4dc581544fb20461f776f5b0be686b735a60cf34
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_256_double.h"
48 #include "kernelutil_x86_avx_256_double.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
52  * Electrostatics interaction: CubicSplineTable
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
77     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
78     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
79     real             rcutoff_scalar;
80     real             *shiftvec,*fshift,*x,*f;
81     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
82     real             scratch[4*DIM];
83     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
84     real *           vdwioffsetptr0;
85     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
86     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
87     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
88     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
89     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
90     real             *charge;
91     int              nvdwtype;
92     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
93     int              *vdwtype;
94     real             *vdwparam;
95     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
96     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
97     __m128i          vfitab;
98     __m128i          ifour       = _mm_set1_epi32(4);
99     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
100     real             *vftab;
101     __m256d          dummy_mask,cutoff_mask;
102     __m128           tmpmask0,tmpmask1;
103     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
104     __m256d          one     = _mm256_set1_pd(1.0);
105     __m256d          two     = _mm256_set1_pd(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm256_set1_pd(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_elec_vdw->data;
124     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161
162         /* Load parameters for i particles */
163         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
164         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
165
166         /* Reset potential sums */
167         velecsum         = _mm256_setzero_pd();
168         vvdwsum          = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             /* Load parameters for j particles */
200             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
201                                                                  charge+jnrC+0,charge+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm256_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm256_mul_pd(iq0,jq0);
215             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
216                                             vdwioffsetptr0+vdwjidx0B,
217                                             vdwioffsetptr0+vdwjidx0C,
218                                             vdwioffsetptr0+vdwjidx0D,
219                                             &c6_00,&c12_00);
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = _mm256_mul_pd(r00,vftabscale);
223             vfitab           = _mm256_cvttpd_epi32(rt);
224             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
225             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
226
227             /* CUBIC SPLINE TABLE ELECTROSTATICS */
228             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
229             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
230             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
231             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
232             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
233             Heps             = _mm256_mul_pd(vfeps,H);
234             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
235             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
236             velec            = _mm256_mul_pd(qq00,VV);
237             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
238             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
239
240             /* CUBIC SPLINE TABLE DISPERSION */
241             vfitab           = _mm_add_epi32(vfitab,ifour);
242             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
243             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
244             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
245             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
246             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
247             Heps             = _mm256_mul_pd(vfeps,H);
248             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
249             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
250             vvdw6            = _mm256_mul_pd(c6_00,VV);
251             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
252             fvdw6            = _mm256_mul_pd(c6_00,FF);
253
254             /* CUBIC SPLINE TABLE REPULSION */
255             vfitab           = _mm_add_epi32(vfitab,ifour);
256             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
257             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
258             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
259             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
260             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
261             Heps             = _mm256_mul_pd(vfeps,H);
262             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
263             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
264             vvdw12           = _mm256_mul_pd(c12_00,VV);
265             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
266             fvdw12           = _mm256_mul_pd(c12_00,FF);
267             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
268             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velecsum         = _mm256_add_pd(velecsum,velec);
272             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
273
274             fscal            = _mm256_add_pd(felec,fvdw);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm256_mul_pd(fscal,dx00);
278             ty               = _mm256_mul_pd(fscal,dy00);
279             tz               = _mm256_mul_pd(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm256_add_pd(fix0,tx);
283             fiy0             = _mm256_add_pd(fiy0,ty);
284             fiz0             = _mm256_add_pd(fiz0,tz);
285
286             fjptrA             = f+j_coord_offsetA;
287             fjptrB             = f+j_coord_offsetB;
288             fjptrC             = f+j_coord_offsetC;
289             fjptrD             = f+j_coord_offsetD;
290             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
291
292             /* Inner loop uses 73 flops */
293         }
294
295         if(jidx<j_index_end)
296         {
297
298             /* Get j neighbor index, and coordinate index */
299             jnrlistA         = jjnr[jidx];
300             jnrlistB         = jjnr[jidx+1];
301             jnrlistC         = jjnr[jidx+2];
302             jnrlistD         = jjnr[jidx+3];
303             /* Sign of each element will be negative for non-real atoms.
