5a84ccd8d3ce62f03a3d35e09beebbbf9db6ba06
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     real *           vdwioffsetptr1;
87     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
88     real *           vdwioffsetptr2;
89     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
91     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
96     real             *charge;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_elec_vdw->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
135     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
136     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
137     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175         fix1             = _mm256_setzero_pd();
176         fiy1             = _mm256_setzero_pd();
177         fiz1             = _mm256_setzero_pd();
178         fix2             = _mm256_setzero_pd();
179         fiy2             = _mm256_setzero_pd();
180         fiz2             = _mm256_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209             dx10             = _mm256_sub_pd(ix1,jx0);
210             dy10             = _mm256_sub_pd(iy1,jy0);
211             dz10             = _mm256_sub_pd(iz1,jz0);
212             dx20             = _mm256_sub_pd(ix2,jx0);
213             dy20             = _mm256_sub_pd(iy2,jy0);
214             dz20             = _mm256_sub_pd(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
222             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
223             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
227                                                                  charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm256_setzero_pd();
234             fjy0             = _mm256_setzero_pd();
235             fjz0             = _mm256_setzero_pd();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             r00              = _mm256_mul_pd(rsq00,rinv00);
242
243             /* Compute parameters for interactions between i and j atoms */
244             qq00             = _mm256_mul_pd(iq0,jq0);
245             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
246                                             vdwioffsetptr0+vdwjidx0B,
247                                             vdwioffsetptr0+vdwjidx0C,
248                                             vdwioffsetptr0+vdwjidx0D,
249                                             &c6_00,&c12_00);
250
251             /* Calculate table index by multiplying r with table scale and truncate to integer */
252             rt               = _mm256_mul_pd(r00,vftabscale);
253             vfitab           = _mm256_cvttpd_epi32(rt);
254             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
255             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
256
257             /* CUBIC SPLINE TABLE ELECTROSTATICS */
258             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
262             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
263             Heps             = _mm256_mul_pd(vfeps,H);
264             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
265             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
266             velec            = _mm256_mul_pd(qq00,VV);
267             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
268             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             vfitab           = _mm_add_epi32(vfitab,ifour);
272             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
276             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
277             Heps             = _mm256_mul_pd(vfeps,H);
278             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
279             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
280             vvdw6            = _mm256_mul_pd(c6_00,VV);
281             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
282             fvdw6            = _mm256_mul_pd(c6_00,FF);
283
284             /* CUBIC SPLINE TABLE REPULSION */
285             vfitab           = _mm_add_epi32(vfitab,ifour);
286             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
287             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
288             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
289             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
290             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
291             Heps             = _mm256_mul_pd(vfeps,H);
292             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
293             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
294             vvdw12           = _mm256_mul_pd(c12_00,VV);
295             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
296             fvdw12           = _mm256_mul_pd(c12_00,FF);
297             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
298             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm256_add_pd(velecsum,velec);
302             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
303
304             fscal            = _mm256_add_pd(felec,fvdw);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm256_mul_pd(fscal,dx00);
308             ty               = _mm256_mul_pd(fscal,dy00);
309             tz               = _mm256_mul_pd(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm256_add_pd(fix0,tx);
313             fiy0             = _mm256_add_pd(fiy0,ty);
314             fiz0             = _mm256_add_pd(fiz0,tz);
315
316             fjx0             = _mm256_add_pd(fjx0,tx);
317             fjy0             = _mm256_add_pd(fjy0,ty);
318             fjz0             = _mm256_add_pd(fjz0,tz);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm256_mul_pd(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_pd(iq1,jq0);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm256_mul_pd(r10,vftabscale);
331             vfitab           = _mm256_cvttpd_epi32(rt);
332             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
333             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
334
335             /* CUBIC SPLINE TABLE ELECTROSTATICS */
336             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
337             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
338             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
339             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
340             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
341             Heps             = _mm256_mul_pd(vfeps,H);
342             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
343             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
344             velec            = _mm256_mul_pd(qq10,VV);
