Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     real *           vdwioffsetptr1;
86     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     real *           vdwioffsetptr2;
88     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
101     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
105     real             *vftab;
106     __m256d          dummy_mask,cutoff_mask;
107     __m128           tmpmask0,tmpmask1;
108     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
109     __m256d          one     = _mm256_set1_pd(1.0);
110     __m256d          two     = _mm256_set1_pd(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm256_set1_pd(fr->ic->epsfac);
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_elec_vdw->data;
129     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
134     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
135     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
136     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
170
171         fix0             = _mm256_setzero_pd();
172         fiy0             = _mm256_setzero_pd();
173         fiz0             = _mm256_setzero_pd();
174         fix1             = _mm256_setzero_pd();
175         fiy1             = _mm256_setzero_pd();
176         fiz1             = _mm256_setzero_pd();
177         fix2             = _mm256_setzero_pd();
178         fiy2             = _mm256_setzero_pd();
179         fiz2             = _mm256_setzero_pd();
180
181         /* Reset potential sums */
182         velecsum         = _mm256_setzero_pd();
183         vvdwsum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208             dx10             = _mm256_sub_pd(ix1,jx0);
209             dy10             = _mm256_sub_pd(iy1,jy0);
210             dz10             = _mm256_sub_pd(iz1,jz0);
211             dx20             = _mm256_sub_pd(ix2,jx0);
212             dy20             = _mm256_sub_pd(iy2,jy0);
213             dz20             = _mm256_sub_pd(iz2,jz0);
214
215             /* Calculate squared distance and things based on it */
216             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
217             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
218             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
219
220             rinv00           = avx256_invsqrt_d(rsq00);
221             rinv10           = avx256_invsqrt_d(rsq10);
222             rinv20           = avx256_invsqrt_d(rsq20);
223
224             /* Load parameters for j particles */
225             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
226                                                                  charge+jnrC+0,charge+jnrD+0);
227             vdwjidx0A        = 2*vdwtype[jnrA+0];
228             vdwjidx0B        = 2*vdwtype[jnrB+0];
229             vdwjidx0C        = 2*vdwtype[jnrC+0];
230             vdwjidx0D        = 2*vdwtype[jnrD+0];
231
232             fjx0             = _mm256_setzero_pd();
233             fjy0             = _mm256_setzero_pd();
234             fjz0             = _mm256_setzero_pd();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm256_mul_pd(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm256_mul_pd(iq0,jq0);
244             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
245                                             vdwioffsetptr0+vdwjidx0B,
246                                             vdwioffsetptr0+vdwjidx0C,
247                                             vdwioffsetptr0+vdwjidx0D,
248                                             &c6_00,&c12_00);
249
250             /* Calculate table index by multiplying r with table scale and truncate to integer */
251             rt               = _mm256_mul_pd(r00,vftabscale);
252             vfitab           = _mm256_cvttpd_epi32(rt);
253             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
254             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
255
256             /* CUBIC SPLINE TABLE ELECTROSTATICS */
257             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
258             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
259             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
260             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
261             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
262             Heps             = _mm256_mul_pd(vfeps,H);
263             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
264             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
265             velec            = _mm256_mul_pd(qq00,VV);
266             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
267             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
268
269             /* CUBIC SPLINE TABLE DISPERSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             vvdw6            = _mm256_mul_pd(c6_00,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             fvdw6            = _mm256_mul_pd(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw12           = _mm256_mul_pd(c12_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw12           = _mm256_mul_pd(c12_00,FF);
296             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
297             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm256_add_pd(velecsum,velec);
301             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
302
303             fscal            = _mm256_add_pd(felec,fvdw);
304
305             /* Calculate temporary vectorial force */
306             tx               = _mm256_mul_pd(fscal,dx00);
307             ty               = _mm256_mul_pd(fscal,dy00);
308             tz               = _mm256_mul_pd(fscal,dz00);
309
310             /* Update vectorial force */
311             fix0             = _mm256_add_pd(fix0,tx);
312             fiy0             = _mm256_add_pd(fiy0,ty);
313             fiz0             = _mm256_add_pd(fiz0,tz);
314
315             fjx0             = _mm256_add_pd(fjx0,tx);
316             fjy0             = _mm256_add_pd(fjy0,ty);
317             fjz0             = _mm256_add_pd(fjz0,tz);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r10              = _mm256_mul_pd(rsq10,rinv10);
324
325             /* Compute parameters for interactions between i and j atoms */
326             qq10             = _mm256_mul_pd(iq1,jq0);
327
328             /* Calculate table index by multiplying r with table scale and truncate to integer */
