Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_avx_256_double.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_256_double.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
51  * Electrostatics interaction: CubicSplineTable
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
83     real *           vdwioffsetptr0;
84     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
95     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
99     real             *vftab;
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_pd(fr->ic->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_elec_vdw->data;
123     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_pd();
158         fiy0             = _mm256_setzero_pd();
159         fiz0             = _mm256_setzero_pd();
160
161         /* Load parameters for i particles */
162         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
163         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm256_setzero_pd();
167         vvdwsum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = avx256_invsqrt_d(rsq00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0);
201             vdwjidx0A        = 2*vdwtype[jnrA+0];
202             vdwjidx0B        = 2*vdwtype[jnrB+0];
203             vdwjidx0C        = 2*vdwtype[jnrC+0];
204             vdwjidx0D        = 2*vdwtype[jnrD+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             r00              = _mm256_mul_pd(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm256_mul_pd(iq0,jq0);
214             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
215                                             vdwioffsetptr0+vdwjidx0B,
216                                             vdwioffsetptr0+vdwjidx0C,
217                                             vdwioffsetptr0+vdwjidx0D,
218                                             &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm256_mul_pd(r00,vftabscale);
222             vfitab           = _mm256_cvttpd_epi32(rt);
223             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
224             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
225
226             /* CUBIC SPLINE TABLE ELECTROSTATICS */
227             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
228             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
229             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
230             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
231             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
232             Heps             = _mm256_mul_pd(vfeps,H);
233             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
234             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
235             velec            = _mm256_mul_pd(qq00,VV);
236             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
237             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
238
239             /* CUBIC SPLINE TABLE DISPERSION */
240             vfitab           = _mm_add_epi32(vfitab,ifour);
241             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
242             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
243             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
244             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
245             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
246             Heps             = _mm256_mul_pd(vfeps,H);
247             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
248             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
249             vvdw6            = _mm256_mul_pd(c6_00,VV);
250             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
251             fvdw6            = _mm256_mul_pd(c6_00,FF);
252
253             /* CUBIC SPLINE TABLE REPULSION */
254             vfitab           = _mm_add_epi32(vfitab,ifour);
255             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
256             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
257             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
258             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
259             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
260             Heps             = _mm256_mul_pd(vfeps,H);
261             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
262             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
263             vvdw12           = _mm256_mul_pd(c12_00,VV);
264             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
265             fvdw12           = _mm256_mul_pd(c12_00,FF);
266             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
267             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
268
269             /* Update potential sum for this i atom from the interaction with this j atom. */
270             velecsum         = _mm256_add_pd(velecsum,velec);
271             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
272
273             fscal            = _mm256_add_pd(felec,fvdw);
274
275             /* Calculate temporary vectorial force */
276             tx               = _mm256_mul_pd(fscal,dx00);
277             ty               = _mm256_mul_pd(fscal,dy00);
278             tz               = _mm256_mul_pd(fscal,dz00);
279
280             /* Update vectorial force */
281             fix0             = _mm256_add_pd(fix0,tx);
282             fiy0             = _mm256_add_pd(fiy0,ty);
283             fiz0             = _mm256_add_pd(fiz0,tz);
284
285             fjptrA             = f+j_coord_offsetA;
286             fjptrB             = f+j_coord_offsetB;
287             fjptrC             = f+j_coord_offsetC;
288             fjptrD             = f+j_coord_offsetD;
289             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
290
291             /* Inner loop uses 73 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             /* Get j neighbor index, and coordinate index */
298             jnrlistA         = jjnr[jidx];
299             jnrlistB         = jjnr[jidx+1];
300             jnrlistC         = jjnr[jidx+2];
301             jnrlistD         = jjnr[jidx+3];
302             /* Sign of each element will be negative for non-real atoms.