304              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
305              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
306              */
307             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
308
309             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
310             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
311             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
312
313             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
314             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
315             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
316             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
317             j_coord_offsetA  = DIM*jnrA;
318             j_coord_offsetB  = DIM*jnrB;
319             j_coord_offsetC  = DIM*jnrC;
320             j_coord_offsetD  = DIM*jnrD;
321
322             /* load j atom coordinates */
323             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
324                                                  x+j_coord_offsetC,x+j_coord_offsetD,
325                                                  &jx0,&jy0,&jz0);
326
327             /* Calculate displacement vector */
328             dx00             = _mm256_sub_pd(ix0,jx0);
329             dy00             = _mm256_sub_pd(iy0,jy0);
330             dz00             = _mm256_sub_pd(iz0,jz0);
331
332             /* Calculate squared distance and things based on it */
333             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
334
335             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
336
337             /* Load parameters for j particles */
338             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
339                                                                  charge+jnrC+0,charge+jnrD+0);
340             vdwjidx0A        = 2*vdwtype[jnrA+0];
341             vdwjidx0B        = 2*vdwtype[jnrB+0];
342             vdwjidx0C        = 2*vdwtype[jnrC+0];
343             vdwjidx0D        = 2*vdwtype[jnrD+0];
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             r00              = _mm256_mul_pd(rsq00,rinv00);
350             r00              = _mm256_andnot_pd(dummy_mask,r00);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq00             = _mm256_mul_pd(iq0,jq0);
354             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
355                                             vdwioffsetptr0+vdwjidx0B,
356                                             vdwioffsetptr0+vdwjidx0C,
357                                             vdwioffsetptr0+vdwjidx0D,
358                                             &c6_00,&c12_00);
359
360             /* Calculate table index by multiplying r with table scale and truncate to integer */
361             rt               = _mm256_mul_pd(r00,vftabscale);
362             vfitab           = _mm256_cvttpd_epi32(rt);
363             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
364             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
365
366             /* CUBIC SPLINE TABLE ELECTROSTATICS */
367             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
368             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
369             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
370             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
371             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
372             Heps             = _mm256_mul_pd(vfeps,H);
373             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
374             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
375             velec            = _mm256_mul_pd(qq00,VV);
376             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
377             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
378
379             /* CUBIC SPLINE TABLE DISPERSION */
380             vfitab           = _mm_add_epi32(vfitab,ifour);
381             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
385             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
386             Heps             = _mm256_mul_pd(vfeps,H);
387             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
388             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
389             vvdw6            = _mm256_mul_pd(c6_00,VV);
390             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
391             fvdw6            = _mm256_mul_pd(c6_00,FF);
392
393             /* CUBIC SPLINE TABLE REPULSION */
394             vfitab           = _mm_add_epi32(vfitab,ifour);
395             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
396             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
397             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
398             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
399             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
400             Heps             = _mm256_mul_pd(vfeps,H);
401             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
402             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
403             vvdw12           = _mm256_mul_pd(c12_00,VV);
404             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
405             fvdw12           = _mm256_mul_pd(c12_00,FF);
406             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
407             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm256_andnot_pd(dummy_mask,velec);
411             velecsum         = _mm256_add_pd(velecsum,velec);
412             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
413             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
414
415             fscal            = _mm256_add_pd(felec,fvdw);
416
417             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
418
419             /* Calculate temporary vectorial force */
420             tx               = _mm256_mul_pd(fscal,dx00);
421             ty               = _mm256_mul_pd(fscal,dy00);
422             tz               = _mm256_mul_pd(fscal,dz00);
423
424             /* Update vectorial force */
425             fix0             = _mm256_add_pd(fix0,tx);
426             fiy0             = _mm256_add_pd(fiy0,ty);
427             fiz0             = _mm256_add_pd(fiz0,tz);
428
429             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
430             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
431             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
432             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
433             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
434
435             /* Inner loop uses 74 flops */
436         }
437
438         /* End of innermost loop */
439
440         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
441                                                  f+i_coord_offset,fshift+i_shift_offset);
442
443         ggid                        = gid[iidx];
444         /* Update potential energies */
445         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
446         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
447
448         /* Increment number of inner iterations */
449         inneriter                  += j_index_end - j_index_start;
450
451         /* Outer loop uses 9 flops */
452     }
453
454     /* Increment number of outer iterations */
455     outeriter        += nri;
456
457     /* Update outer/inner flops */
458
459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
460 }
461 /*
462  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
463  * Electrostatics interaction: CubicSplineTable
464  * VdW interaction:            CubicSplineTable
465  * Geometry:                   Particle-Particle
466  * Calculate force/pot:        Force
467  */
468 void
469 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
470                     (t_nblist                    * gmx_restrict       nlist,
471                      rvec                        * gmx_restrict          xx,
472                      rvec                        * gmx_restrict          ff,
473                      t_forcerec                  * gmx_restrict          fr,
474                      t_mdatoms                   * gmx_restrict     mdatoms,
475                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
476                      t_nrnb                      * gmx_restrict        nrnb)
477 {
478     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
479      * just 0 for non-waters.