329             rt               = _mm256_mul_pd(r10,vftabscale);
330             vfitab           = _mm256_cvttpd_epi32(rt);
331             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
332             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
333
334             /* CUBIC SPLINE TABLE ELECTROSTATICS */
335             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
336             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
337             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
338             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
339             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
340             Heps             = _mm256_mul_pd(vfeps,H);
341             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
342             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
343             velec            = _mm256_mul_pd(qq10,VV);
344             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
345             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velecsum         = _mm256_add_pd(velecsum,velec);
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = _mm256_mul_pd(fscal,dx10);
354             ty               = _mm256_mul_pd(fscal,dy10);
355             tz               = _mm256_mul_pd(fscal,dz10);
356
357             /* Update vectorial force */
358             fix1             = _mm256_add_pd(fix1,tx);
359             fiy1             = _mm256_add_pd(fiy1,ty);
360             fiz1             = _mm256_add_pd(fiz1,tz);
361
362             fjx0             = _mm256_add_pd(fjx0,tx);
363             fjy0             = _mm256_add_pd(fjy0,ty);
364             fjz0             = _mm256_add_pd(fjz0,tz);
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             r20              = _mm256_mul_pd(rsq20,rinv20);
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq20             = _mm256_mul_pd(iq2,jq0);
374
375             /* Calculate table index by multiplying r with table scale and truncate to integer */
376             rt               = _mm256_mul_pd(r20,vftabscale);
377             vfitab           = _mm256_cvttpd_epi32(rt);
378             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
379             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
380
381             /* CUBIC SPLINE TABLE ELECTROSTATICS */
382             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
383             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
384             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
385             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
386             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
387             Heps             = _mm256_mul_pd(vfeps,H);
388             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
389             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
390             velec            = _mm256_mul_pd(qq20,VV);
391             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
392             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velecsum         = _mm256_add_pd(velecsum,velec);
396
397             fscal            = felec;
398
399             /* Calculate temporary vectorial force */
400             tx               = _mm256_mul_pd(fscal,dx20);
401             ty               = _mm256_mul_pd(fscal,dy20);
402             tz               = _mm256_mul_pd(fscal,dz20);
403
404             /* Update vectorial force */
405             fix2             = _mm256_add_pd(fix2,tx);
406             fiy2             = _mm256_add_pd(fiy2,ty);
407             fiz2             = _mm256_add_pd(fiz2,tz);
408
409             fjx0             = _mm256_add_pd(fjx0,tx);
410             fjy0             = _mm256_add_pd(fjy0,ty);
411             fjz0             = _mm256_add_pd(fjz0,tz);
412
413             fjptrA             = f+j_coord_offsetA;
414             fjptrB             = f+j_coord_offsetB;
415             fjptrC             = f+j_coord_offsetC;
416             fjptrD             = f+j_coord_offsetD;
417
418             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
419
420             /* Inner loop uses 162 flops */
421         }
422
423         if(jidx<j_index_end)
424         {
425
426             /* Get j neighbor index, and coordinate index */
427             jnrlistA         = jjnr[jidx];
428             jnrlistB         = jjnr[jidx+1];
429             jnrlistC         = jjnr[jidx+2];
430             jnrlistD         = jjnr[jidx+3];
431             /* Sign of each element will be negative for non-real atoms.
432              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
433              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
434              */
435             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
436
437             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
438             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
439             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
440
441             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
442             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
443             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
444             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
445             j_coord_offsetA  = DIM*jnrA;
446             j_coord_offsetB  = DIM*jnrB;
447             j_coord_offsetC  = DIM*jnrC;
448             j_coord_offsetD  = DIM*jnrD;
449
450             /* load j atom coordinates */
451             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
452                                                  x+j_coord_offsetC,x+j_coord_offsetD,
453                                                  &jx0,&jy0,&jz0);
454
455             /* Calculate displacement vector */
456             dx00             = _mm256_sub_pd(ix0,jx0);
457             dy00             = _mm256_sub_pd(iy0,jy0);
458             dz00             = _mm256_sub_pd(iz0,jz0);
459             dx10             = _mm256_sub_pd(ix1,jx0);
460             dy10             = _mm256_sub_pd(iy1,jy0);
461             dz10             = _mm256_sub_pd(iz1,jz0);
462             dx20             = _mm256_sub_pd(ix2,jx0);
463             dy20             = _mm256_sub_pd(iy2,jy0);
464             dz20             = _mm256_sub_pd(iz2,jz0);
465
466             /* Calculate squared distance and things based on it */