345             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
346             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm256_add_pd(velecsum,velec);
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = _mm256_mul_pd(fscal,dx10);
355             ty               = _mm256_mul_pd(fscal,dy10);
356             tz               = _mm256_mul_pd(fscal,dz10);
357
358             /* Update vectorial force */
359             fix1             = _mm256_add_pd(fix1,tx);
360             fiy1             = _mm256_add_pd(fiy1,ty);
361             fiz1             = _mm256_add_pd(fiz1,tz);
362
363             fjx0             = _mm256_add_pd(fjx0,tx);
364             fjy0             = _mm256_add_pd(fjy0,ty);
365             fjz0             = _mm256_add_pd(fjz0,tz);
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             r20              = _mm256_mul_pd(rsq20,rinv20);
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm256_mul_pd(iq2,jq0);
375
376             /* Calculate table index by multiplying r with table scale and truncate to integer */
377             rt               = _mm256_mul_pd(r20,vftabscale);
378             vfitab           = _mm256_cvttpd_epi32(rt);
379             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
380             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
381
382             /* CUBIC SPLINE TABLE ELECTROSTATICS */
383             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
384             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
385             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
386             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
387             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
388             Heps             = _mm256_mul_pd(vfeps,H);
389             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
390             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
391             velec            = _mm256_mul_pd(qq20,VV);
392             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
393             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velecsum         = _mm256_add_pd(velecsum,velec);
397
398             fscal            = felec;
399
400             /* Calculate temporary vectorial force */
401             tx               = _mm256_mul_pd(fscal,dx20);
402             ty               = _mm256_mul_pd(fscal,dy20);
403             tz               = _mm256_mul_pd(fscal,dz20);
404
405             /* Update vectorial force */
406             fix2             = _mm256_add_pd(fix2,tx);
407             fiy2             = _mm256_add_pd(fiy2,ty);
408             fiz2             = _mm256_add_pd(fiz2,tz);
409
410             fjx0             = _mm256_add_pd(fjx0,tx);
411             fjy0             = _mm256_add_pd(fjy0,ty);
412             fjz0             = _mm256_add_pd(fjz0,tz);
413
414             fjptrA             = f+j_coord_offsetA;
415             fjptrB             = f+j_coord_offsetB;
416             fjptrC             = f+j_coord_offsetC;
417             fjptrD             = f+j_coord_offsetD;
418
419             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 162 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             /* Sign of each element will be negative for non-real atoms.
433              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
434              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
435              */
436             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
437
438             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
439             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
440             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
441
442             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
443             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
444             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
445             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
446             j_coord_offsetA  = DIM*jnrA;
447             j_coord_offsetB  = DIM*jnrB;
448             j_coord_offsetC  = DIM*jnrC;
449             j_coord_offsetD  = DIM*jnrD;
450
451             /* load j atom coordinates */
452             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
453                                                  x+j_coord_offsetC,x+j_coord_offsetD,
454                                                  &jx0,&jy0,&jz0);
455
456             /* Calculate displacement vector */
457             dx00             = _mm256_sub_pd(ix0,jx0);
458             dy00             = _mm256_sub_pd(iy0,jy0);
459             dz00             = _mm256_sub_pd(iz0,jz0);
460             dx10             = _mm256_sub_pd(ix1,jx0);
461             dy10             = _mm256_sub_pd(iy1,jy0);
462             dz10             = _mm256_sub_pd(iz1,jz0);
463             dx20             = _mm256_sub_pd(ix2,jx0);
464             dy20             = _mm256_sub_pd(iy2,jy0);
465             dz20             = _mm256_sub_pd(iz2,jz0);
466
467             /* Calculate squared distance and things based on it */
468             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
469             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
470             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
471
472             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
473             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
474             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
475
476             /* Load parameters for j particles */
477             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
478                                                                  charge+jnrC+0,charge+jnrD+0);
479             vdwjidx0A        = 2*vdwtype[jnrA+0];
480             vdwjidx0B        = 2*vdwtype[jnrB+0];
481             vdwjidx0C        = 2*vdwtype[jnrC+0];
482             vdwjidx0D        = 2*vdwtype[jnrD+0];
483
484             fjx0             = _mm256_setzero_pd();
485             fjy0             = _mm256_setzero_pd();
486             fjz0             = _mm256_setzero_pd();
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             r00              = _mm256_mul_pd(rsq00,rinv00);
493             r00              = _mm256_andnot_pd(dummy_mask,r00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq00             = _mm256_mul_pd(iq0,jq0);
497             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
498                                             vdwioffsetptr0+vdwjidx0B,
499                                             vdwioffsetptr0+vdwjidx0C,
500                                             vdwioffsetptr0+vdwjidx0D,
501                                             &c6_00,&c12_00);
502
