Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     real *           vdwioffsetptr1;
89     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
90     real *           vdwioffsetptr2;
91     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
92     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
93     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
94     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
95     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
96     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
97     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
104     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
108     real             *vftab;
109     __m256d          dummy_mask,cutoff_mask;
110     __m128           tmpmask0,tmpmask1;
111     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
112     __m256d          one     = _mm256_set1_pd(1.0);
113     __m256d          two     = _mm256_set1_pd(2.0);
114     x                = xx[0];
115     f                = ff[0];
116
117     nri              = nlist->nri;
118     iinr             = nlist->iinr;
119     jindex           = nlist->jindex;
120     jjnr             = nlist->jjnr;
121     shiftidx         = nlist->shift;
122     gid              = nlist->gid;
123     shiftvec         = fr->shift_vec[0];
124     fshift           = fr->fshift[0];
125     facel            = _mm256_set1_pd(fr->epsfac);
126     charge           = mdatoms->chargeA;
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     vftab            = kernel_data->table_elec_vdw->data;
132     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183
184         /* Reset potential sums */
185         velecsum         = _mm256_setzero_pd();
186         vvdwsum          = _mm256_setzero_pd();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
204                                                  x+j_coord_offsetC,x+j_coord_offsetD,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_pd(ix0,jx0);
209             dy00             = _mm256_sub_pd(iy0,jy0);
210             dz00             = _mm256_sub_pd(iz0,jz0);
211             dx10             = _mm256_sub_pd(ix1,jx0);
212             dy10             = _mm256_sub_pd(iy1,jy0);
213             dz10             = _mm256_sub_pd(iz1,jz0);
214             dx20             = _mm256_sub_pd(ix2,jx0);
215             dy20             = _mm256_sub_pd(iy2,jy0);
216             dz20             = _mm256_sub_pd(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
224             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
225             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
226
227             /* Load parameters for j particles */
228             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
229                                                                  charge+jnrC+0,charge+jnrD+0);
230             vdwjidx0A        = 2*vdwtype[jnrA+0];
231             vdwjidx0B        = 2*vdwtype[jnrB+0];
232             vdwjidx0C        = 2*vdwtype[jnrC+0];
233             vdwjidx0D        = 2*vdwtype[jnrD+0];
234
235             fjx0             = _mm256_setzero_pd();
236             fjy0             = _mm256_setzero_pd();
237             fjz0             = _mm256_setzero_pd();
238
239             /**************************
240              * CALCULATE INTERACTIONS *
241              **************************/
242
243             r00              = _mm256_mul_pd(rsq00,rinv00);
244
245             /* Compute parameters for interactions between i and j atoms */
246             qq00             = _mm256_mul_pd(iq0,jq0);
247             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
248                                             vdwioffsetptr0+vdwjidx0B,
249                                             vdwioffsetptr0+vdwjidx0C,
250                                             vdwioffsetptr0+vdwjidx0D,
251                                             &c6_00,&c12_00);
252
253             /* Calculate table index by multiplying r with table scale and truncate to integer */
254             rt               = _mm256_mul_pd(r00,vftabscale);
255             vfitab           = _mm256_cvttpd_epi32(rt);
256             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
257             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
258
259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
260             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
264             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
265             Heps             = _mm256_mul_pd(vfeps,H);
266             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
267             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
268             velec            = _mm256_mul_pd(qq00,VV);
269             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
270             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
271
272             /* CUBIC SPLINE TABLE DISPERSION */
273             vfitab           = _mm_add_epi32(vfitab,ifour);
274             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
278             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
279             Heps             = _mm256_mul_pd(vfeps,H);
280             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
281             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
282             vvdw6            = _mm256_mul_pd(c6_00,VV);
283             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
284             fvdw6            = _mm256_mul_pd(c6_00,FF);
285
286             /* CUBIC SPLINE TABLE REPULSION */
287             vfitab           = _mm_add_epi32(vfitab,ifour);
288             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
289             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
290             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
291             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
292             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
293             Heps             = _mm256_mul_pd(vfeps,H);
294             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
295             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
296             vvdw12           = _mm256_mul_pd(c12_00,VV);
297             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
298             fvdw12           = _mm256_mul_pd(c12_00,FF);
299             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