303              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
304              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
305              */
306             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
307
308             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
309             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
310             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
311
312             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
313             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
314             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
315             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
316             j_coord_offsetA  = DIM*jnrA;
317             j_coord_offsetB  = DIM*jnrB;
318             j_coord_offsetC  = DIM*jnrC;
319             j_coord_offsetD  = DIM*jnrD;
320
321             /* load j atom coordinates */
322             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
323                                                  x+j_coord_offsetC,x+j_coord_offsetD,
324                                                  &jx0,&jy0,&jz0);
325
326             /* Calculate displacement vector */
327             dx00             = _mm256_sub_pd(ix0,jx0);
328             dy00             = _mm256_sub_pd(iy0,jy0);
329             dz00             = _mm256_sub_pd(iz0,jz0);
330
331             /* Calculate squared distance and things based on it */
332             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
333
334             rinv00           = avx256_invsqrt_d(rsq00);
335
336             /* Load parameters for j particles */
337             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
338                                                                  charge+jnrC+0,charge+jnrD+0);
339             vdwjidx0A        = 2*vdwtype[jnrA+0];
340             vdwjidx0B        = 2*vdwtype[jnrB+0];
341             vdwjidx0C        = 2*vdwtype[jnrC+0];
342             vdwjidx0D        = 2*vdwtype[jnrD+0];
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r00              = _mm256_mul_pd(rsq00,rinv00);
349             r00              = _mm256_andnot_pd(dummy_mask,r00);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq00             = _mm256_mul_pd(iq0,jq0);
353             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
354                                             vdwioffsetptr0+vdwjidx0B,
355                                             vdwioffsetptr0+vdwjidx0C,
356                                             vdwioffsetptr0+vdwjidx0D,
357                                             &c6_00,&c12_00);
358
359             /* Calculate table index by multiplying r with table scale and truncate to integer */
360             rt               = _mm256_mul_pd(r00,vftabscale);
361             vfitab           = _mm256_cvttpd_epi32(rt);
362             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
363             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
364
365             /* CUBIC SPLINE TABLE ELECTROSTATICS */
366             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
367             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
368             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
369             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
370             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
371             Heps             = _mm256_mul_pd(vfeps,H);
372             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
373             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
374             velec            = _mm256_mul_pd(qq00,VV);
375             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
376             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
377
378             /* CUBIC SPLINE TABLE DISPERSION */
379             vfitab           = _mm_add_epi32(vfitab,ifour);
380             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
381             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
382             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
383             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
384             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
385             Heps             = _mm256_mul_pd(vfeps,H);
386             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
387             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
388             vvdw6            = _mm256_mul_pd(c6_00,VV);
389             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
390             fvdw6            = _mm256_mul_pd(c6_00,FF);
391
392             /* CUBIC SPLINE TABLE REPULSION */
393             vfitab           = _mm_add_epi32(vfitab,ifour);
394             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
395             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
396             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
397             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
398             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
399             Heps             = _mm256_mul_pd(vfeps,H);
400             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
401             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
402             vvdw12           = _mm256_mul_pd(c12_00,VV);
403             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
404             fvdw12           = _mm256_mul_pd(c12_00,FF);
405             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
406             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
407
408             /* Update potential sum for this i atom from the interaction with this j atom. */
409             velec            = _mm256_andnot_pd(dummy_mask,velec);
410             velecsum         = _mm256_add_pd(velecsum,velec);
411             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
412             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
413
414             fscal            = _mm256_add_pd(felec,fvdw);
415
416             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
417
418             /* Calculate temporary vectorial force */
419             tx               = _mm256_mul_pd(fscal,dx00);
420             ty               = _mm256_mul_pd(fscal,dy00);
421             tz               = _mm256_mul_pd(fscal,dz00);
422
423             /* Update vectorial force */
424             fix0             = _mm256_add_pd(fix0,tx);
425             fiy0             = _mm256_add_pd(fiy0,ty);
426             fiz0             = _mm256_add_pd(fiz0,tz);
427
428             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
429             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
430             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
431             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
432             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
433
434             /* Inner loop uses 74 flops */
435         }
436
437         /* End of innermost loop */
438
439         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
440                                                  f+i_coord_offset,fshift+i_shift_offset);
441
442         ggid                        = gid[iidx];
443         /* Update potential energies */
444         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
445         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
446
447         /* Increment number of inner iterations */
448         inneriter                  += j_index_end - j_index_start;
449
450         /* Outer loop uses 9 flops */
451     }
452
453     /* Increment number of outer iterations */
454     outeriter        += nri;
455
456     /* Update outer/inner flops */
457
458     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
459 }
460 /*
461  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
462  * Electrostatics interaction: CubicSplineTable
463  * VdW interaction:            CubicSplineTable
464  * Geometry:                   Particle-Particle
465  * Calculate force/pot:        Force
466  */
467 void
468 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
469                     (t_nblist                    * gmx_restrict       nlist,
470                      rvec                        * gmx_restrict          xx,
471                      rvec                        * gmx_restrict          ff,
472                      struct t_forcerec           * gmx_restrict          fr,
473                      t_mdatoms                   * gmx_restrict     mdatoms,
474                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
475                      t_nrnb                      * gmx_restrict        nrnb)
476 {
477     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
478      * just 0 for non-waters.