480      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
481      * jnr indices corresponding to data put in the four positions in the SIMD register.
482      */
483     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
484     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
485     int              jnrA,jnrB,jnrC,jnrD;
486     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
487     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
488     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
489     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
490     real             rcutoff_scalar;
491     real             *shiftvec,*fshift,*x,*f;
492     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
493     real             scratch[4*DIM];
494     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
495     real *           vdwioffsetptr0;
496     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
497     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
498     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
499     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
500     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
501     real             *charge;
502     int              nvdwtype;
503     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
504     int              *vdwtype;
505     real             *vdwparam;
506     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
507     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
508     __m128i          vfitab;
509     __m128i          ifour       = _mm_set1_epi32(4);
510     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
511     real             *vftab;
512     __m256d          dummy_mask,cutoff_mask;
513     __m128           tmpmask0,tmpmask1;
514     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
515     __m256d          one     = _mm256_set1_pd(1.0);
516     __m256d          two     = _mm256_set1_pd(2.0);
517     x                = xx[0];
518     f                = ff[0];
519
520     nri              = nlist->nri;
521     iinr             = nlist->iinr;
522     jindex           = nlist->jindex;
523     jjnr             = nlist->jjnr;
524     shiftidx         = nlist->shift;
525     gid              = nlist->gid;
526     shiftvec         = fr->shift_vec[0];
527     fshift           = fr->fshift[0];
528     facel            = _mm256_set1_pd(fr->epsfac);
529     charge           = mdatoms->chargeA;
530     nvdwtype         = fr->ntype;
531     vdwparam         = fr->nbfp;
532     vdwtype          = mdatoms->typeA;
533
534     vftab            = kernel_data->table_elec_vdw->data;
535     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
536
537     /* Avoid stupid compiler warnings */
538     jnrA = jnrB = jnrC = jnrD = 0;
539     j_coord_offsetA = 0;
540     j_coord_offsetB = 0;
541     j_coord_offsetC = 0;
542     j_coord_offsetD = 0;
543
544     outeriter        = 0;
545     inneriter        = 0;
546
547     for(iidx=0;iidx<4*DIM;iidx++)
548     {
549         scratch[iidx] = 0.0;
550     }
551
552     /* Start outer loop over neighborlists */
553     for(iidx=0; iidx<nri; iidx++)
554     {
555         /* Load shift vector for this list */
556         i_shift_offset   = DIM*shiftidx[iidx];
557
558         /* Load limits for loop over neighbors */
559         j_index_start    = jindex[iidx];
560         j_index_end      = jindex[iidx+1];
561
562         /* Get outer coordinate index */
563         inr              = iinr[iidx];
564         i_coord_offset   = DIM*inr;
565
566         /* Load i particle coords and add shift vector */
567         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
568
569         fix0             = _mm256_setzero_pd();
570         fiy0             = _mm256_setzero_pd();
571         fiz0             = _mm256_setzero_pd();
572
573         /* Load parameters for i particles */
574         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
575         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
576
577         /* Start inner kernel loop */
578         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
579         {
580
581             /* Get j neighbor index, and coordinate index */
582             jnrA             = jjnr[jidx];
583             jnrB             = jjnr[jidx+1];
584             jnrC             = jjnr[jidx+2];
585             jnrD             = jjnr[jidx+3];
586             j_coord_offsetA  = DIM*jnrA;
587             j_coord_offsetB  = DIM*jnrB;
588             j_coord_offsetC  = DIM*jnrC;
589             j_coord_offsetD  = DIM*jnrD;
590
591             /* load j atom coordinates */
592             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
593                                                  x+j_coord_offsetC,x+j_coord_offsetD,
594                                                  &jx0,&jy0,&jz0);
595
596             /* Calculate displacement vector */
597             dx00             = _mm256_sub_pd(ix0,jx0);
598             dy00             = _mm256_sub_pd(iy0,jy0);
599             dz00             = _mm256_sub_pd(iz0,jz0);
600
