fshift+i_shift_offset);
777
778         ggid                        = gid[iidx];
779         /* Update potential energies */
780         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
781         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
782
783         /* Increment number of inner iterations */
784         inneriter                  += j_index_end - j_index_start;
785
786         /* Outer loop uses 26 flops */
787     }
788
789     /* Increment number of outer iterations */
790     outeriter        += nri;
791
792     /* Update outer/inner flops */
793
794     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*192);
795 }
796 /*
797  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_double
798  * Electrostatics interaction: CubicSplineTable
799  * VdW interaction:            CubicSplineTable
800  * Geometry:                   Water4-Particle
801  * Calculate force/pot:        Force
802  */
803 void
804 nb_kernel_ElecCSTab_VdwCSTab_GeomW4P1_F_avx_256_double
805                     (t_nblist                    * gmx_restrict       nlist,
806                      rvec                        * gmx_restrict          xx,
807                      rvec                        * gmx_restrict          ff,
808                      t_forcerec                  * gmx_restrict          fr,
809                      t_mdatoms                   * gmx_restrict     mdatoms,
810                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
811                      t_nrnb                      * gmx_restrict        nrnb)
812 {
813     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
814      * just 0 for non-waters.
815      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
816      * jnr indices corresponding to data put in the four positions in the SIMD register.
817      */
818     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
819     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
820     int              jnrA,jnrB,jnrC,jnrD;
821     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
822     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
823     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
824     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
825     real             rcutoff_scalar;
826     real             *shiftvec,*fshift,*x,*f;
827     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
828     real             scratch[4*DIM];
829     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
830     real *           vdwioffsetptr0;
831     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
832     real *           vdwioffsetptr1;
833     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
834     real *           vdwioffsetptr2;
835     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
836     real *           vdwioffsetptr3;
837     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
838     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
839     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
840     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
841     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
842     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
843     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
844     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
845     real             *charge;
846     int              nvdwtype;
847     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
848     int              *vdwtype;
849     real             *vdwparam;
850     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
851     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
852     __m128i          vfitab;
853     __m128i          ifour       = _mm_set1_epi32(4);
854     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
855     real             *vftab;
856     __m256d          dummy_mask,cutoff_mask;
857     __m128           tmpmask0,tmpmask1;
858     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
859     __m256d          one     = _mm256_set1_pd(1.0);
860     __m256d          two     = _mm256_set1_pd(2.0);
861     x                = xx[0];
862     f                = ff[0];
863
864     nri              = nlist->nri;
865     iinr             = nlist->iinr;
866     jindex           = nlist->jindex;
867     jjnr             = nlist->jjnr;
868     shiftidx         = nlist->shift;
869     gid              = nlist->gid;
870     shiftvec         = fr->shift_vec[0];
871     fshift           = fr->fshift[0];
872     facel            = _mm256_set1_pd(fr->epsfac);
873     charge           = mdatoms->chargeA;
874     nvdwtype         = fr->ntype;
875     vdwparam         = fr->nbfp;
876     vdwtype          = mdatoms->typeA;
877
878     vftab            = kernel_data->table_elec_vdw->data;
879     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
880
881     /* Setup water-specific parameters */
882     inr              = nlist->iinr[0];
883     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
884     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
885     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
886     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
887
888     /* Avoid stupid compiler warnings */
889     jnrA = jnrB = jnrC = jnrD = 0;
890     j_coord_offsetA = 0;
891     j_coord_offsetB = 0;
892     j_coord_offsetC = 0;
893     j_coord_offsetD = 0;
894
895     outeriter        = 0;
896     inneriter        = 0;
897
898     for(iidx=0;iidx<4*DIM;iidx++)
899     {
900         scratch[iidx] = 0.0;
901     }
902
903     /* Start outer loop over neighborlists */
904     for(iidx=0; iidx<nri; iidx++)
905     {
906         /* Load shift vector for this list */