467             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
468             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
469             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
470
471             rinv00           = avx256_invsqrt_d(rsq00);
472             rinv10           = avx256_invsqrt_d(rsq10);
473             rinv20           = avx256_invsqrt_d(rsq20);
474
475             /* Load parameters for j particles */
476             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
477                                                                  charge+jnrC+0,charge+jnrD+0);
478             vdwjidx0A        = 2*vdwtype[jnrA+0];
479             vdwjidx0B        = 2*vdwtype[jnrB+0];
480             vdwjidx0C        = 2*vdwtype[jnrC+0];
481             vdwjidx0D        = 2*vdwtype[jnrD+0];
482
483             fjx0             = _mm256_setzero_pd();
484             fjy0             = _mm256_setzero_pd();
485             fjz0             = _mm256_setzero_pd();
486
487             /**************************
488              * CALCULATE INTERACTIONS *
489              **************************/
490
491             r00              = _mm256_mul_pd(rsq00,rinv00);
492             r00              = _mm256_andnot_pd(dummy_mask,r00);
493
494             /* Compute parameters for interactions between i and j atoms */
495             qq00             = _mm256_mul_pd(iq0,jq0);
496             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
497                                             vdwioffsetptr0+vdwjidx0B,
498                                             vdwioffsetptr0+vdwjidx0C,
499                                             vdwioffsetptr0+vdwjidx0D,
500                                             &c6_00,&c12_00);
501
502             /* Calculate table index by multiplying r with table scale and truncate to integer */
503             rt               = _mm256_mul_pd(r00,vftabscale);
504             vfitab           = _mm256_cvttpd_epi32(rt);
505             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
506             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
507
508             /* CUBIC SPLINE TABLE ELECTROSTATICS */
509             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
510             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
511             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
512             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
513             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
514             Heps             = _mm256_mul_pd(vfeps,H);
515             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
516             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
517             velec            = _mm256_mul_pd(qq00,VV);
518             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
519             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
520
521             /* CUBIC SPLINE TABLE DISPERSION */
522             vfitab           = _mm_add_epi32(vfitab,ifour);
523             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
524             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
525             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
526             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
527             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
528             Heps             = _mm256_mul_pd(vfeps,H);
529             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
530             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
531             vvdw6            = _mm256_mul_pd(c6_00,VV);
532             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
533             fvdw6            = _mm256_mul_pd(c6_00,FF);
534
535             /* CUBIC SPLINE TABLE REPULSION */
536             vfitab           = _mm_add_epi32(vfitab,ifour);
537             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
538             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
539             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
540             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
541             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
542             Heps             = _mm256_mul_pd(vfeps,H);
543             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
544             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
545             vvdw12           = _mm256_mul_pd(c12_00,VV);
546             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
547             fvdw12           = _mm256_mul_pd(c12_00,FF);
548             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
549             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm256_andnot_pd(dummy_mask,velec);
553             velecsum         = _mm256_add_pd(velecsum,velec);
554             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
555             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
556
557             fscal            = _mm256_add_pd(felec,fvdw);
558
559             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
560
561             /* Calculate temporary vectorial force */
562             tx               = _mm256_mul_pd(fscal,dx00);
563             ty               = _mm256_mul_pd(fscal,dy00);
564             tz               = _mm256_mul_pd(fscal,dz00);
565
566             /* Update vectorial force */
567             fix0             = _mm256_add_pd(fix0,tx);
568             fiy0             = _mm256_add_pd(fiy0,ty);
569             fiz0             = _mm256_add_pd(fiz0,tz);
570
571             fjx0             = _mm256_add_pd(fjx0,tx);
572             fjy0             = _mm256_add_pd(fjy0,ty);
573             fjz0             = _mm256_add_pd(fjz0,tz);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             r10              = _mm256_mul_pd(rsq10,rinv10);
580             r10              = _mm256_andnot_pd(dummy_mask,r10);
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm256_mul_pd(iq1,jq0);
584
585             /* Calculate table index by multiplying r with table scale and truncate to integer */
586             rt               = _mm256_mul_pd(r10,vftabscale);
587             vfitab           = _mm256_cvttpd_epi32(rt);
588             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
589             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
590