300             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
301
302             /* Update potential sum for this i atom from the interaction with this j atom. */
303             velecsum         = _mm256_add_pd(velecsum,velec);
304             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
305
306             fscal            = _mm256_add_pd(felec,fvdw);
307
308             /* Calculate temporary vectorial force */
309             tx               = _mm256_mul_pd(fscal,dx00);
310             ty               = _mm256_mul_pd(fscal,dy00);
311             tz               = _mm256_mul_pd(fscal,dz00);
312
313             /* Update vectorial force */
314             fix0             = _mm256_add_pd(fix0,tx);
315             fiy0             = _mm256_add_pd(fiy0,ty);
316             fiz0             = _mm256_add_pd(fiz0,tz);
317
318             fjx0             = _mm256_add_pd(fjx0,tx);
319             fjy0             = _mm256_add_pd(fjy0,ty);
320             fjz0             = _mm256_add_pd(fjz0,tz);
321
322             /**************************
323              * CALCULATE INTERACTIONS *
324              **************************/
325
326             r10              = _mm256_mul_pd(rsq10,rinv10);
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq10             = _mm256_mul_pd(iq1,jq0);
330
331             /* Calculate table index by multiplying r with table scale and truncate to integer */
332             rt               = _mm256_mul_pd(r10,vftabscale);
333             vfitab           = _mm256_cvttpd_epi32(rt);
334             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
335             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
336
337             /* CUBIC SPLINE TABLE ELECTROSTATICS */
338             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
339             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
340             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
341             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
342             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
343             Heps             = _mm256_mul_pd(vfeps,H);
344             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
345             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
346             velec            = _mm256_mul_pd(qq10,VV);
347             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
348             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
349
350             /* Update potential sum for this i atom from the interaction with this j atom. */
351             velecsum         = _mm256_add_pd(velecsum,velec);
352
353             fscal            = felec;
354
355             /* Calculate temporary vectorial force */
356             tx               = _mm256_mul_pd(fscal,dx10);
357             ty               = _mm256_mul_pd(fscal,dy10);
358             tz               = _mm256_mul_pd(fscal,dz10);
359
360             /* Update vectorial force */
361             fix1             = _mm256_add_pd(fix1,tx);
362             fiy1             = _mm256_add_pd(fiy1,ty);
363             fiz1             = _mm256_add_pd(fiz1,tz);
364
365             fjx0             = _mm256_add_pd(fjx0,tx);
366             fjy0             = _mm256_add_pd(fjy0,ty);
367             fjz0             = _mm256_add_pd(fjz0,tz);
368
369             /**************************
370              * CALCULATE INTERACTIONS *
371              **************************/
372
373             r20              = _mm256_mul_pd(rsq20,rinv20);
374
375             /* Compute parameters for interactions between i and j atoms */
376             qq20             = _mm256_mul_pd(iq2,jq0);
377
378             /* Calculate table index by multiplying r with table scale and truncate to integer */
379             rt               = _mm256_mul_pd(r20,vftabscale);
380             vfitab           = _mm256_cvttpd_epi32(rt);
381             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
382             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
383
384             /* CUBIC SPLINE TABLE ELECTROSTATICS */
385             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
386             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
387             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
388             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
389             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
390             Heps             = _mm256_mul_pd(vfeps,H);
391             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
392             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
393             velec            = _mm256_mul_pd(qq20,VV);
394             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
395             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
396
397             /* Update potential sum for this i atom from the interaction with this j atom. */
398             velecsum         = _mm256_add_pd(velecsum,velec);
399
400             fscal            = felec;
401
402             /* Calculate temporary vectorial force */
403             tx               = _mm256_mul_pd(fscal,dx20);
404             ty               = _mm256_mul_pd(fscal,dy20);
405             tz               = _mm256_mul_pd(fscal,dz20);
406
407             /* Update vectorial force */
408             fix2             = _mm256_add_pd(fix2,tx);
409             fiy2             = _mm256_add_pd(fiy2,ty);
410             fiz2             = _mm256_add_pd(fiz2,tz);
411
412             fjx0             = _mm256_add_pd(fjx0,tx);
413             fjy0             = _mm256_add_pd(fjy0,ty);
414             fjz0             = _mm256_add_pd(fjz0,tz);
415
416             fjptrA             = f+j_coord_offsetA;
417             fjptrB             = f+j_coord_offsetB;
418             fjptrC             = f+j_coord_offsetC;
419             fjptrD             = f+j_coord_offsetD;
420
421             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
422
423             /* Inner loop uses 162 flops */
424         }
425
426         if(jidx<j_index_end)
427         {
428
429             /* Get j neighbor index, and coordinate index */
430             jnrlistA         = jjnr[jidx];
431             jnrlistB         = jjnr[jidx+1];
432             jnrlistC         = jjnr[jidx+2];
433             jnrlistD         = jjnr[jidx+3];
434             /* Sign of each element will be negative for non-real atoms.