907         i_shift_offset   = DIM*shiftidx[iidx];
908
909         /* Load limits for loop over neighbors */
910         j_index_start    = jindex[iidx];
911         j_index_end      = jindex[iidx+1];
912
913         /* Get outer coordinate index */
914         inr              = iinr[iidx];
915         i_coord_offset   = DIM*inr;
916
917         /* Load i particle coords and add shift vector */
918         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
919                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
920
921         fix0             = _mm256_setzero_pd();
922         fiy0             = _mm256_setzero_pd();
923         fiz0             = _mm256_setzero_pd();
924         fix1             = _mm256_setzero_pd();
925         fiy1             = _mm256_setzero_pd();
926         fiz1             = _mm256_setzero_pd();
927         fix2             = _mm256_setzero_pd();
928         fiy2             = _mm256_setzero_pd();
929         fiz2             = _mm256_setzero_pd();
930         fix3             = _mm256_setzero_pd();
931         fiy3             = _mm256_setzero_pd();
932         fiz3             = _mm256_setzero_pd();
933
934         /* Start inner kernel loop */
935         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
936         {
937
938             /* Get j neighbor index, and coordinate index */
939             jnrA             = jjnr[jidx];
940             jnrB             = jjnr[jidx+1];
941             jnrC             = jjnr[jidx+2];
942             jnrD             = jjnr[jidx+3];
943             j_coord_offsetA  = DIM*jnrA;
944             j_coord_offsetB  = DIM*jnrB;
945             j_coord_offsetC  = DIM*jnrC;
946             j_coord_offsetD  = DIM*jnrD;
947
948             /* load j atom coordinates */
949             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
950                                                  x+j_coord_offsetC,x+j_coord_offsetD,
951                                                  &jx0,&jy0,&jz0);
952
953             /* Calculate displacement vector */
954             dx00             = _mm256_sub_pd(ix0,jx0);
955             dy00             = _mm256_sub_pd(iy0,jy0);
956             dz00             = _mm256_sub_pd(iz0,jz0);
957             dx10             = _mm256_sub_pd(ix1,jx0);
958             dy10             = _mm256_sub_pd(iy1,jy0);
959             dz10             = _mm256_sub_pd(iz1,jz0);
960             dx20             = _mm256_sub_pd(ix2,jx0);
961             dy20             = _mm256_sub_pd(iy2,jy0);
962             dz20             = _mm256_sub_pd(iz2,jz0);
963             dx30             = _mm256_sub_pd(ix3,jx0);
964             dy30             = _mm256_sub_pd(iy3,jy0);
965             dz30             = _mm256_sub_pd(iz3,jz0);
966
967             /* Calculate squared distance and things based on it */
968             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
969             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
970             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
971             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
972
973             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
974             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
975             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
976             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
977
978             /* Load parameters for j particles */
979             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
980                                                                  charge+jnrC+0,charge+jnrD+0);
981             vdwjidx0A        = 2*vdwtype[jnrA+0];
982             vdwjidx0B        = 2*vdwtype[jnrB+0];
983             vdwjidx0C        = 2*vdwtype[jnrC+0];
984             vdwjidx0D        = 2*vdwtype[jnrD+0];
985
986             fjx0             = _mm256_setzero_pd();
987             fjy0             = _mm256_setzero_pd();
988             fjz0             = _mm256_setzero_pd();
989
990             /**************************
991              * CALCULATE INTERACTIONS *
992              **************************/
993
994             r00              = _mm256_mul_pd(rsq00,rinv00);
995
996             /* Compute parameters for interactions between i and j atoms */
997             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
998                                             vdwioffsetptr0+vdwjidx0B,
999                                             vdwioffsetptr0+vdwjidx0C,
1000                                             vdwioffsetptr0+vdwjidx0D,
1001                                             &c6_00,&c12_00);
1002
1003             /* Calculate table index by multiplying r with table scale and truncate to integer */
1004             rt               = _mm256_mul_pd(r00,vftabscale);
1005             vfitab           = _mm256_cvttpd_epi32(rt);
1006             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1007             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1008
1009             /* CUBIC SPLINE TABLE DISPERSION */
1010             vfitab           = _mm_add_epi32(vfitab,ifour);
1011             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1012             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1013             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1014             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1015             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1016             Heps             = _mm256_mul_pd(vfeps,H);
1017             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1018             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1019             fvdw6            = _mm256_mul_pd(c6_00,FF);