591             /* CUBIC SPLINE TABLE ELECTROSTATICS */
592             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
593             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
594             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
595             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
596             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
597             Heps             = _mm256_mul_pd(vfeps,H);
598             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
599             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
600             velec            = _mm256_mul_pd(qq10,VV);
601             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
602             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             velec            = _mm256_andnot_pd(dummy_mask,velec);
606             velecsum         = _mm256_add_pd(velecsum,velec);
607
608             fscal            = felec;
609
610             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm256_mul_pd(fscal,dx10);
614             ty               = _mm256_mul_pd(fscal,dy10);
615             tz               = _mm256_mul_pd(fscal,dz10);
616
617             /* Update vectorial force */
618             fix1             = _mm256_add_pd(fix1,tx);
619             fiy1             = _mm256_add_pd(fiy1,ty);
620             fiz1             = _mm256_add_pd(fiz1,tz);
621
622             fjx0             = _mm256_add_pd(fjx0,tx);
623             fjy0             = _mm256_add_pd(fjy0,ty);
624             fjz0             = _mm256_add_pd(fjz0,tz);
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             r20              = _mm256_mul_pd(rsq20,rinv20);
631             r20              = _mm256_andnot_pd(dummy_mask,r20);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq20             = _mm256_mul_pd(iq2,jq0);
635
636             /* Calculate table index by multiplying r with table scale and truncate to integer */
637             rt               = _mm256_mul_pd(r20,vftabscale);
638             vfitab           = _mm256_cvttpd_epi32(rt);
639             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
640             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
641
642             /* CUBIC SPLINE TABLE ELECTROSTATICS */
643             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
644             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
645             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
646             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
647             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
648             Heps             = _mm256_mul_pd(vfeps,H);
649             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
650             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
651             velec            = _mm256_mul_pd(qq20,VV);
652             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
653             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
654
655             /* Update potential sum for this i atom from the interaction with this j atom. */
656             velec            = _mm256_andnot_pd(dummy_mask,velec);
657             velecsum         = _mm256_add_pd(velecsum,velec);
658
659             fscal            = felec;
660
661             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
662
663             /* Calculate temporary vectorial force */
664             tx               = _mm256_mul_pd(fscal,dx20);
665             ty               = _mm256_mul_pd(fscal,dy20);
666             tz               = _mm256_mul_pd(fscal,dz20);
667
668             /* Update vectorial force */
669             fix2             = _mm256_add_pd(fix2,tx);
670             fiy2             = _mm256_add_pd(fiy2,ty);
671             fiz2             = _mm256_add_pd(fiz2,tz);
672
673             fjx0             = _mm256_add_pd(fjx0,tx);
674             fjy0             = _mm256_add_pd(fjy0,ty);
675             fjz0             = _mm256_add_pd(fjz0,tz);
676
677             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
678             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
679             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
680             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
681
682             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
683
684             /* Inner loop uses 165 flops */
685         }
686
687         /* End of innermost loop */
688
689         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
690                                                  f+i_coord_offset,fshift+i_shift_offset);
691
692         ggid                        = gid[iidx];
693         /* Update potential energies */
694         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
695         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
696
697         /* Increment number of inner iterations */
698         inneriter                  += j_index_end - j_index_start;
699
700         /* Outer loop uses 20 flops */
701     }
702
703     /* Increment number of outer iterations */
704     outeriter        += nri;
705
706     /* Update outer/inner flops */
707
708     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*165);
709 }
710 /*
711  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
712  * Electrostatics interaction: CubicSplineTable
713  * VdW interaction:            CubicSplineTable
714  * Geometry:                   Water3-Particle
715  * Calculate force/pot:        Force
716  */
717 void
718 nb_kernel_ElecCSTab_VdwCSTab_GeomW3P1_F_avx_256_double
719                     (t_nblist                    * gmx_restrict       nlist,
720                      rvec                        * gmx_restrict          xx,
721                      rvec                        * gmx_restrict          ff,
722                      struct t_forcerec           * gmx_restrict          fr,
723                      t_mdatoms                   * gmx_restrict     mdatoms,
724                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
725                      t_nrnb                      * gmx_restrict        nrnb)
726 {
727     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
728      * just 0 for non-waters.
729      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
730      * jnr indices corresponding to data put in the four positions in the SIMD register.