479      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
480      * jnr indices corresponding to data put in the four positions in the SIMD register.
481      */
482     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
483     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
484     int              jnrA,jnrB,jnrC,jnrD;
485     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
486     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
487     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
488     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
489     real             rcutoff_scalar;
490     real             *shiftvec,*fshift,*x,*f;
491     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
492     real             scratch[4*DIM];
493     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
494     real *           vdwioffsetptr0;
495     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
496     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
497     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
498     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
499     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
500     real             *charge;
501     int              nvdwtype;
502     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
503     int              *vdwtype;
504     real             *vdwparam;
505     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
506     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
507     __m128i          vfitab;
508     __m128i          ifour       = _mm_set1_epi32(4);
509     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
510     real             *vftab;
511     __m256d          dummy_mask,cutoff_mask;
512     __m128           tmpmask0,tmpmask1;
513     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
514     __m256d          one     = _mm256_set1_pd(1.0);
515     __m256d          two     = _mm256_set1_pd(2.0);
516     x                = xx[0];
517     f                = ff[0];
518
519     nri              = nlist->nri;
520     iinr             = nlist->iinr;
521     jindex           = nlist->jindex;
522     jjnr             = nlist->jjnr;
523     shiftidx         = nlist->shift;
524     gid              = nlist->gid;
525     shiftvec         = fr->shift_vec[0];
526     fshift           = fr->fshift[0];
527     facel            = _mm256_set1_pd(fr->ic->epsfac);
528     charge           = mdatoms->chargeA;
529     nvdwtype         = fr->ntype;
530     vdwparam         = fr->nbfp;
531     vdwtype          = mdatoms->typeA;
532
533     vftab            = kernel_data->table_elec_vdw->data;
534     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
535
536     /* Avoid stupid compiler warnings */
537     jnrA = jnrB = jnrC = jnrD = 0;
538     j_coord_offsetA = 0;
539     j_coord_offsetB = 0;
540     j_coord_offsetC = 0;
541     j_coord_offsetD = 0;
542
543     outeriter        = 0;
544     inneriter        = 0;
545
546     for(iidx=0;iidx<4*DIM;iidx++)
547     {
548         scratch[iidx] = 0.0;
549     }
550
551     /* Start outer loop over neighborlists */
552     for(iidx=0; iidx<nri; iidx++)
553     {
554         /* Load shift vector for this list */
555         i_shift_offset   = DIM*shiftidx[iidx];
556
557         /* Load limits for loop over neighbors */
558         j_index_start    = jindex[iidx];
559         j_index_end      = jindex[iidx+1];
560
561         /* Get outer coordinate index */
562         inr              = iinr[iidx];
563         i_coord_offset   = DIM*inr;
564
565         /* Load i particle coords and add shift vector */
566         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
567
568         fix0             = _mm256_setzero_pd();
569         fiy0             = _mm256_setzero_pd();
570         fiz0             = _mm256_setzero_pd();
571
572         /* Load parameters for i particles */
573         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
574         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
575
576         /* Start inner kernel loop */
577         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
578         {
579
580             /* Get j neighbor index, and coordinate index */
581             jnrA             = jjnr[jidx];
582             jnrB             = jjnr[jidx+1];
583             jnrC             = jjnr[jidx+2];
584             jnrD             = jjnr[jidx+3];
585             j_coord_offsetA  = DIM*jnrA;
586             j_coord_offsetB  = DIM*jnrB;
587             j_coord_offsetC  = DIM*jnrC;
588             j_coord_offsetD  = DIM*jnrD;
589
590             /* load j atom coordinates */
591             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
592                                                  x+j_coord_offsetC,x+j_coord_offsetD,
593                                                  &jx0,&jy0,&jz0);
594
595             /* Calculate displacement vector */
596             dx00             = _mm256_sub_pd(ix0,jx0);
597             dy00             = _mm256_sub_pd(iy0,jy0);
598             dz00             = _mm256_sub_pd(iz0,jz0);
599