435              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
436              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
437              */
438             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
439
440             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
441             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
442             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
443
444             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
445             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
446             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
447             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
448             j_coord_offsetA  = DIM*jnrA;
449             j_coord_offsetB  = DIM*jnrB;
450             j_coord_offsetC  = DIM*jnrC;
451             j_coord_offsetD  = DIM*jnrD;
452
453             /* load j atom coordinates */
454             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
455                                                  x+j_coord_offsetC,x+j_coord_offsetD,
456                                                  &jx0,&jy0,&jz0);
457
458             /* Calculate displacement vector */
459             dx00             = _mm256_sub_pd(ix0,jx0);
460             dy00             = _mm256_sub_pd(iy0,jy0);
461             dz00             = _mm256_sub_pd(iz0,jz0);
462             dx10             = _mm256_sub_pd(ix1,jx0);
463             dy10             = _mm256_sub_pd(iy1,jy0);
464             dz10             = _mm256_sub_pd(iz1,jz0);
465             dx20             = _mm256_sub_pd(ix2,jx0);
466             dy20             = _mm256_sub_pd(iy2,jy0);
467             dz20             = _mm256_sub_pd(iz2,jz0);
468
469             /* Calculate squared distance and things based on it */
470             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
471             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
472             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
473
474             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
475             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
476             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
477
478             /* Load parameters for j particles */
479             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
480                                                                  charge+jnrC+0,charge+jnrD+0);
481             vdwjidx0A        = 2*vdwtype[jnrA+0];
482             vdwjidx0B        = 2*vdwtype[jnrB+0];
483             vdwjidx0C        = 2*vdwtype[jnrC+0];
484             vdwjidx0D        = 2*vdwtype[jnrD+0];
485
486             fjx0             = _mm256_setzero_pd();
487             fjy0             = _mm256_setzero_pd();
488             fjz0             = _mm256_setzero_pd();
489
490             /**************************
491              * CALCULATE INTERACTIONS *
492              **************************/
493
494             r00              = _mm256_mul_pd(rsq00,rinv00);
495             r00              = _mm256_andnot_pd(dummy_mask,r00);
496
497             /* Compute parameters for interactions between i and j atoms */
498             qq00             = _mm256_mul_pd(iq0,jq0);
499             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
500                                             vdwioffsetptr0+vdwjidx0B,
501                                             vdwioffsetptr0+vdwjidx0C,
502                                             vdwioffsetptr0+vdwjidx0D,
503                                             &c6_00,&c12_00);
504
505             /* Calculate table index by multiplying r with table scale and truncate to integer */
506             rt               = _mm256_mul_pd(r00,vftabscale);
507             vfitab           = _mm256_cvttpd_epi32(rt);
508             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
509             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
510
511             /* CUBIC SPLINE TABLE ELECTROSTATICS */
512             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
513             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
514             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
515             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
516             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
517             Heps             = _mm256_mul_pd(vfeps,H);
518             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
519             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
520             velec            = _mm256_mul_pd(qq00,VV);
521             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
522             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
523
524             /* CUBIC SPLINE TABLE DISPERSION */
525             vfitab           = _mm_add_epi32(vfitab,ifour);
526             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
527             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
528             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
529             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
530             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
531             Heps             = _mm256_mul_pd(vfeps,H);
532             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
533             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
534             vvdw6            = _mm256_mul_pd(c6_00,VV);
535             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
536             fvdw6            = _mm256_mul_pd(c6_00,FF);
537
538             /* CUBIC SPLINE TABLE REPULSION */
539             vfitab           = _mm_add_epi32(vfitab,ifour);
540             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
541             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
542             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
543             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
544             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
545             Heps             = _mm256_mul_pd(vfeps,H);
546             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
547             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
548             vvdw12           = _mm256_mul_pd(c12_00,VV);
549             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
550             fvdw12           = _mm256_mul_pd(c12_00,FF);
551             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
552             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
553
554             /* Update potential sum for this i atom from the interaction with this j atom. */
555             velec            = _mm256_andnot_pd(dummy_mask,velec);
556             velecsum         = _mm256_add_pd(velecsum,velec);
557             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
558             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
559
560             fscal            = _mm256_add_pd(felec,fvdw);
561
562             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
563
564             /* Calculate temporary vectorial force */
565             tx               = _mm256_mul_pd(fscal,dx00);
566             ty               = _mm256_mul_pd(fscal,dy00);