731      */
732     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
733     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
734     int              jnrA,jnrB,jnrC,jnrD;
735     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
736     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
737     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
738     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
739     real             rcutoff_scalar;
740     real             *shiftvec,*fshift,*x,*f;
741     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
742     real             scratch[4*DIM];
743     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
744     real *           vdwioffsetptr0;
745     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
746     real *           vdwioffsetptr1;
747     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
748     real *           vdwioffsetptr2;
749     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
750     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
751     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
752     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
753     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
754     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
755     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
756     real             *charge;
757     int              nvdwtype;
758     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
759     int              *vdwtype;
760     real             *vdwparam;
761     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
762     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
763     __m128i          vfitab;
764     __m128i          ifour       = _mm_set1_epi32(4);
765     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
766     real             *vftab;
767     __m256d          dummy_mask,cutoff_mask;
768     __m128           tmpmask0,tmpmask1;
769     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
770     __m256d          one     = _mm256_set1_pd(1.0);
771     __m256d          two     = _mm256_set1_pd(2.0);
772     x                = xx[0];
773     f                = ff[0];
774
775     nri              = nlist->nri;
776     iinr             = nlist->iinr;
777     jindex           = nlist->jindex;
778     jjnr             = nlist->jjnr;
779     shiftidx         = nlist->shift;
780     gid              = nlist->gid;
781     shiftvec         = fr->shift_vec[0];
782     fshift           = fr->fshift[0];
783     facel            = _mm256_set1_pd(fr->ic->epsfac);
784     charge           = mdatoms->chargeA;
785     nvdwtype         = fr->ntype;
786     vdwparam         = fr->nbfp;
787     vdwtype          = mdatoms->typeA;
788
789     vftab            = kernel_data->table_elec_vdw->data;
790     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
791
792     /* Setup water-specific parameters */
793     inr              = nlist->iinr[0];
794     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
795     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
796     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
797     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
798
799     /* Avoid stupid compiler warnings */
800     jnrA = jnrB = jnrC = jnrD = 0;
801     j_coord_offsetA = 0;
802     j_coord_offsetB = 0;
803     j_coord_offsetC = 0;
804     j_coord_offsetD = 0;
805
806     outeriter        = 0;
807     inneriter        = 0;
808
809     for(iidx=0;iidx<4*DIM;iidx++)
810     {
811         scratch[iidx] = 0.0;
812     }
813
814     /* Start outer loop over neighborlists */
815     for(iidx=0; iidx<nri; iidx++)
816     {
817         /* Load shift vector for this list */
818         i_shift_offset   = DIM*shiftidx[iidx];
819
820         /* Load limits for loop over neighbors */
821         j_index_start    = jindex[iidx];
822         j_index_end      = jindex[iidx+1];
823
824         /* Get outer coordinate index */
825         inr              = iinr[iidx];
826         i_coord_offset   = DIM*inr;
827
828         /* Load i particle coords and add shift vector */
829         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
830                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
831
832         fix0             = _mm256_setzero_pd();
833         fiy0             = _mm256_setzero_pd();
834         fiz0             = _mm256_setzero_pd();
835         fix1             = _mm256_setzero_pd();
836         fiy1             = _mm256_setzero_pd();
837         fiz1             = _mm256_setzero_pd();
838         fix2             = _mm256_setzero_pd();
839         fiy2             = _mm256_setzero_pd();
840         fiz2             = _mm256_setzero_pd();
841
842         /* Start inner kernel loop */
843         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
844         {
845
846             /* Get j neighbor index, and coordinate index */
847             jnrA             = jjnr[jidx];
848             jnrB             = jjnr[jidx+1];
849             jnrC             = jjnr[jidx+2];
850             jnrD             = jjnr[jidx+3];
851             j_coord_offsetA  = DIM*jnrA;
852             j_coord_offsetB  = DIM*jnrB;
853             j_coord_offsetC  = DIM*jnrC;
854             j_coord_offsetD  = DIM*jnrD;
855
856             /* load j atom coordinates */
857             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
858                                                  x+j_coord_offsetC,x+j_coord_offsetD,
859                                                  &jx0,&jy0,&jz0);
860
861             /* Calculate displacement vector */
862             dx00             = _mm256_sub_pd(ix0,jx0);
863             dy00             = _mm256_sub_pd(iy0,jy0);
864             dz00             = _mm256_sub_pd(iz0,jz0);
865             dx10             = _mm256_sub_pd(ix1,jx0);
866             dy10             = _mm256_sub_pd(iy1,jy0);
867             dz10             = _mm256_sub_pd(iz1,jz0);
868             dx20             = _mm256_sub_pd(ix2,jx0);
869             dy20             = _mm256_sub_pd(iy2,jy0);
870             dz20             = _mm256_sub_pd(iz2,jz0);
871
872             /* Calculate squared distance and things based on it */
873             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
874             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
875             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
876
877             rinv00           = avx256_invsqrt_d(rsq00);
878             rinv10           = avx256_invsqrt_d(rsq10);
879             rinv20           = avx256_invsqrt_d(rsq20);
880
881             /* Load parameters for j particles */
882             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
883                                                                  charge+jnrC+0,charge+jnrD+0);
884             vdwjidx0A        = 2*vdwtype[jnrA+0];
885             vdwjidx0B        = 2*vdwtype[jnrB+0];
886             vdwjidx0C        = 2*vdwtype[jnrC+0];
887             vdwjidx0D        = 2*vdwtype[jnrD+0];
888
889             fjx0             = _mm256_setzero_pd();
890             fjy0             = _mm256_setzero_pd();
891             fjz0             = _mm256_setzero_pd();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             r00              = _mm256_mul_pd(rsq00,rinv00);
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq00             = _mm256_mul_pd(iq0,jq0);
901             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
902                                             vdwioffsetptr0+vdwjidx0B,
903                                             vdwioffsetptr0+vdwjidx0C,
904                                             vdwioffsetptr0+vdwjidx0D,
905                                             &c6_00,&c12_00);
906
907             /* Calculate table index by multiplying r with table scale and truncate to integer */