503             /* Calculate table index by multiplying r with table scale and truncate to integer */
504             rt               = _mm256_mul_pd(r00,vftabscale);
505             vfitab           = _mm256_cvttpd_epi32(rt);
506             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
507             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
508
509             /* CUBIC SPLINE TABLE ELECTROSTATICS */
510             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
511             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
512             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
513             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
514             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
515             Heps             = _mm256_mul_pd(vfeps,H);
516             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
517             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
518             velec            = _mm256_mul_pd(qq00,VV);
519             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
520             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
521
522             /* CUBIC SPLINE TABLE DISPERSION */
523             vfitab           = _mm_add_epi32(vfitab,ifour);
524             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
525             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
526             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
527             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
528             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
529             Heps             = _mm256_mul_pd(vfeps,H);
530             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
531             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
532             vvdw6            = _mm256_mul_pd(c6_00,VV);
533             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
534             fvdw6            = _mm256_mul_pd(c6_00,FF);
535
536             /* CUBIC SPLINE TABLE REPULSION */
537             vfitab           = _mm_add_epi32(vfitab,ifour);
538             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
539             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
540             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
541             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
542             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
543             Heps             = _mm256_mul_pd(vfeps,H);
544             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
545             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
546             vvdw12           = _mm256_mul_pd(c12_00,VV);
547             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
548             fvdw12           = _mm256_mul_pd(c12_00,FF);
549             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
550             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm256_andnot_pd(dummy_mask,velec);
554             velecsum         = _mm256_add_pd(velecsum,velec);
555             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
556             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
557
558             fscal            = _mm256_add_pd(felec,fvdw);
559
560             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
561
562             /* Calculate temporary vectorial force */
563             tx               = _mm256_mul_pd(fscal,dx00);
564             ty               = _mm256_mul_pd(fscal,dy00);
565             tz               = _mm256_mul_pd(fscal,dz00);
566
567             /* Update vectorial force */
568             fix0             = _mm256_add_pd(fix0,tx);
569             fiy0             = _mm256_add_pd(fiy0,ty);
570             fiz0             = _mm256_add_pd(fiz0,tz);
571
572             fjx0             = _mm256_add_pd(fjx0,tx);
573             fjy0             = _mm256_add_pd(fjy0,ty);
574             fjz0             = _mm256_add_pd(fjz0,tz);
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             r10              = _mm256_mul_pd(rsq10,rinv10);
581             r10              = _mm256_andnot_pd(dummy_mask,r10);
582
583             /* Compute parameters for interactions between i and j atoms */
584             qq10             = _mm256_mul_pd(iq1,jq0);
585
586             /* Calculate table index by multiplying r with table scale and truncate to integer */
587             rt               = _mm256_mul_pd(r10,vftabscale);
588             vfitab           = _mm256_cvttpd_epi32(rt);
589             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
590             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
591
592             /* CUBIC SPLINE TABLE ELECTROSTATICS */
593             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
594             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
595             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
596             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
597             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
598             Heps             = _mm256_mul_pd(vfeps,H);
599             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
600             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
601             velec            = _mm256_mul_pd(qq10,VV);
602             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
603             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
604
605             /* Update potential sum for this i atom from the interaction with this j atom. */
606             velec            = _mm256_andnot_pd(dummy_mask,velec);
607             velecsum         = _mm256_add_pd(velecsum,velec);
608
609             fscal            = felec;
610
611             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm256_mul_pd(fscal,dx10);
615             ty               = _mm256_mul_pd(fscal,dy10);
616             tz               = _mm256_mul_pd(fscal,dz10);
617
618             /* Update vectorial force */
619             fix1             = _mm256_add_pd(fix1,tx);
620             fiy1             = _mm256_add_pd(fiy1,ty);
621             fiz1             = _mm256_add_pd(fiz1,tz);
622
623             fjx0             = _mm256_add_pd(fjx0,tx);
624             fjy0             = _mm256_add_pd(fjy0,ty);
625             fjz0             = _mm256_add_pd(fjz0,tz);
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r20              = _mm256_mul_pd(rsq20,rinv20);
632             r20              = _mm256_andnot_pd(dummy_mask,r20);
633
634             /* Compute parameters for interactions between i and j atoms */
635             qq20             = _mm256_mul_pd(iq2,jq0);
636