600             /* Calculate squared distance and things based on it */
601             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
602
603             rinv00           = avx256_invsqrt_d(rsq00);
604
605             /* Load parameters for j particles */
606             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
607                                                                  charge+jnrC+0,charge+jnrD+0);
608             vdwjidx0A        = 2*vdwtype[jnrA+0];
609             vdwjidx0B        = 2*vdwtype[jnrB+0];
610             vdwjidx0C        = 2*vdwtype[jnrC+0];
611             vdwjidx0D        = 2*vdwtype[jnrD+0];
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             r00              = _mm256_mul_pd(rsq00,rinv00);
618
619             /* Compute parameters for interactions between i and j atoms */
620             qq00             = _mm256_mul_pd(iq0,jq0);
621             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
622                                             vdwioffsetptr0+vdwjidx0B,
623                                             vdwioffsetptr0+vdwjidx0C,
624                                             vdwioffsetptr0+vdwjidx0D,
625                                             &c6_00,&c12_00);
626
627             /* Calculate table index by multiplying r with table scale and truncate to integer */
628             rt               = _mm256_mul_pd(r00,vftabscale);
629             vfitab           = _mm256_cvttpd_epi32(rt);
630             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
631             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
632
633             /* CUBIC SPLINE TABLE ELECTROSTATICS */
634             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
635             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
636             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
637             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
638             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
639             Heps             = _mm256_mul_pd(vfeps,H);
640             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
641             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
642             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
643
644             /* CUBIC SPLINE TABLE DISPERSION */
645             vfitab           = _mm_add_epi32(vfitab,ifour);
646             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
647             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
648             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
649             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
650             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
651             Heps             = _mm256_mul_pd(vfeps,H);
652             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
653             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
654             fvdw6            = _mm256_mul_pd(c6_00,FF);
655
656             /* CUBIC SPLINE TABLE REPULSION */
657             vfitab           = _mm_add_epi32(vfitab,ifour);
658             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
659             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
660             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
661             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
662             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
663             Heps             = _mm256_mul_pd(vfeps,H);
664             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
665             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
666             fvdw12           = _mm256_mul_pd(c12_00,FF);
667             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
668
669             fscal            = _mm256_add_pd(felec,fvdw);
670
671             /* Calculate temporary vectorial force */
672             tx               = _mm256_mul_pd(fscal,dx00);
673             ty               = _mm256_mul_pd(fscal,dy00);
674             tz               = _mm256_mul_pd(fscal,dz00);
675
676             /* Update vectorial force */
677             fix0             = _mm256_add_pd(fix0,tx);
678             fiy0             = _mm256_add_pd(fiy0,ty);
679             fiz0             = _mm256_add_pd(fiz0,tz);
680
681             fjptrA             = f+j_coord_offsetA;
682             fjptrB             = f+j_coord_offsetB;
683             fjptrC             = f+j_coord_offsetC;
684             fjptrD             = f+j_coord_offsetD;
685             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
686
687             /* Inner loop uses 61 flops */
688         }
689
690         if(jidx<j_index_end)
691         {
692
693             /* Get j neighbor index, and coordinate index */
694             jnrlistA         = jjnr[jidx];
695             jnrlistB         = jjnr[jidx+1];
696             jnrlistC         = jjnr[jidx+2];
697             jnrlistD         = jjnr[jidx+3];
698             /* Sign of each element will be negative for non-real atoms.