908             rt               = _mm256_mul_pd(r00,vftabscale);
909             vfitab           = _mm256_cvttpd_epi32(rt);
910             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
911             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
912
913             /* CUBIC SPLINE TABLE ELECTROSTATICS */
914             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
915             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
916             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
917             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
918             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
919             Heps             = _mm256_mul_pd(vfeps,H);
920             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
921             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
922             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
923
924             /* CUBIC SPLINE TABLE DISPERSION */
925             vfitab           = _mm_add_epi32(vfitab,ifour);
926             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
927             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
928             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
929             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
930             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
931             Heps             = _mm256_mul_pd(vfeps,H);
932             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
933             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
934             fvdw6            = _mm256_mul_pd(c6_00,FF);
935
936             /* CUBIC SPLINE TABLE REPULSION */
937             vfitab           = _mm_add_epi32(vfitab,ifour);
938             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
939             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
940             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
941             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
942             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
943             Heps             = _mm256_mul_pd(vfeps,H);
944             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
945             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
946             fvdw12           = _mm256_mul_pd(c12_00,FF);
947             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
948
949             fscal            = _mm256_add_pd(felec,fvdw);
950
951             /* Calculate temporary vectorial force */
952             tx               = _mm256_mul_pd(fscal,dx00);
953             ty               = _mm256_mul_pd(fscal,dy00);
954             tz               = _mm256_mul_pd(fscal,dz00);
955
956             /* Update vectorial force */
957             fix0             = _mm256_add_pd(fix0,tx);
958             fiy0             = _mm256_add_pd(fiy0,ty);
959             fiz0             = _mm256_add_pd(fiz0,tz);
960
961             fjx0             = _mm256_add_pd(fjx0,tx);
962             fjy0             = _mm256_add_pd(fjy0,ty);
963             fjz0             = _mm256_add_pd(fjz0,tz);
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             r10              = _mm256_mul_pd(rsq10,rinv10);
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq10             = _mm256_mul_pd(iq1,jq0);
973
974             /* Calculate table index by multiplying r with table scale and truncate to integer */
975             rt               = _mm256_mul_pd(r10,vftabscale);
976             vfitab           = _mm256_cvttpd_epi32(rt);
977             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
978             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
979
980             /* CUBIC SPLINE TABLE ELECTROSTATICS */
981             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
982             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
983             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
984             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
985             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
986             Heps             = _mm256_mul_pd(vfeps,H);
987             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
988             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
989             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
990
991             fscal            = felec;
992
993             /* Calculate temporary vectorial force */
994             tx               = _mm256_mul_pd(fscal,dx10);
995             ty               = _mm256_mul_pd(fscal,dy10);
996             tz               = _mm256_mul_pd(fscal,dz10);
997
998             /* Update vectorial force */
999             fix1             = _mm256_add_pd(fix1,tx);
1000             fiy1             = _mm256_add_pd(fiy1,ty);
1001             fiz1             = _mm256_add_pd(fiz1,tz);
1002
1003             fjx0             = _mm256_add_pd(fjx0,tx);
1004             fjy0             = _mm256_add_pd(fjy0,ty);
1005             fjz0             = _mm256_add_pd(fjz0,tz);
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             r20              = _mm256_mul_pd(rsq20,rinv20);
1012
1013             /* Compute parameters for interactions between i and j atoms */
1014             qq20             = _mm256_mul_pd(iq2,jq0);
1015
1016             /* Calculate table index by multiplying r with table scale and truncate to integer */
1017             rt               = _mm256_mul_pd(r20,vftabscale);
1018             vfitab           = _mm256_cvttpd_epi32(rt);
1019             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1020             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1021
1022             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1023             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1024             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1025             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1026             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1027             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1028             Heps             = _mm256_mul_pd(vfeps,H);
1029             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1030             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1031             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1032
1033             fscal            = felec;
1034
1035             /* Calculate temporary vectorial force */
1036             tx               = _mm256_mul_pd(fscal,dx20);
1037             ty               = _mm256_mul_pd(fscal,dy20);
1038             tz               = _mm256_mul_pd(fscal,dz20);
1039
1040             /* Update vectorial force */
1041             fix2             = _mm256_add_pd(fix2,tx);
1042             fiy2             = _mm256_add_pd(fiy2,ty);
1043             fiz2             = _mm256_add_pd(fiz2,tz);
1044
1045             fjx0             = _mm256_add_pd(fjx0,tx);
1046             fjy0             = _mm256_add_pd(fjy0,ty);
1047             fjz0             = _mm256_add_pd(fjz0,tz);
1048
1049             fjptrA             = f+j_coord_offsetA;
1050             fjptrB             = f+j_coord_offsetB;
1051             fjptrC             = f+j_coord_offsetC;
1052             fjptrD             = f+j_coord_offsetD;
1053
1054             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1055
1056             /* Inner loop uses 142 flops */
1057         }
1058
1059         if(jidx<j_index_end)
1060         {
1061
1062             /* Get j neighbor index, and coordinate index */
1063             jnrlistA         = jjnr[jidx];
1064             jnrlistB         = jjnr[jidx+1];
1065             jnrlistC         = jjnr[jidx+2];
1066             jnrlistD         = jjnr[jidx+3];
1067             /* Sign of each element will be negative for non-real atoms.