637             /* Calculate table index by multiplying r with table scale and truncate to integer */
638             rt               = _mm256_mul_pd(r20,vftabscale);
639             vfitab           = _mm256_cvttpd_epi32(rt);
640             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
641             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
642
643             /* CUBIC SPLINE TABLE ELECTROSTATICS */
644             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
645             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
646             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
647             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
648             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
649             Heps             = _mm256_mul_pd(vfeps,H);
650             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
651             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
652             velec            = _mm256_mul_pd(qq20,VV);
653             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
654             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
655
656             /* Update potential sum for this i atom from the interaction with this j atom. */
657             velec            = _mm256_andnot_pd(dummy_mask,velec);
658             velecsum         = _mm256_add_pd(velecsum,velec);
659
660             fscal            = felec;
661
662             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
663
664             /* Calculate temporary vectorial force */
665             tx               = _mm256_mul_pd(fscal,dx20);
666             ty               = _mm256_mul_pd(fscal,dy20);
667             tz               = _mm256_mul_pd(fscal,dz20);
668
669             /* Update vectorial force */
670             fix2             = _mm256_add_pd(fix2,tx);
671             fiy2             = _mm256_add_pd(fiy2,ty);
672             fiz2             = _mm256_add_pd(fiz2,tz);
673
674             fjx0             = _mm256_add_pd(fjx0,tx);
675             fjy0             = _mm256_add_pd(fjy0,ty);
676             fjz0             = _mm256_add_pd(fjz0,tz);
677
678             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
679             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
680             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
681             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
682
683             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
684
685             /* Inner loop uses 165 flops */
686         }
687
688         /* End of innermost loop */
689
690         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
691                                                  f+i_coord_offset,fshift+i_shift_offset);
692
693         ggid                        = gid[iidx];
694         /* Update potential energies */
695         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
696         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
697
698         /* Increment number of inner iterations */
699         inneriter                  += j_index_end - j_index_start;
700
701         /* Outer loop uses 20 flops */
702     }
703
704     /* Increment number of outer iterations */
705     outeriter        += nri;
706
707     /* Update outer/inner flops */
708
709     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*165);
710 }
711 /*
712  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
713  * Electrostatics interaction: CubicSplineTable
714  * VdW interaction:            CubicSplineTable
715  * Geometry:                   Water3-Particle
716  * Calculate force/pot:        Force
717  */
718 void
719 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
720                     (t_nblist                    * gmx_restrict       nlist,
721                      rvec                        * gmx_restrict          xx,
722                      rvec                        * gmx_restrict          ff,
723                      t_forcerec                  * gmx_restrict          fr,
724                      t_mdatoms                   * gmx_restrict     mdatoms,
725                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
726                      t_nrnb                      * gmx_restrict        nrnb)
727 {
728     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
729      * just 0 for non-waters.
730      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
731      * jnr indices corresponding to data put in the four positions in the SIMD register.
732      */
733     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
734     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
735     int              jnrA,jnrB,jnrC,jnrD;
736     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
737     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
738     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
739     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
740     real             rcutoff_scalar;
741     real             *shiftvec,*fshift,*x,*f;
742     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
743     real             scratch[4*DIM];
744     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
745     real *           vdwioffsetptr0;
746     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
747     real *           vdwioffsetptr1;
748     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
749     real *           vdwioffsetptr2;
750     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
751     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
752     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
753     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
754     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
755     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
756     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
757     real             *charge;
758     int              nvdwtype;
759     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
760     int              *vdwtype;
761     real             *vdwparam;
762     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
763     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
764     __m128i          vfitab;
765     __m128i          ifour       = _mm_set1_epi32(4);
766     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
767     real             *vftab;
768     __m256d          dummy_mask,cutoff_mask;
769     __m128           tmpmask0,tmpmask1;
770     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
771     __m256d          one     = _mm256_set1_pd(1.0);
772     __m256d          two     = _mm256_set1_pd(2.0);
773     x                = xx[0];
774     f                = ff[0];
775
776     nri              = nlist->nri;
777     iinr             = nlist->iinr;