1020
1021             /* CUBIC SPLINE TABLE REPULSION */
1022             vfitab           = _mm_add_epi32(vfitab,ifour);
1023             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1024             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1025             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1026             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1027             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1028             Heps             = _mm256_mul_pd(vfeps,H);
1029             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1030             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1031             fvdw12           = _mm256_mul_pd(c12_00,FF);
1032             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1033
1034             fscal            = fvdw;
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm256_mul_pd(fscal,dx00);
1038             ty               = _mm256_mul_pd(fscal,dy00);
1039             tz               = _mm256_mul_pd(fscal,dz00);
1040
1041             /* Update vectorial force */
1042             fix0             = _mm256_add_pd(fix0,tx);
1043             fiy0             = _mm256_add_pd(fiy0,ty);
1044             fiz0             = _mm256_add_pd(fiz0,tz);
1045
1046             fjx0             = _mm256_add_pd(fjx0,tx);
1047             fjy0             = _mm256_add_pd(fjy0,ty);
1048             fjz0             = _mm256_add_pd(fjz0,tz);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             r10              = _mm256_mul_pd(rsq10,rinv10);
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq10             = _mm256_mul_pd(iq1,jq0);
1058
1059             /* Calculate table index by multiplying r with table scale and truncate to integer */
1060             rt               = _mm256_mul_pd(r10,vftabscale);
1061             vfitab           = _mm256_cvttpd_epi32(rt);
1062             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1063             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1064
1065             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1066             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1067             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1068             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1069             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1070             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1071             Heps             = _mm256_mul_pd(vfeps,H);
1072             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1073             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1074             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1075
1076             fscal            = felec;
1077
1078             /* Calculate temporary vectorial force */
1079             tx               = _mm256_mul_pd(fscal,dx10);
1080             ty               = _mm256_mul_pd(fscal,dy10);
1081             tz               = _mm256_mul_pd(fscal,dz10);
1082
1083             /* Update vectorial force */
1084             fix1             = _mm256_add_pd(fix1,tx);
1085             fiy1             = _mm256_add_pd(fiy1,ty);
1086             fiz1             = _mm256_add_pd(fiz1,tz);
1087
1088             fjx0             = _mm256_add_pd(fjx0,tx);
1089             fjy0             = _mm256_add_pd(fjy0,ty);
1090             fjz0             = _mm256_add_pd(fjz0,tz);
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             r20              = _mm256_mul_pd(rsq20,rinv20);
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm256_mul_pd(iq2,jq0);
1100
1101             /* Calculate table index by multiplying r with table scale and truncate to integer */
1102             rt               = _mm256_mul_pd(r20,vftabscale);
1103             vfitab           = _mm256_cvttpd_epi32(rt);
1104             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1105             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1106
1107             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1108             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1109             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1110             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1111             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1112             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1113             Heps             = _mm256_mul_pd(vfeps,H);
1114             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1115             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1116             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1117
1118             fscal            = felec;
1119
1120             /* Calculate temporary vectorial force */
1121             tx               = _mm256_mul_pd(fscal,dx20);
1122             ty               = _mm256_mul_pd(fscal,dy20);
1123             tz               = _mm256_mul_pd(fscal,dz20);
1124
1125             /* Update vectorial force */
1126             fix2             = _mm256_add_pd(fix2,tx);
1127             fiy2             = _mm256_add_pd(fiy2,ty);
1128             fiz2             = _mm256_add_pd(fiz2,tz);
1129
1130             fjx0             = _mm256_add_pd(fjx0,tx);
1131             fjy0             = _mm256_add_pd(fjy0,ty);
1132             fjz0             = _mm256_add_pd(fjz0,tz);
1133
1134             /**************************
1135              * CALCULATE INTERACTIONS *
1136              **************************/
1137
1138             r30              = _mm256_mul_pd(rsq30,rinv30);
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             qq30             = _mm256_mul_pd(iq3,jq0);