1068              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1069              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1070              */
1071             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1072
1073             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1074             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1075             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1076
1077             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1078             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1079             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1080             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1081             j_coord_offsetA  = DIM*jnrA;
1082             j_coord_offsetB  = DIM*jnrB;
1083             j_coord_offsetC  = DIM*jnrC;
1084             j_coord_offsetD  = DIM*jnrD;
1085
1086             /* load j atom coordinates */
1087             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1088                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1089                                                  &jx0,&jy0,&jz0);
1090
1091             /* Calculate displacement vector */
1092             dx00             = _mm256_sub_pd(ix0,jx0);
1093             dy00             = _mm256_sub_pd(iy0,jy0);
1094             dz00             = _mm256_sub_pd(iz0,jz0);
1095             dx10             = _mm256_sub_pd(ix1,jx0);
1096             dy10             = _mm256_sub_pd(iy1,jy0);
1097             dz10             = _mm256_sub_pd(iz1,jz0);
1098             dx20             = _mm256_sub_pd(ix2,jx0);
1099             dy20             = _mm256_sub_pd(iy2,jy0);
1100             dz20             = _mm256_sub_pd(iz2,jz0);
1101
1102             /* Calculate squared distance and things based on it */
1103             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1104             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1105             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1106
1107             rinv00           = avx256_invsqrt_d(rsq00);
1108             rinv10           = avx256_invsqrt_d(rsq10);
1109             rinv20           = avx256_invsqrt_d(rsq20);
1110
1111             /* Load parameters for j particles */
1112             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1113                                                                  charge+jnrC+0,charge+jnrD+0);
1114             vdwjidx0A        = 2*vdwtype[jnrA+0];
1115             vdwjidx0B        = 2*vdwtype[jnrB+0];
1116             vdwjidx0C        = 2*vdwtype[jnrC+0];
1117             vdwjidx0D        = 2*vdwtype[jnrD+0];
1118
1119             fjx0             = _mm256_setzero_pd();
1120             fjy0             = _mm256_setzero_pd();
1121             fjz0             = _mm256_setzero_pd();
1122
1123             /**************************
1124              * CALCULATE INTERACTIONS *
1125              **************************/
1126
1127             r00              = _mm256_mul_pd(rsq00,rinv00);
1128             r00              = _mm256_andnot_pd(dummy_mask,r00);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq00             = _mm256_mul_pd(iq0,jq0);
1132             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1133                                             vdwioffsetptr0+vdwjidx0B,
1134                                             vdwioffsetptr0+vdwjidx0C,
1135                                             vdwioffsetptr0+vdwjidx0D,
1136                                             &c6_00,&c12_00);
1137
1138             /* Calculate table index by multiplying r with table scale and truncate to integer */
1139             rt               = _mm256_mul_pd(r00,vftabscale);
1140             vfitab           = _mm256_cvttpd_epi32(rt);
1141             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1142             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1143
1144             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1145             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1146             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1147             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1148             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1149             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1150             Heps             = _mm256_mul_pd(vfeps,H);
1151             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1152             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1153             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1154
1155             /* CUBIC SPLINE TABLE DISPERSION */
1156             vfitab           = _mm_add_epi32(vfitab,ifour);
1157             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1158             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1159             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1160             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1161             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1162             Heps             = _mm256_mul_pd(vfeps,H);
1163             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1164             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1165             fvdw6            = _mm256_mul_pd(c6_00,FF);
1166
1167             /* CUBIC SPLINE TABLE REPULSION */
1168             vfitab           = _mm_add_epi32(vfitab,ifour);
1169             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1170             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1171             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1172             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1173             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1174             Heps             = _mm256_mul_pd(vfeps,H);
1175             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1176             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1177             fvdw12           = _mm256_mul_pd(c12_00,FF);
1178             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1179