778     jindex           = nlist->jindex;
779     jjnr             = nlist->jjnr;
780     shiftidx         = nlist->shift;
781     gid              = nlist->gid;
782     shiftvec         = fr->shift_vec[0];
783     fshift           = fr->fshift[0];
784     facel            = _mm256_set1_pd(fr->epsfac);
785     charge           = mdatoms->chargeA;
786     nvdwtype         = fr->ntype;
787     vdwparam         = fr->nbfp;
788     vdwtype          = mdatoms->typeA;
789
790     vftab            = kernel_data->table_elec_vdw->data;
791     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
792
793     /* Setup water-specific parameters */
794     inr              = nlist->iinr[0];
795     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
796     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
797     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
798     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
799
800     /* Avoid stupid compiler warnings */
801     jnrA = jnrB = jnrC = jnrD = 0;
802     j_coord_offsetA = 0;
803     j_coord_offsetB = 0;
804     j_coord_offsetC = 0;
805     j_coord_offsetD = 0;
806
807     outeriter        = 0;
808     inneriter        = 0;
809
810     for(iidx=0;iidx<4*DIM;iidx++)
811     {
812         scratch[iidx] = 0.0;
813     }
814
815     /* Start outer loop over neighborlists */
816     for(iidx=0; iidx<nri; iidx++)
817     {
818         /* Load shift vector for this list */
819         i_shift_offset   = DIM*shiftidx[iidx];
820
821         /* Load limits for loop over neighbors */
822         j_index_start    = jindex[iidx];
823         j_index_end      = jindex[iidx+1];
824
825         /* Get outer coordinate index */
826         inr              = iinr[iidx];
827         i_coord_offset   = DIM*inr;
828
829         /* Load i particle coords and add shift vector */
830         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
831                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
832
833         fix0             = _mm256_setzero_pd();
834         fiy0             = _mm256_setzero_pd();
835         fiz0             = _mm256_setzero_pd();
836         fix1             = _mm256_setzero_pd();
837         fiy1             = _mm256_setzero_pd();
838         fiz1             = _mm256_setzero_pd();
839         fix2             = _mm256_setzero_pd();
840         fiy2             = _mm256_setzero_pd();
841         fiz2             = _mm256_setzero_pd();
842
843         /* Start inner kernel loop */
844         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
845         {
846
847             /* Get j neighbor index, and coordinate index */
848             jnrA             = jjnr[jidx];
849             jnrB             = jjnr[jidx+1];
850             jnrC             = jjnr[jidx+2];
851             jnrD             = jjnr[jidx+3];
852             j_coord_offsetA  = DIM*jnrA;
853             j_coord_offsetB  = DIM*jnrB;
854             j_coord_offsetC  = DIM*jnrC;
855             j_coord_offsetD  = DIM*jnrD;
856
857             /* load j atom coordinates */
858             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
859                                                  x+j_coord_offsetC,x+j_coord_offsetD,
860                                                  &jx0,&jy0,&jz0);
861
862             /* Calculate displacement vector */
863             dx00             = _mm256_sub_pd(ix0,jx0);
864             dy00             = _mm256_sub_pd(iy0,jy0);
865             dz00             = _mm256_sub_pd(iz0,jz0);
866             dx10             = _mm256_sub_pd(ix1,jx0);
867             dy10             = _mm256_sub_pd(iy1,jy0);
868             dz10             = _mm256_sub_pd(iz1,jz0);
869             dx20             = _mm256_sub_pd(ix2,jx0);
870             dy20             = _mm256_sub_pd(iy2,jy0);
871             dz20             = _mm256_sub_pd(iz2,jz0);
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
875             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
876             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
877
878             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
879             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
880             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
881
882             /* Load parameters for j particles */
883             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
884                                                                  charge+jnrC+0,charge+jnrD+0);
885             vdwjidx0A        = 2*vdwtype[jnrA+0];
886             vdwjidx0B        = 2*vdwtype[jnrB+0];
887             vdwjidx0C        = 2*vdwtype[jnrC+0];
888             vdwjidx0D        = 2*vdwtype[jnrD+0];
889
890             fjx0             = _mm256_setzero_pd();
891             fjy0             = _mm256_setzero_pd();
892             fjz0             = _mm256_setzero_pd();
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             r00              = _mm256_mul_pd(rsq00,rinv00);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq00             = _mm256_mul_pd(iq0,jq0);
902             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
903                                             vdwioffsetptr0+vdwjidx0B,
904                                             vdwioffsetptr0+vdwjidx0C,
905                                             vdwioffsetptr0+vdwjidx0D,
906                                             &c6_00,&c12_00);
907
908             /* Calculate table index by multiplying r with table scale and truncate to integer */
909             rt               = _mm256_mul_pd(r00,vftabscale);
910             vfitab           = _mm256_cvttpd_epi32(rt);
911             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
912             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
913
914             /* CUBIC SPLINE TABLE ELECTROSTATICS */
915             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
916             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
917             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
918             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
919             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
920             Heps             = _mm256_mul_pd(vfeps,H);
921             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
922             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
923             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
924
925             /* CUBIC SPLINE TABLE DISPERSION */
926             vfitab           = _mm_add_epi32(vfitab,ifour);
927             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
928             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