567             tz               = _mm256_mul_pd(fscal,dz00);
568
569             /* Update vectorial force */
570             fix0             = _mm256_add_pd(fix0,tx);
571             fiy0             = _mm256_add_pd(fiy0,ty);
572             fiz0             = _mm256_add_pd(fiz0,tz);
573
574             fjx0             = _mm256_add_pd(fjx0,tx);
575             fjy0             = _mm256_add_pd(fjy0,ty);
576             fjz0             = _mm256_add_pd(fjz0,tz);
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r10              = _mm256_mul_pd(rsq10,rinv10);
583             r10              = _mm256_andnot_pd(dummy_mask,r10);
584
585             /* Compute parameters for interactions between i and j atoms */
586             qq10             = _mm256_mul_pd(iq1,jq0);
587
588             /* Calculate table index by multiplying r with table scale and truncate to integer */
589             rt               = _mm256_mul_pd(r10,vftabscale);
590             vfitab           = _mm256_cvttpd_epi32(rt);
591             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
592             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
593
594             /* CUBIC SPLINE TABLE ELECTROSTATICS */
595             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
596             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
597             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
598             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
599             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
600             Heps             = _mm256_mul_pd(vfeps,H);
601             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
602             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
603             velec            = _mm256_mul_pd(qq10,VV);
604             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
605             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm256_andnot_pd(dummy_mask,velec);
609             velecsum         = _mm256_add_pd(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm256_mul_pd(fscal,dx10);
617             ty               = _mm256_mul_pd(fscal,dy10);
618             tz               = _mm256_mul_pd(fscal,dz10);
619
620             /* Update vectorial force */
621             fix1             = _mm256_add_pd(fix1,tx);
622             fiy1             = _mm256_add_pd(fiy1,ty);
623             fiz1             = _mm256_add_pd(fiz1,tz);
624
625             fjx0             = _mm256_add_pd(fjx0,tx);
626             fjy0             = _mm256_add_pd(fjy0,ty);
627             fjz0             = _mm256_add_pd(fjz0,tz);
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             r20              = _mm256_mul_pd(rsq20,rinv20);
634             r20              = _mm256_andnot_pd(dummy_mask,r20);
635
636             /* Compute parameters for interactions between i and j atoms */
637             qq20             = _mm256_mul_pd(iq2,jq0);
638
639             /* Calculate table index by multiplying r with table scale and truncate to integer */
640             rt               = _mm256_mul_pd(r20,vftabscale);
641             vfitab           = _mm256_cvttpd_epi32(rt);
642             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
643             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
644
645             /* CUBIC SPLINE TABLE ELECTROSTATICS */
646             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
647             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
648             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
649             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
650             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
651             Heps             = _mm256_mul_pd(vfeps,H);
652             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
653             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
654             velec            = _mm256_mul_pd(qq20,VV);
655             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
656             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
657
658             /* Update potential sum for this i atom from the interaction with this j atom. */
659             velec            = _mm256_andnot_pd(dummy_mask,velec);
660             velecsum         = _mm256_add_pd(velecsum,velec);
661
662             fscal            = felec;
663
664             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_pd(fscal,dx20);
668             ty               = _mm256_mul_pd(fscal,dy20);
669             tz               = _mm256_mul_pd(fscal,dz20);
670
671             /* Update vectorial force */
672             fix2             = _mm256_add_pd(fix2,tx);
673             fiy2             = _mm256_add_pd(fiy2,ty);
674             fiz2             = _mm256_add_pd(fiz2,tz);
675
676             fjx0             = _mm256_add_pd(fjx0,tx);
677             fjy0             = _mm256_add_pd(fjy0,ty);
678             fjz0             = _mm256_add_pd(fjz0,tz);
679
680             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
681             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
682             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
683             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
684
685             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
686
687             /* Inner loop uses 165 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
693                                                  f+i_coord_offset,fshift+i_shift_offset);
694
695         ggid                        = gid[iidx];
696         /* Update potential energies */
697         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
698         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
699
700         /* Increment number of inner iterations */
701         inneriter                  += j_index_end - j_index_start;
702
703         /* Outer loop uses 20 flops */
704     }
705
706     /* Increment number of outer iterations */
707     outeriter        += nri;
708
709     /* Update outer/inner flops */
710
711     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*165);
712 }
713 /*
714  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
715  * Electrostatics interaction: CubicSplineTable
716  * VdW interaction:            CubicSplineTable
717  * Geometry:                   Water3-Particle
718  * Calculate force/pot:        Force
719  */
720 void
721 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
722                     (t_nblist                    * gmx_restrict       nlist,
723                      rvec                        * gmx_restrict          xx,
724                      rvec                        * gmx_restrict          ff,
725                      t_forcerec                  * gmx_restrict          fr,
726                      t_mdatoms                   * gmx_restrict     mdatoms,
727                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
728                      t_nrnb                      * gmx_restrict        nrnb)
729 {
730     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
731      * just 0 for non-waters.
732      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
733      * jnr indices corresponding to data put in the four positions in the SIMD register.