601             /* Calculate squared distance and things based on it */
602             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
603
604             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
605
606             /* Load parameters for j particles */
607             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
608                                                                  charge+jnrC+0,charge+jnrD+0);
609             vdwjidx0A        = 2*vdwtype[jnrA+0];
610             vdwjidx0B        = 2*vdwtype[jnrB+0];
611             vdwjidx0C        = 2*vdwtype[jnrC+0];
612             vdwjidx0D        = 2*vdwtype[jnrD+0];
613
614             /**************************
615              * CALCULATE INTERACTIONS *
616              **************************/
617
618             r00              = _mm256_mul_pd(rsq00,rinv00);
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq00             = _mm256_mul_pd(iq0,jq0);
622             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
623                                             vdwioffsetptr0+vdwjidx0B,
624                                             vdwioffsetptr0+vdwjidx0C,
625                                             vdwioffsetptr0+vdwjidx0D,
626                                             &c6_00,&c12_00);
627
628             /* Calculate table index by multiplying r with table scale and truncate to integer */
629             rt               = _mm256_mul_pd(r00,vftabscale);
630             vfitab           = _mm256_cvttpd_epi32(rt);
631             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
632             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
633
634             /* CUBIC SPLINE TABLE ELECTROSTATICS */
635             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
636             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
637             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
638             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
639             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
640             Heps             = _mm256_mul_pd(vfeps,H);
641             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
642             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
643             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
644
645             /* CUBIC SPLINE TABLE DISPERSION */
646             vfitab           = _mm_add_epi32(vfitab,ifour);
647             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
648             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
649             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
650             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
651             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
652             Heps             = _mm256_mul_pd(vfeps,H);
653             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
654             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
655             fvdw6            = _mm256_mul_pd(c6_00,FF);
656
657             /* CUBIC SPLINE TABLE REPULSION */
658             vfitab           = _mm_add_epi32(vfitab,ifour);
659             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
660             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
661             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
662             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
663             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
664             Heps             = _mm256_mul_pd(vfeps,H);
665             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
666             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
667             fvdw12           = _mm256_mul_pd(c12_00,FF);
668             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
669
670             fscal            = _mm256_add_pd(felec,fvdw);
671
672             /* Calculate temporary vectorial force */
673             tx               = _mm256_mul_pd(fscal,dx00);
674             ty               = _mm256_mul_pd(fscal,dy00);
675             tz               = _mm256_mul_pd(fscal,dz00);
676
677             /* Update vectorial force */
678             fix0             = _mm256_add_pd(fix0,tx);
679             fiy0             = _mm256_add_pd(fiy0,ty);
680             fiz0             = _mm256_add_pd(fiz0,tz);
681
682             fjptrA             = f+j_coord_offsetA;
683             fjptrB             = f+j_coord_offsetB;
684             fjptrC             = f+j_coord_offsetC;
685             fjptrD             = f+j_coord_offsetD;
686             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
687
688             /* Inner loop uses 61 flops */
689         }
690
691         if(jidx<j_index_end)
692         {
693
694             /* Get j neighbor index, and coordinate index */
695             jnrlistA         = jjnr[jidx];
696             jnrlistB         = jjnr[jidx+1];
697             jnrlistC         = jjnr[jidx+2];
698             jnrlistD         = jjnr[jidx+3];
699             /* Sign of each element will be negative for non-real atoms.