929             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
930             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
931             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
932             Heps             = _mm256_mul_pd(vfeps,H);
933             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
934             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
935             fvdw6            = _mm256_mul_pd(c6_00,FF);
936
937             /* CUBIC SPLINE TABLE REPULSION */
938             vfitab           = _mm_add_epi32(vfitab,ifour);
939             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
940             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
941             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
942             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
943             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
944             Heps             = _mm256_mul_pd(vfeps,H);
945             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
946             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
947             fvdw12           = _mm256_mul_pd(c12_00,FF);
948             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
949
950             fscal            = _mm256_add_pd(felec,fvdw);
951
952             /* Calculate temporary vectorial force */
953             tx               = _mm256_mul_pd(fscal,dx00);
954             ty               = _mm256_mul_pd(fscal,dy00);
955             tz               = _mm256_mul_pd(fscal,dz00);
956
957             /* Update vectorial force */
958             fix0             = _mm256_add_pd(fix0,tx);
959             fiy0             = _mm256_add_pd(fiy0,ty);
960             fiz0             = _mm256_add_pd(fiz0,tz);
961
962             fjx0             = _mm256_add_pd(fjx0,tx);
963             fjy0             = _mm256_add_pd(fjy0,ty);
964             fjz0             = _mm256_add_pd(fjz0,tz);
965
966             /**************************
967              * CALCULATE INTERACTIONS *
968              **************************/
969
970             r10              = _mm256_mul_pd(rsq10,rinv10);
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq10             = _mm256_mul_pd(iq1,jq0);
974
975             /* Calculate table index by multiplying r with table scale and truncate to integer */
976             rt               = _mm256_mul_pd(r10,vftabscale);
977             vfitab           = _mm256_cvttpd_epi32(rt);
978             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
979             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
980
981             /* CUBIC SPLINE TABLE ELECTROSTATICS */
982             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
983             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
984             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
985             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
986             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
987             Heps             = _mm256_mul_pd(vfeps,H);
988             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
989             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
990             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
991
992             fscal            = felec;
993
994             /* Calculate temporary vectorial force */
995             tx               = _mm256_mul_pd(fscal,dx10);
996             ty               = _mm256_mul_pd(fscal,dy10);
997             tz               = _mm256_mul_pd(fscal,dz10);
998
999             /* Update vectorial force */
1000             fix1             = _mm256_add_pd(fix1,tx);
1001             fiy1             = _mm256_add_pd(fiy1,ty);
1002             fiz1             = _mm256_add_pd(fiz1,tz);
1003
1004             fjx0             = _mm256_add_pd(fjx0,tx);
1005             fjy0             = _mm256_add_pd(fjy0,ty);
1006             fjz0             = _mm256_add_pd(fjz0,tz);
1007
1008             /**************************
1009              * CALCULATE INTERACTIONS *
1010              **************************/
1011
1012             r20              = _mm256_mul_pd(rsq20,rinv20);
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq20             = _mm256_mul_pd(iq2,jq0);
1016
1017             /* Calculate table index by multiplying r with table scale and truncate to integer */
1018             rt               = _mm256_mul_pd(r20,vftabscale);
1019             vfitab           = _mm256_cvttpd_epi32(rt);
1020             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1021             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1022
1023             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1024             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1025             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1026             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1027             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1028             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1029             Heps             = _mm256_mul_pd(vfeps,H);
1030             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1031             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1032             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1033
1034             fscal            = felec;
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm256_mul_pd(fscal,dx20);
1038             ty               = _mm256_mul_pd(fscal,dy20);
1039             tz               = _mm256_mul_pd(fscal,dz20);
1040
1041             /* Update vectorial force */
1042             fix2             = _mm256_add_pd(fix2,tx);
1043             fiy2             = _mm256_add_pd(fiy2,ty);
1044             fiz2             = _mm256_add_pd(fiz2,tz);
1045
1046             fjx0             = _mm256_add_pd(fjx0,tx);
1047             fjy0             = _mm256_add_pd(fjy0,ty);
1048             fjz0             = _mm256_add_pd(fjz0,tz);
1049
1050             fjptrA             = f+j_coord_offsetA;
1051             fjptrB             = f+j_coord_offsetB;
1052             fjptrC             = f+j_coord_offsetC;
1053             fjptrD             = f+j_coord_offsetD;
1054
1055             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1056
1057             /* Inner loop uses 142 flops */
1058         }
1059
1060         if(jidx<j_index_end)
1061         {
1062
1063             /* Get j neighbor index, and coordinate index */
1064             jnrlistA         = jjnr[jidx];
1065             jnrlistB         = jjnr[jidx+1];
1066             jnrlistC         = jjnr[jidx+2];
1067             jnrlistD         = jjnr[jidx+3];
1068             /* Sign of each element will be negative for non-real atoms.