734      */
735     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
736     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
737     int              jnrA,jnrB,jnrC,jnrD;
738     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
739     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
740     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
741     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
742     real             rcutoff_scalar;
743     real             *shiftvec,*fshift,*x,*f;
744     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
745     real             scratch[4*DIM];
746     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
747     real *           vdwioffsetptr0;
748     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
749     real *           vdwioffsetptr1;
750     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
751     real *           vdwioffsetptr2;
752     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
753     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
754     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
755     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
756     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
757     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
758     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
759     real             *charge;
760     int              nvdwtype;
761     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
762     int              *vdwtype;
763     real             *vdwparam;
764     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
765     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
766     __m128i          vfitab;
767     __m128i          ifour       = _mm_set1_epi32(4);
768     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
769     real             *vftab;
770     __m256d          dummy_mask,cutoff_mask;
771     __m128           tmpmask0,tmpmask1;
772     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
773     __m256d          one     = _mm256_set1_pd(1.0);
774     __m256d          two     = _mm256_set1_pd(2.0);
775     x                = xx[0];
776     f                = ff[0];
777
778     nri              = nlist->nri;
779     iinr             = nlist->iinr;
780     jindex           = nlist->jindex;
781     jjnr             = nlist->jjnr;
782     shiftidx         = nlist->shift;
783     gid              = nlist->gid;
784     shiftvec         = fr->shift_vec[0];
785     fshift           = fr->fshift[0];
786     facel            = _mm256_set1_pd(fr->epsfac);
787     charge           = mdatoms->chargeA;
788     nvdwtype         = fr->ntype;
789     vdwparam         = fr->nbfp;
790     vdwtype          = mdatoms->typeA;
791
792     vftab            = kernel_data->table_elec_vdw->data;
793     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
794
795     /* Setup water-specific parameters */
796     inr              = nlist->iinr[0];
797     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
798     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
799     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
800     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
801
802     /* Avoid stupid compiler warnings */
803     jnrA = jnrB = jnrC = jnrD = 0;
804     j_coord_offsetA = 0;
805     j_coord_offsetB = 0;
806     j_coord_offsetC = 0;
807     j_coord_offsetD = 0;
808
809     outeriter        = 0;
810     inneriter        = 0;
811
812     for(iidx=0;iidx<4*DIM;iidx++)
813     {
814         scratch[iidx] = 0.0;
815     }
816
817     /* Start outer loop over neighborlists */
818     for(iidx=0; iidx<nri; iidx++)
819     {
820         /* Load shift vector for this list */
821         i_shift_offset   = DIM*shiftidx[iidx];
822
823         /* Load limits for loop over neighbors */
824         j_index_start    = jindex[iidx];
825         j_index_end      = jindex[iidx+1];
826
827         /* Get outer coordinate index */
828         inr              = iinr[iidx];
829         i_coord_offset   = DIM*inr;
830
831         /* Load i particle coords and add shift vector */
832         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
833                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
834
835         fix0             = _mm256_setzero_pd();
836         fiy0             = _mm256_setzero_pd();
837         fiz0             = _mm256_setzero_pd();
838         fix1             = _mm256_setzero_pd();
839         fiy1             = _mm256_setzero_pd();
840         fiz1             = _mm256_setzero_pd();
841         fix2             = _mm256_setzero_pd();
842         fiy2             = _mm256_setzero_pd();
843         fiz2             = _mm256_setzero_pd();
844
845         /* Start inner kernel loop */
846         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
847         {
848
849             /* Get j neighbor index, and coordinate index */
850             jnrA             = jjnr[jidx];
851             jnrB             = jjnr[jidx+1];
852             jnrC             = jjnr[jidx+2];
853             jnrD             = jjnr[jidx+3];
854             j_coord_offsetA  = DIM*jnrA;
855             j_coord_offsetB  = DIM*jnrB;
856             j_coord_offsetC  = DIM*jnrC;
857             j_coord_offsetD  = DIM*jnrD;
858
859             /* load j atom coordinates */
860             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
861                                                  x+j_coord_offsetC,x+j_coord_offsetD,
862                                                  &jx0,&jy0,&jz0);
863
864             /* Calculate displacement vector */
865             dx00             = _mm256_sub_pd(ix0,jx0);
866             dy00             = _mm256_sub_pd(iy0,jy0);
867             dz00             = _mm256_sub_pd(iz0,jz0);
868             dx10             = _mm256_sub_pd(ix1,jx0);
869             dy10             = _mm256_sub_pd(iy1,jy0);
870             dz10             = _mm256_sub_pd(iz1,jz0);
871             dx20             = _mm256_sub_pd(ix2,jx0);
872             dy20             = _mm256_sub_pd(iy2,jy0);
873             dz20             = _mm256_sub_pd(iz2,jz0);
874
875             /* Calculate squared distance and things based on it */
876             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
877             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
878             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
879
880             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
881             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
882             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
883
884             /* Load parameters for j particles */
885             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
886                                                                  charge+jnrC+0,charge+jnrD+0);
887             vdwjidx0A        = 2*vdwtype[jnrA+0];
888             vdwjidx0B        = 2*vdwtype[jnrB+0];
889             vdwjidx0C        = 2*vdwtype[jnrC+0];
890             vdwjidx0D        = 2*vdwtype[jnrD+0];
891
892             fjx0             = _mm256_setzero_pd();
893             fjy0             = _mm256_setzero_pd();
894             fjz0             = _mm256_setzero_pd();
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             r00              = _mm256_mul_pd(rsq00,rinv00);
901
902             /* Compute parameters for interactions between i and j atoms */
903             qq00             = _mm256_mul_pd(iq0,jq0);
904             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
905                                             vdwioffsetptr0+vdwjidx0B,
906                                             vdwioffsetptr0+vdwjidx0C,
907                                             vdwioffsetptr0+vdwjidx0D,
908                                             &c6_00,&c12_00);
909