1142
1143             /* Calculate table index by multiplying r with table scale and truncate to integer */
1144             rt               = _mm256_mul_pd(r30,vftabscale);
1145             vfitab           = _mm256_cvttpd_epi32(rt);
1146             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1147             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1148
1149             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1150             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1151             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1152             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1153             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1154             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1155             Heps             = _mm256_mul_pd(vfeps,H);
1156             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1157             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1158             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1159
1160             fscal            = felec;
1161
1162             /* Calculate temporary vectorial force */
1163             tx               = _mm256_mul_pd(fscal,dx30);
1164             ty               = _mm256_mul_pd(fscal,dy30);
1165             tz               = _mm256_mul_pd(fscal,dz30);
1166
1167             /* Update vectorial force */
1168             fix3             = _mm256_add_pd(fix3,tx);
1169             fiy3             = _mm256_add_pd(fiy3,ty);
1170             fiz3             = _mm256_add_pd(fiz3,tz);
1171
1172             fjx0             = _mm256_add_pd(fjx0,tx);
1173             fjy0             = _mm256_add_pd(fjy0,ty);
1174             fjz0             = _mm256_add_pd(fjz0,tz);
1175
1176             fjptrA             = f+j_coord_offsetA;
1177             fjptrB             = f+j_coord_offsetB;
1178             fjptrC             = f+j_coord_offsetC;
1179             fjptrD             = f+j_coord_offsetD;
1180
1181             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1182
1183             /* Inner loop uses 168 flops */
1184         }
1185
1186         if(jidx<j_index_end)
1187         {
1188
1189             /* Get j neighbor index, and coordinate index */
1190             jnrlistA         = jjnr[jidx];
1191             jnrlistB         = jjnr[jidx+1];
1192             jnrlistC         = jjnr[jidx+2];
1193             jnrlistD         = jjnr[jidx+3];
1194             /* Sign of each element will be negative for non-real atoms.
1195              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1196              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1197              */
1198             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1199
1200             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1201             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1202             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1203
1204             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1205             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1206             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1207             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1208             j_coord_offsetA  = DIM*jnrA;
1209             j_coord_offsetB  = DIM*jnrB;
1210             j_coord_offsetC  = DIM*jnrC;
1211             j_coord_offsetD  = DIM*jnrD;
1212
1213             /* load j atom coordinates */
1214             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1215                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1216                                                  &jx0,&jy0,&jz0);
1217
1218             /* Calculate displacement vector */
1219             dx00             = _mm256_sub_pd(ix0,jx0);
1220             dy00             = _mm256_sub_pd(iy0,jy0);
1221             dz00             = _mm256_sub_pd(iz0,jz0);
1222             dx10             = _mm256_sub_pd(ix1,jx0);
1223             dy10             = _mm256_sub_pd(iy1,jy0);
1224             dz10             = _mm256_sub_pd(iz1,jz0);
1225             dx20             = _mm256_sub_pd(ix2,jx0);
1226             dy20             = _mm256_sub_pd(iy2,jy0);
1227             dz20             = _mm256_sub_pd(iz2,jz0);
1228             dx30             = _mm256_sub_pd(ix3,jx0);
1229             dy30             = _mm256_sub_pd(iy3,jy0);
1230             dz30             = _mm256_sub_pd(iz3,jz0);
1231
1232             /* Calculate squared distance and things based on it */
1233             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1234             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1235             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1236             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1237
1238             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1239             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1240             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1241             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1242
1243             /* Load parameters for j particles */
1244             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1245                                                                  charge+jnrC+0,charge+jnrD+0);
1246             vdwjidx0A        = 2*vdwtype[jnrA+0];
1247             vdwjidx0B        = 2*vdwtype[jnrB+0];
1248             vdwjidx0C        = 2*vdwtype[jnrC+0];
1249             vdwjidx0D        = 2*vdwtype[jnrD+0];
1250
1251             fjx0             = _mm256_setzero_pd();