699              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
700              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
701              */
702             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
703
704             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
705             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
706             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
707
708             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
709             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
710             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
711             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
712             j_coord_offsetA  = DIM*jnrA;
713             j_coord_offsetB  = DIM*jnrB;
714             j_coord_offsetC  = DIM*jnrC;
715             j_coord_offsetD  = DIM*jnrD;
716
717             /* load j atom coordinates */
718             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
719                                                  x+j_coord_offsetC,x+j_coord_offsetD,
720                                                  &jx0,&jy0,&jz0);
721
722             /* Calculate displacement vector */
723             dx00             = _mm256_sub_pd(ix0,jx0);
724             dy00             = _mm256_sub_pd(iy0,jy0);
725             dz00             = _mm256_sub_pd(iz0,jz0);
726
727             /* Calculate squared distance and things based on it */
728             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
729
730             rinv00           = avx256_invsqrt_d(rsq00);
731
732             /* Load parameters for j particles */
733             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
734                                                                  charge+jnrC+0,charge+jnrD+0);
735             vdwjidx0A        = 2*vdwtype[jnrA+0];
736             vdwjidx0B        = 2*vdwtype[jnrB+0];
737             vdwjidx0C        = 2*vdwtype[jnrC+0];
738             vdwjidx0D        = 2*vdwtype[jnrD+0];
739
740             /**************************
741              * CALCULATE INTERACTIONS *
742              **************************/
743
744             r00              = _mm256_mul_pd(rsq00,rinv00);
745             r00              = _mm256_andnot_pd(dummy_mask,r00);
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq00             = _mm256_mul_pd(iq0,jq0);
749             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
750                                             vdwioffsetptr0+vdwjidx0B,
751                                             vdwioffsetptr0+vdwjidx0C,
752                                             vdwioffsetptr0+vdwjidx0D,
753                                             &c6_00,&c12_00);
754
755             /* Calculate table index by multiplying r with table scale and truncate to integer */
756             rt               = _mm256_mul_pd(r00,vftabscale);
757             vfitab           = _mm256_cvttpd_epi32(rt);
758             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
759             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
760
761             /* CUBIC SPLINE TABLE ELECTROSTATICS */
762             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
763             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
764             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
765             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
766             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
767             Heps             = _mm256_mul_pd(vfeps,H);
768             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
769             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
770             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
771
772             /* CUBIC SPLINE TABLE DISPERSION */
773             vfitab           = _mm_add_epi32(vfitab,ifour);
774             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
775             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
776             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
777             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
778             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
779             Heps             = _mm256_mul_pd(vfeps,H);
780             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
781             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
782             fvdw6            = _mm256_mul_pd(c6_00,FF);
783
784             /* CUBIC SPLINE TABLE REPULSION */
785             vfitab           = _mm_add_epi32(vfitab,ifour);
786             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
787             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
788             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
789             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
790             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
791             Heps             = _mm256_mul_pd(vfeps,H);
792             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
793             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
794             fvdw12           = _mm256_mul_pd(c12_00,FF);
795             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
796
797             fscal            = _mm256_add_pd(felec,fvdw);
798
799             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
800
801             /* Calculate temporary vectorial force */
802             tx               = _mm256_mul_pd(fscal,dx00);
803             ty               = _mm256_mul_pd(fscal,dy00);
804             tz               = _mm256_mul_pd(fscal,dz00);
805
806             /* Update vectorial force */
807             fix0             = _mm256_add_pd(fix0,tx);
808             fiy0             = _mm256_add_pd(fiy0,ty);
809             fiz0             = _mm256_add_pd(fiz0,tz);
810
811             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
812             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
813             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
814             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
815             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
816
817             /* Inner loop uses 62 flops */
818         }
819
820         /* End of innermost loop */
821
822         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
823                                                  f+i_coord_offset,fshift+i_shift_offset);
824
825         /* Increment number of inner iterations */
826         inneriter                  += j_index_end - j_index_start;
827
828         /* Outer loop uses 7 flops */
829     }
830
831     /* Increment number of outer iterations */
832     outeriter        += nri;
833
834     /* Update outer/inner flops */
835
836     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
837 }