910             /* Calculate table index by multiplying r with table scale and truncate to integer */
911             rt               = _mm256_mul_pd(r00,vftabscale);
912             vfitab           = _mm256_cvttpd_epi32(rt);
913             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
914             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
915
916             /* CUBIC SPLINE TABLE ELECTROSTATICS */
917             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
918             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
919             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
920             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
921             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
922             Heps             = _mm256_mul_pd(vfeps,H);
923             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
924             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
925             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
926
927             /* CUBIC SPLINE TABLE DISPERSION */
928             vfitab           = _mm_add_epi32(vfitab,ifour);
929             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
930             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
931             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
932             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
933             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
934             Heps             = _mm256_mul_pd(vfeps,H);
935             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
936             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
937             fvdw6            = _mm256_mul_pd(c6_00,FF);
938
939             /* CUBIC SPLINE TABLE REPULSION */
940             vfitab           = _mm_add_epi32(vfitab,ifour);
941             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
942             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
943             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
944             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
945             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
946             Heps             = _mm256_mul_pd(vfeps,H);
947             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
948             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
949             fvdw12           = _mm256_mul_pd(c12_00,FF);
950             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
951
952             fscal            = _mm256_add_pd(felec,fvdw);
953
954             /* Calculate temporary vectorial force */
955             tx               = _mm256_mul_pd(fscal,dx00);
956             ty               = _mm256_mul_pd(fscal,dy00);
957             tz               = _mm256_mul_pd(fscal,dz00);
958
959             /* Update vectorial force */
960             fix0             = _mm256_add_pd(fix0,tx);
961             fiy0             = _mm256_add_pd(fiy0,ty);
962             fiz0             = _mm256_add_pd(fiz0,tz);
963
964             fjx0             = _mm256_add_pd(fjx0,tx);
965             fjy0             = _mm256_add_pd(fjy0,ty);
966             fjz0             = _mm256_add_pd(fjz0,tz);
967
968             /**************************
969              * CALCULATE INTERACTIONS *
970              **************************/
971
972             r10              = _mm256_mul_pd(rsq10,rinv10);
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq10             = _mm256_mul_pd(iq1,jq0);
976
977             /* Calculate table index by multiplying r with table scale and truncate to integer */
978             rt               = _mm256_mul_pd(r10,vftabscale);
979             vfitab           = _mm256_cvttpd_epi32(rt);
980             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
981             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
982
983             /* CUBIC SPLINE TABLE ELECTROSTATICS */
984             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
985             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
986             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
987             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
988             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
989             Heps             = _mm256_mul_pd(vfeps,H);
990             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
991             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
992             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_pd(fscal,dx10);
998             ty               = _mm256_mul_pd(fscal,dy10);
999             tz               = _mm256_mul_pd(fscal,dz10);
1000
1001             /* Update vectorial force */
1002             fix1             = _mm256_add_pd(fix1,tx);
1003             fiy1             = _mm256_add_pd(fiy1,ty);
1004             fiz1             = _mm256_add_pd(fiz1,tz);
1005
1006             fjx0             = _mm256_add_pd(fjx0,tx);
1007             fjy0             = _mm256_add_pd(fjy0,ty);
1008             fjz0             = _mm256_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r20              = _mm256_mul_pd(rsq20,rinv20);
1015
1016             /* Compute parameters for interactions between i and j atoms */
1017             qq20             = _mm256_mul_pd(iq2,jq0);
1018
1019             /* Calculate table index by multiplying r with table scale and truncate to integer */
1020             rt               = _mm256_mul_pd(r20,vftabscale);
1021             vfitab           = _mm256_cvttpd_epi32(rt);
1022             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1023             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1024
1025             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1026             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1027             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1028             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1029             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1030             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1031             Heps             = _mm256_mul_pd(vfeps,H);
1032             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1033             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1034             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1035
1036             fscal            = felec;
1037
1038             /* Calculate temporary vectorial force */
1039             tx               = _mm256_mul_pd(fscal,dx20);
1040             ty               = _mm256_mul_pd(fscal,dy20);
1041             tz               = _mm256_mul_pd(fscal,dz20);
1042
1043             /* Update vectorial force */
1044             fix2             = _mm256_add_pd(fix2,tx);
1045             fiy2             = _mm256_add_pd(fiy2,ty);
1046             fiz2             = _mm256_add_pd(fiz2,tz);
1047
1048             fjx0             = _mm256_add_pd(fjx0,tx);
1049             fjy0             = _mm256_add_pd(fjy0,ty);
1050             fjz0             = _mm256_add_pd(fjz0,tz);
1051
1052             fjptrA             = f+j_coord_offsetA;
1053             fjptrB             = f+j_coord_offsetB;
1054             fjptrC             = f+j_coord_offsetC;
1055             fjptrD             = f+j_coord_offsetD;
1056
1057             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1058
1059             /* Inner loop uses 142 flops */
1060         }
1061
1062         if(jidx<j_index_end)
1063         {
1064
1065             /* Get j neighbor index, and coordinate index */
1066             jnrlistA         = jjnr[jidx];
1067             jnrlistB         = jjnr[jidx+1];
1068             jnrlistC         = jjnr[jidx+2];
1069             jnrlistD         = jjnr[jidx+3];
1070             /* Sign of each element will be negative for non-real atoms.