1252             fjy0             = _mm256_setzero_pd();
1253             fjz0             = _mm256_setzero_pd();
1254
1255             /**************************
1256              * CALCULATE INTERACTIONS *
1257              **************************/
1258
1259             r00              = _mm256_mul_pd(rsq00,rinv00);
1260             r00              = _mm256_andnot_pd(dummy_mask,r00);
1261
1262             /* Compute parameters for interactions between i and j atoms */
1263             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1264                                             vdwioffsetptr0+vdwjidx0B,
1265                                             vdwioffsetptr0+vdwjidx0C,
1266                                             vdwioffsetptr0+vdwjidx0D,
1267                                             &c6_00,&c12_00);
1268
1269             /* Calculate table index by multiplying r with table scale and truncate to integer */
1270             rt               = _mm256_mul_pd(r00,vftabscale);
1271             vfitab           = _mm256_cvttpd_epi32(rt);
1272             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1273             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1274
1275             /* CUBIC SPLINE TABLE DISPERSION */
1276             vfitab           = _mm_add_epi32(vfitab,ifour);
1277             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1278             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1279             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1280             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1281             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1282             Heps             = _mm256_mul_pd(vfeps,H);
1283             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1284             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1285             fvdw6            = _mm256_mul_pd(c6_00,FF);
1286
1287             /* CUBIC SPLINE TABLE REPULSION */
1288             vfitab           = _mm_add_epi32(vfitab,ifour);
1289             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1290             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1291             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1292             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1293             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1294             Heps             = _mm256_mul_pd(vfeps,H);
1295             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1296             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1297             fvdw12           = _mm256_mul_pd(c12_00,FF);
1298             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1299
1300             fscal            = fvdw;
1301
1302             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1303
1304             /* Calculate temporary vectorial force */
1305             tx               = _mm256_mul_pd(fscal,dx00);
1306             ty               = _mm256_mul_pd(fscal,dy00);
1307             tz               = _mm256_mul_pd(fscal,dz00);
1308
1309             /* Update vectorial force */
1310             fix0             = _mm256_add_pd(fix0,tx);
1311             fiy0             = _mm256_add_pd(fiy0,ty);
1312             fiz0             = _mm256_add_pd(fiz0,tz);
1313
1314             fjx0             = _mm256_add_pd(fjx0,tx);
1315             fjy0             = _mm256_add_pd(fjy0,ty);
1316             fjz0             = _mm256_add_pd(fjz0,tz);
1317
1318             /**************************
1319              * CALCULATE INTERACTIONS *
1320              **************************/
1321
1322             r10              = _mm256_mul_pd(rsq10,rinv10);
1323             r10              = _mm256_andnot_pd(dummy_mask,r10);
1324
1325             /* Compute parameters for interactions between i and j atoms */
1326             qq10             = _mm256_mul_pd(iq1,jq0);
1327
1328             /* Calculate table index by multiplying r with table scale and truncate to integer */
1329             rt               = _mm256_mul_pd(r10,vftabscale);
1330             vfitab           = _mm256_cvttpd_epi32(rt);
1331             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1332             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1333
1334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1335             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1336             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1337             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1338             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1339             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1340             Heps             = _mm256_mul_pd(vfeps,H);
1341             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1342             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1343             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1344
1345             fscal            = felec;
1346
1347             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1348
1349             /* Calculate temporary vectorial force */
1350             tx               = _mm256_mul_pd(fscal,dx10);
1351             ty               = _mm256_mul_pd(fscal,dy10);
1352             tz               = _mm256_mul_pd(fscal,dz10);
1353
1354             /* Update vectorial force */
1355             fix1             = _mm256_add_pd(fix1,tx);
1356             fiy1             = _mm256_add_pd(fiy1,ty);
1357             fiz1             = _mm256_add_pd(fiz1,tz);
1358
1359             fjx0             = _mm256_add_pd(fjx0,tx);
1360             fjy0             = _mm256_add_pd(fjy0,ty);