1069              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1070              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1071              */
1072             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1073
1074             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1075             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1076             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1077
1078             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1079             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1080             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1081             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1082             j_coord_offsetA  = DIM*jnrA;
1083             j_coord_offsetB  = DIM*jnrB;
1084             j_coord_offsetC  = DIM*jnrC;
1085             j_coord_offsetD  = DIM*jnrD;
1086
1087             /* load j atom coordinates */
1088             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1089                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1090                                                  &jx0,&jy0,&jz0);
1091
1092             /* Calculate displacement vector */
1093             dx00             = _mm256_sub_pd(ix0,jx0);
1094             dy00             = _mm256_sub_pd(iy0,jy0);
1095             dz00             = _mm256_sub_pd(iz0,jz0);
1096             dx10             = _mm256_sub_pd(ix1,jx0);
1097             dy10             = _mm256_sub_pd(iy1,jy0);
1098             dz10             = _mm256_sub_pd(iz1,jz0);
1099             dx20             = _mm256_sub_pd(ix2,jx0);
1100             dy20             = _mm256_sub_pd(iy2,jy0);
1101             dz20             = _mm256_sub_pd(iz2,jz0);
1102
1103             /* Calculate squared distance and things based on it */
1104             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1105             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1106             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1107
1108             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1109             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1110             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1111
1112             /* Load parameters for j particles */
1113             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1114                                                                  charge+jnrC+0,charge+jnrD+0);
1115             vdwjidx0A        = 2*vdwtype[jnrA+0];
1116             vdwjidx0B        = 2*vdwtype[jnrB+0];
1117             vdwjidx0C        = 2*vdwtype[jnrC+0];
1118             vdwjidx0D        = 2*vdwtype[jnrD+0];
1119
1120             fjx0             = _mm256_setzero_pd();
1121             fjy0             = _mm256_setzero_pd();
1122             fjz0             = _mm256_setzero_pd();
1123
1124             /**************************
1125              * CALCULATE INTERACTIONS *
1126              **************************/
1127
1128             r00              = _mm256_mul_pd(rsq00,rinv00);
1129             r00              = _mm256_andnot_pd(dummy_mask,r00);
1130
1131             /* Compute parameters for interactions between i and j atoms */
1132             qq00             = _mm256_mul_pd(iq0,jq0);
1133             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1134                                             vdwioffsetptr0+vdwjidx0B,
1135                                             vdwioffsetptr0+vdwjidx0C,
1136                                             vdwioffsetptr0+vdwjidx0D,
1137                                             &c6_00,&c12_00);
1138
1139             /* Calculate table index by multiplying r with table scale and truncate to integer */
1140             rt               = _mm256_mul_pd(r00,vftabscale);
1141             vfitab           = _mm256_cvttpd_epi32(rt);
1142             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1143             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1144
1145             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1146             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1147             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1148             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1149             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1150             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1151             Heps             = _mm256_mul_pd(vfeps,H);
1152             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1153             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1154             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1155
1156             /* CUBIC SPLINE TABLE DISPERSION */
1157             vfitab           = _mm_add_epi32(vfitab,ifour);
1158             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1159             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1160             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1161             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1162             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1163             Heps             = _mm256_mul_pd(vfeps,H);
1164             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1165             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1166             fvdw6            = _mm256_mul_pd(c6_00,FF);
1167
1168             /* CUBIC SPLINE TABLE REPULSION */
1169             vfitab           = _mm_add_epi32(vfitab,ifour);
1170             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1171             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1172             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1173             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1174             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1175             Heps             = _mm256_mul_pd(vfeps,H);
1176             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1177             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1178             fvdw12           = _mm256_mul_pd(c12_00,FF);