1071              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1072              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1073              */
1074             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1075
1076             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1077             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1078             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1079
1080             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1081             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1082             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1083             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1084             j_coord_offsetA  = DIM*jnrA;
1085             j_coord_offsetB  = DIM*jnrB;
1086             j_coord_offsetC  = DIM*jnrC;
1087             j_coord_offsetD  = DIM*jnrD;
1088
1089             /* load j atom coordinates */
1090             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1091                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1092                                                  &jx0,&jy0,&jz0);
1093
1094             /* Calculate displacement vector */
1095             dx00             = _mm256_sub_pd(ix0,jx0);
1096             dy00             = _mm256_sub_pd(iy0,jy0);
1097             dz00             = _mm256_sub_pd(iz0,jz0);
1098             dx10             = _mm256_sub_pd(ix1,jx0);
1099             dy10             = _mm256_sub_pd(iy1,jy0);
1100             dz10             = _mm256_sub_pd(iz1,jz0);
1101             dx20             = _mm256_sub_pd(ix2,jx0);
1102             dy20             = _mm256_sub_pd(iy2,jy0);
1103             dz20             = _mm256_sub_pd(iz2,jz0);
1104
1105             /* Calculate squared distance and things based on it */
1106             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1107             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1108             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1109
1110             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1111             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1112             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1113
1114             /* Load parameters for j particles */
1115             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1116                                                                  charge+jnrC+0,charge+jnrD+0);
1117             vdwjidx0A        = 2*vdwtype[jnrA+0];
1118             vdwjidx0B        = 2*vdwtype[jnrB+0];
1119             vdwjidx0C        = 2*vdwtype[jnrC+0];
1120             vdwjidx0D        = 2*vdwtype[jnrD+0];
1121
1122             fjx0             = _mm256_setzero_pd();
1123             fjy0             = _mm256_setzero_pd();
1124             fjz0             = _mm256_setzero_pd();
1125
1126             /**************************
1127              * CALCULATE INTERACTIONS *
1128              **************************/
1129
1130             r00              = _mm256_mul_pd(rsq00,rinv00);
1131             r00              = _mm256_andnot_pd(dummy_mask,r00);
1132
1133             /* Compute parameters for interactions between i and j atoms */
1134             qq00             = _mm256_mul_pd(iq0,jq0);
1135             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1136                                             vdwioffsetptr0+vdwjidx0B,
1137                                             vdwioffsetptr0+vdwjidx0C,
1138                                             vdwioffsetptr0+vdwjidx0D,
1139                                             &c6_00,&c12_00);
1140
1141             /* Calculate table index by multiplying r with table scale and truncate to integer */
1142             rt               = _mm256_mul_pd(r00,vftabscale);
1143             vfitab           = _mm256_cvttpd_epi32(rt);
1144             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1145             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1146
1147             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1148             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1149             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1150             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1151             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1152             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1153             Heps             = _mm256_mul_pd(vfeps,H);
1154             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1155             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1156             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1157
1158             /* CUBIC SPLINE TABLE DISPERSION */
1159             vfitab           = _mm_add_epi32(vfitab,ifour);
1160             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1161             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1162             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1163             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1164             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1165             Heps             = _mm256_mul_pd(vfeps,H);
1166             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1167             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1168             fvdw6            = _mm256_mul_pd(c6_00,FF);
1169
1170             /* CUBIC SPLINE TABLE REPULSION */
1171             vfitab           = _mm_add_epi32(vfitab,ifour);
1172             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1173             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1174             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1175             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1176             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1177             Heps             = _mm256_mul_pd(vfeps,H);
1178             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1179             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1180             fvdw12           = _mm256_mul_pd(c12_00,FF);
1181             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1182