1361             fjz0             = _mm256_add_pd(fjz0,tz);
1362
1363             /**************************
1364              * CALCULATE INTERACTIONS *
1365              **************************/
1366
1367             r20              = _mm256_mul_pd(rsq20,rinv20);
1368             r20              = _mm256_andnot_pd(dummy_mask,r20);
1369
1370             /* Compute parameters for interactions between i and j atoms */
1371             qq20             = _mm256_mul_pd(iq2,jq0);
1372
1373             /* Calculate table index by multiplying r with table scale and truncate to integer */
1374             rt               = _mm256_mul_pd(r20,vftabscale);
1375             vfitab           = _mm256_cvttpd_epi32(rt);
1376             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1377             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1378
1379             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1380             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1381             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1382             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1383             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1384             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1385             Heps             = _mm256_mul_pd(vfeps,H);
1386             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1387             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1388             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1389
1390             fscal            = felec;
1391
1392             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1393
1394             /* Calculate temporary vectorial force */
1395             tx               = _mm256_mul_pd(fscal,dx20);
1396             ty               = _mm256_mul_pd(fscal,dy20);
1397             tz               = _mm256_mul_pd(fscal,dz20);
1398
1399             /* Update vectorial force */
1400             fix2             = _mm256_add_pd(fix2,tx);
1401             fiy2             = _mm256_add_pd(fiy2,ty);
1402             fiz2             = _mm256_add_pd(fiz2,tz);
1403
1404             fjx0             = _mm256_add_pd(fjx0,tx);
1405             fjy0             = _mm256_add_pd(fjy0,ty);
1406             fjz0             = _mm256_add_pd(fjz0,tz);
1407
1408             /**************************
1409              * CALCULATE INTERACTIONS *
1410              **************************/
1411
1412             r30              = _mm256_mul_pd(rsq30,rinv30);
1413             r30              = _mm256_andnot_pd(dummy_mask,r30);
1414
1415             /* Compute parameters for interactions between i and j atoms */
1416             qq30             = _mm256_mul_pd(iq3,jq0);
1417
1418             /* Calculate table index by multiplying r with table scale and truncate to integer */
1419             rt               = _mm256_mul_pd(r30,vftabscale);
1420             vfitab           = _mm256_cvttpd_epi32(rt);
1421             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1422             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1423
1424             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1425             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1426             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1427             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1428             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1429             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1430             Heps             = _mm256_mul_pd(vfeps,H);
1431             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1432             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1433             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq30,FF),_mm256_mul_pd(vftabscale,rinv30)));
1434
1435             fscal            = felec;
1436
1437             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1438
1439             /* Calculate temporary vectorial force */
1440             tx               = _mm256_mul_pd(fscal,dx30);
1441             ty               = _mm256_mul_pd(fscal,dy30);
1442             tz               = _mm256_mul_pd(fscal,dz30);
1443
1444             /* Update vectorial force */
1445             fix3             = _mm256_add_pd(fix3,tx);
1446             fiy3             = _mm256_add_pd(fiy3,ty);
1447             fiz3             = _mm256_add_pd(fiz3,tz);
1448
1449             fjx0             = _mm256_add_pd(fjx0,tx);
1450             fjy0             = _mm256_add_pd(fjy0,ty);
1451             fjz0             = _mm256_add_pd(fjz0,tz);
1452
1453             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1454             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1455             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1456             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1457
1458             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1459
1460             /* Inner loop uses 172 flops */
1461         }
1462
1463         /* End of innermost loop */
1464
1465         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1466                                                  f+i_coord_offset,fshift+i_shift_offset);
1467
1468         /* Increment number of inner iterations */
1469         inneriter                  += j_index_end - j_index_start;
1470
1471         /* Outer loop uses 24 flops */
1472     }
1473
1474     /* Increment number of outer iterations */
1475     outeriter        += nri;
1476
1477     /* Update outer/inner flops */
1478
1479     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*172);
1480 }