1180             fscal            = _mm256_add_pd(felec,fvdw);
1181
1182             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm256_mul_pd(fscal,dx00);
1186             ty               = _mm256_mul_pd(fscal,dy00);
1187             tz               = _mm256_mul_pd(fscal,dz00);
1188
1189             /* Update vectorial force */
1190             fix0             = _mm256_add_pd(fix0,tx);
1191             fiy0             = _mm256_add_pd(fiy0,ty);
1192             fiz0             = _mm256_add_pd(fiz0,tz);
1193
1194             fjx0             = _mm256_add_pd(fjx0,tx);
1195             fjy0             = _mm256_add_pd(fjy0,ty);
1196             fjz0             = _mm256_add_pd(fjz0,tz);
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             r10              = _mm256_mul_pd(rsq10,rinv10);
1203             r10              = _mm256_andnot_pd(dummy_mask,r10);
1204
1205             /* Compute parameters for interactions between i and j atoms */
1206             qq10             = _mm256_mul_pd(iq1,jq0);
1207
1208             /* Calculate table index by multiplying r with table scale and truncate to integer */
1209             rt               = _mm256_mul_pd(r10,vftabscale);
1210             vfitab           = _mm256_cvttpd_epi32(rt);
1211             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1212             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1213
1214             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1215             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1216             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1217             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1218             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1219             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1220             Heps             = _mm256_mul_pd(vfeps,H);
1221             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1222             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1223             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1224
1225             fscal            = felec;
1226
1227             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1228
1229             /* Calculate temporary vectorial force */
1230             tx               = _mm256_mul_pd(fscal,dx10);
1231             ty               = _mm256_mul_pd(fscal,dy10);
1232             tz               = _mm256_mul_pd(fscal,dz10);
1233
1234             /* Update vectorial force */
1235             fix1             = _mm256_add_pd(fix1,tx);
1236             fiy1             = _mm256_add_pd(fiy1,ty);
1237             fiz1             = _mm256_add_pd(fiz1,tz);
1238
1239             fjx0             = _mm256_add_pd(fjx0,tx);
1240             fjy0             = _mm256_add_pd(fjy0,ty);
1241             fjz0             = _mm256_add_pd(fjz0,tz);
1242
1243             /**************************
1244              * CALCULATE INTERACTIONS *
1245              **************************/
1246
1247             r20              = _mm256_mul_pd(rsq20,rinv20);
1248             r20              = _mm256_andnot_pd(dummy_mask,r20);
1249
1250             /* Compute parameters for interactions between i and j atoms */
1251             qq20             = _mm256_mul_pd(iq2,jq0);
1252
1253             /* Calculate table index by multiplying r with table scale and truncate to integer */
1254             rt               = _mm256_mul_pd(r20,vftabscale);
1255             vfitab           = _mm256_cvttpd_epi32(rt);
1256             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1257             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
1258
1259             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1260             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1261             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1262             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1263             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1264             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1265             Heps             = _mm256_mul_pd(vfeps,H);
1266             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1267             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1268             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1269
1270             fscal            = felec;
1271
1272             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1273
1274             /* Calculate temporary vectorial force */
1275             tx               = _mm256_mul_pd(fscal,dx20);
1276             ty               = _mm256_mul_pd(fscal,dy20);
1277             tz               = _mm256_mul_pd(fscal,dz20);
1278
1279             /* Update vectorial force */
1280             fix2             = _mm256_add_pd(fix2,tx);
1281             fiy2             = _mm256_add_pd(fiy2,ty);
1282             fiz2             = _mm256_add_pd(fiz2,tz);
1283
1284             fjx0             = _mm256_add_pd(fjx0,tx);
1285             fjy0             = _mm256_add_pd(fjy0,ty);
1286             fjz0             = _mm256_add_pd(fjz0,tz);
1287
1288             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1289             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1290             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1291             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1292
1293             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1294
1295             /* Inner loop uses 145 flops */
1296         }
1297
1298         /* End of innermost loop */
1299
1300         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1301                                                  f+i_coord_offset,fshift+i_shift_offset);
1302
1303         /* Increment number of inner iterations */
1304         inneriter                  += j_index_end - j_index_start;
1305
1306         /* Outer loop uses 18 flops */
1307     }
1308
1309     /* Increment number of outer iterations */
1310     outeriter        += nri;
1311
1312     /* Update outer/inner flops */
1313
1314     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*145);
1315 }