1179             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1180
1181             fscal            = _mm256_add_pd(felec,fvdw);
1182
1183             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm256_mul_pd(fscal,dx00);
1187             ty               = _mm256_mul_pd(fscal,dy00);
1188             tz               = _mm256_mul_pd(fscal,dz00);
1189
1190             /* Update vectorial force */
1191             fix0             = _mm256_add_pd(fix0,tx);
1192             fiy0             = _mm256_add_pd(fiy0,ty);
1193             fiz0             = _mm256_add_pd(fiz0,tz);
1194
1195             fjx0             = _mm256_add_pd(fjx0,tx);
1196             fjy0             = _mm256_add_pd(fjy0,ty);
1197             fjz0             = _mm256_add_pd(fjz0,tz);
1198
1199             /**************************
1200              * CALCULATE INTERACTIONS *
1201              **************************/
1202
1203             r10              = _mm256_mul_pd(rsq10,rinv10);
1204             r10              = _mm256_andnot_pd(dummy_mask,r10);
1205
1206             /* Compute parameters for interactions between i and j atoms */
1207             qq10             = _mm256_mul_pd(iq1,jq0);
1208
1209             /* Calculate table index by multiplying r with table scale and truncate to integer */
1210             rt               = _mm256_mul_pd(r10,vftabscale);
1211             vfitab           = _mm256_cvttpd_epi32(rt);
1212             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1213             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1214
1215             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1216             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1217             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1218             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1219             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1220             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1221             Heps             = _mm256_mul_pd(vfeps,H);
1222             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1223             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1224             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1225
1226             fscal            = felec;
1227
1228             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm256_mul_pd(fscal,dx10);
1232             ty               = _mm256_mul_pd(fscal,dy10);
1233             tz               = _mm256_mul_pd(fscal,dz10);
1234
1235             /* Update vectorial force */
1236             fix1             = _mm256_add_pd(fix1,tx);
1237             fiy1             = _mm256_add_pd(fiy1,ty);
1238             fiz1             = _mm256_add_pd(fiz1,tz);
1239
1240             fjx0             = _mm256_add_pd(fjx0,tx);
1241             fjy0             = _mm256_add_pd(fjy0,ty);
1242             fjz0             = _mm256_add_pd(fjz0,tz);
1243
1244             /**************************
1245              * CALCULATE INTERACTIONS *
1246              **************************/
1247
1248             r20              = _mm256_mul_pd(rsq20,rinv20);
1249             r20              = _mm256_andnot_pd(dummy_mask,r20);
1250
1251             /* Compute parameters for interactions between i and j atoms */
1252             qq20             = _mm256_mul_pd(iq2,jq0);
1253
1254             /* Calculate table index by multiplying r with table scale and truncate to integer */
1255             rt               = _mm256_mul_pd(r20,vftabscale);
1256             vfitab           = _mm256_cvttpd_epi32(rt);
1257             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1258             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1259
1260             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1261             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1262             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1263             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1264             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1265             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1266             Heps             = _mm256_mul_pd(vfeps,H);
1267             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1268             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1269             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1270
1271             fscal            = felec;
1272
1273             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1274
1275             /* Calculate temporary vectorial force */
1276             tx               = _mm256_mul_pd(fscal,dx20);
1277             ty               = _mm256_mul_pd(fscal,dy20);
1278             tz               = _mm256_mul_pd(fscal,dz20);
1279
1280             /* Update vectorial force */
1281             fix2             = _mm256_add_pd(fix2,tx);
1282             fiy2             = _mm256_add_pd(fiy2,ty);
1283             fiz2             = _mm256_add_pd(fiz2,tz);
1284
1285             fjx0             = _mm256_add_pd(fjx0,tx);
1286             fjy0             = _mm256_add_pd(fjy0,ty);
1287             fjz0             = _mm256_add_pd(fjz0,tz);
1288
1289             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1290             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1291             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1292             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1293
1294             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1295
1296             /* Inner loop uses 145 flops */
1297         }
1298
1299         /* End of innermost loop */
1300
1301         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1302                                                  f+i_coord_offset,fshift+i_shift_offset);
1303
1304         /* Increment number of inner iterations */
1305         inneriter                  += j_index_end - j_index_start;
1306
1307         /* Outer loop uses 18 flops */
1308     }
1309
1310     /* Increment number of outer iterations */
1311     outeriter        += nri;
1312
1313     /* Update outer/inner flops */
1314
1315     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*145);
1316 }