1183             fscal            = _mm256_add_pd(felec,fvdw);
1184
1185             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1186
1187             /* Calculate temporary vectorial force */
1188             tx               = _mm256_mul_pd(fscal,dx00);
1189             ty               = _mm256_mul_pd(fscal,dy00);
1190             tz               = _mm256_mul_pd(fscal,dz00);
1191
1192             /* Update vectorial force */
1193             fix0             = _mm256_add_pd(fix0,tx);
1194             fiy0             = _mm256_add_pd(fiy0,ty);
1195             fiz0             = _mm256_add_pd(fiz0,tz);
1196
1197             fjx0             = _mm256_add_pd(fjx0,tx);
1198             fjy0             = _mm256_add_pd(fjy0,ty);
1199             fjz0             = _mm256_add_pd(fjz0,tz);
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             r10              = _mm256_mul_pd(rsq10,rinv10);
1206             r10              = _mm256_andnot_pd(dummy_mask,r10);
1207
1208             /* Compute parameters for interactions between i and j atoms */
1209             qq10             = _mm256_mul_pd(iq1,jq0);
1210
1211             /* Calculate table index by multiplying r with table scale and truncate to integer */
1212             rt               = _mm256_mul_pd(r10,vftabscale);
1213             vfitab           = _mm256_cvttpd_epi32(rt);
1214             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1215             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1216
1217             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1218             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1219             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1220             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1221             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1222             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1223             Heps             = _mm256_mul_pd(vfeps,H);
1224             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1225             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1226             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1227
1228             fscal            = felec;
1229
1230             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1231
1232             /* Calculate temporary vectorial force */
1233             tx               = _mm256_mul_pd(fscal,dx10);
1234             ty               = _mm256_mul_pd(fscal,dy10);
1235             tz               = _mm256_mul_pd(fscal,dz10);
1236
1237             /* Update vectorial force */
1238             fix1             = _mm256_add_pd(fix1,tx);
1239             fiy1             = _mm256_add_pd(fiy1,ty);
1240             fiz1             = _mm256_add_pd(fiz1,tz);
1241
1242             fjx0             = _mm256_add_pd(fjx0,tx);
1243             fjy0             = _mm256_add_pd(fjy0,ty);
1244             fjz0             = _mm256_add_pd(fjz0,tz);
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             r20              = _mm256_mul_pd(rsq20,rinv20);
1251             r20              = _mm256_andnot_pd(dummy_mask,r20);
1252
1253             /* Compute parameters for interactions between i and j atoms */
1254             qq20             = _mm256_mul_pd(iq2,jq0);
1255
1256             /* Calculate table index by multiplying r with table scale and truncate to integer */
1257             rt               = _mm256_mul_pd(r20,vftabscale);
1258             vfitab           = _mm256_cvttpd_epi32(rt);
1259             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1260             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1261
1262             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1263             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1264             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1265             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1266             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1267             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1268             Heps             = _mm256_mul_pd(vfeps,H);
1269             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1270             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1271             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1272
1273             fscal            = felec;
1274
1275             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1276
1277             /* Calculate temporary vectorial force */
1278             tx               = _mm256_mul_pd(fscal,dx20);
1279             ty               = _mm256_mul_pd(fscal,dy20);
1280             tz               = _mm256_mul_pd(fscal,dz20);
1281
1282             /* Update vectorial force */
1283             fix2             = _mm256_add_pd(fix2,tx);
1284             fiy2             = _mm256_add_pd(fiy2,ty);
1285             fiz2             = _mm256_add_pd(fiz2,tz);
1286
1287             fjx0             = _mm256_add_pd(fjx0,tx);
1288             fjy0             = _mm256_add_pd(fjy0,ty);
1289             fjz0             = _mm256_add_pd(fjz0,tz);
1290
1291             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1292             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1293             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1294             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1295
1296             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1297
1298             /* Inner loop uses 145 flops */
1299         }
1300
1301         /* End of innermost loop */
1302
1303         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1304                                                  f+i_coord_offset,fshift+i_shift_offset);
1305
1306         /* Increment number of inner iterations */
1307         inneriter                  += j_index_end - j_index_start;
1308
1309         /* Outer loop uses 18 flops */
1310     }
1311
1312     /* Increment number of outer iterations */
1313     outeriter        += nri;
1314
1315     /* Update outer/inner flops */
1316
1317     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*145);
1318 }