700              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
701              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
702              */
703             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
704
705             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
706             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
707             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
708
709             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
710             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
711             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
712             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
713             j_coord_offsetA  = DIM*jnrA;
714             j_coord_offsetB  = DIM*jnrB;
715             j_coord_offsetC  = DIM*jnrC;
716             j_coord_offsetD  = DIM*jnrD;
717
718             /* load j atom coordinates */
719             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
720                                                  x+j_coord_offsetC,x+j_coord_offsetD,
721                                                  &jx0,&jy0,&jz0);
722
723             /* Calculate displacement vector */
724             dx00             = _mm256_sub_pd(ix0,jx0);
725             dy00             = _mm256_sub_pd(iy0,jy0);
726             dz00             = _mm256_sub_pd(iz0,jz0);
727
728             /* Calculate squared distance and things based on it */
729             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
730
731             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
732
733             /* Load parameters for j particles */
734             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
735                                                                  charge+jnrC+0,charge+jnrD+0);
736             vdwjidx0A        = 2*vdwtype[jnrA+0];
737             vdwjidx0B        = 2*vdwtype[jnrB+0];
738             vdwjidx0C        = 2*vdwtype[jnrC+0];
739             vdwjidx0D        = 2*vdwtype[jnrD+0];
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             r00              = _mm256_mul_pd(rsq00,rinv00);
746             r00              = _mm256_andnot_pd(dummy_mask,r00);
747
748             /* Compute parameters for interactions between i and j atoms */
749             qq00             = _mm256_mul_pd(iq0,jq0);
750             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
751                                             vdwioffsetptr0+vdwjidx0B,
752                                             vdwioffsetptr0+vdwjidx0C,
753                                             vdwioffsetptr0+vdwjidx0D,
754                                             &c6_00,&c12_00);
755
756             /* Calculate table index by multiplying r with table scale and truncate to integer */
757             rt               = _mm256_mul_pd(r00,vftabscale);
758             vfitab           = _mm256_cvttpd_epi32(rt);
759             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
760             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
761
762             /* CUBIC SPLINE TABLE ELECTROSTATICS */
763             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
764             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
765             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
766             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
767             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
768             Heps             = _mm256_mul_pd(vfeps,H);
769             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
770             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
771             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
772
773             /* CUBIC SPLINE TABLE DISPERSION */
774             vfitab           = _mm_add_epi32(vfitab,ifour);
775             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
776             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
777             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
778             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
779             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
780             Heps             = _mm256_mul_pd(vfeps,H);
781             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
782             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
783             fvdw6            = _mm256_mul_pd(c6_00,FF);
784
785             /* CUBIC SPLINE TABLE REPULSION */
786             vfitab           = _mm_add_epi32(vfitab,ifour);
787             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
788             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
789             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
790             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
791             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
792             Heps             = _mm256_mul_pd(vfeps,H);
793             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
794             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
795             fvdw12           = _mm256_mul_pd(c12_00,FF);
796             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
797
798             fscal            = _mm256_add_pd(felec,fvdw);
799
800             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm256_mul_pd(fscal,dx00);
804             ty               = _mm256_mul_pd(fscal,dy00);
805             tz               = _mm256_mul_pd(fscal,dz00);
806
807             /* Update vectorial force */
808             fix0             = _mm256_add_pd(fix0,tx);
809             fiy0             = _mm256_add_pd(fiy0,ty);
810             fiz0             = _mm256_add_pd(fiz0,tz);
811
812             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
813             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
814             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
815             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
816             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
817
818             /* Inner loop uses 62 flops */
819         }
820
821         /* End of innermost loop */
822
823         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
824                                                  f+i_coord_offset,fshift+i_shift_offset);
825
826         /* Increment number of inner iterations */
827         inneriter                  += j_index_end - j_index_start;
828
829         /* Outer loop uses 7 flops */
830     }
831
832     /* Increment number of outer iterations */
833     outeriter        += nri;
834
835     /* Update outer/inner flops */
836
837     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
838 }