Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: CubicSplineTable
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          vfitab;
100     __m128i          ifour       = _mm_set1_epi32(4);
101     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
102     real             *vftab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     vftab            = kernel_data->table_elec_vdw->data;
126     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm256_setzero_pd();
161         fiy0             = _mm256_setzero_pd();
162         fiz0             = _mm256_setzero_pd();
163
164         /* Load parameters for i particles */
165         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
166         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170         vvdwsum          = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_pd(ix0,jx0);
193             dy00             = _mm256_sub_pd(iy0,jy0);
194             dz00             = _mm256_sub_pd(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
203                                                                  charge+jnrC+0,charge+jnrD+0);
204             vdwjidx0A        = 2*vdwtype[jnrA+0];
205             vdwjidx0B        = 2*vdwtype[jnrB+0];
206             vdwjidx0C        = 2*vdwtype[jnrC+0];
207             vdwjidx0D        = 2*vdwtype[jnrD+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             r00              = _mm256_mul_pd(rsq00,rinv00);
214
215             /* Compute parameters for interactions between i and j atoms */
216             qq00             = _mm256_mul_pd(iq0,jq0);
217             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
218                                             vdwioffsetptr0+vdwjidx0B,
219                                             vdwioffsetptr0+vdwjidx0C,
220                                             vdwioffsetptr0+vdwjidx0D,
221                                             &c6_00,&c12_00);
222
223             /* Calculate table index by multiplying r with table scale and truncate to integer */
224             rt               = _mm256_mul_pd(r00,vftabscale);
225             vfitab           = _mm256_cvttpd_epi32(rt);
226             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
227             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
228
229             /* CUBIC SPLINE TABLE ELECTROSTATICS */
230             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
231             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
232             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
233             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
234             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
235             Heps             = _mm256_mul_pd(vfeps,H);
236             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
237             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
238             velec            = _mm256_mul_pd(qq00,VV);
239             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
240             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
241
242             /* CUBIC SPLINE TABLE DISPERSION */
243             vfitab           = _mm_add_epi32(vfitab,ifour);
244             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
245             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
246             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
247             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
248             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
249             Heps             = _mm256_mul_pd(vfeps,H);
250             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
251             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
252             vvdw6            = _mm256_mul_pd(c6_00,VV);
253             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
254             fvdw6            = _mm256_mul_pd(c6_00,FF);
255
256             /* CUBIC SPLINE TABLE REPULSION */
257             vfitab           = _mm_add_epi32(vfitab,ifour);
258             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
262             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
263             Heps             = _mm256_mul_pd(vfeps,H);
264             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
265             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
266             vvdw12           = _mm256_mul_pd(c12_00,VV);
267             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
268             fvdw12           = _mm256_mul_pd(c12_00,FF);
269             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
270             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
271
272             /* Update potential sum for this i atom from the interaction with this j atom. */
273             velecsum         = _mm256_add_pd(velecsum,velec);
274             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
275
276             fscal            = _mm256_add_pd(felec,fvdw);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_pd(fscal,dx00);
280             ty               = _mm256_mul_pd(fscal,dy00);
281             tz               = _mm256_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_pd(fix0,tx);
285             fiy0             = _mm256_add_pd(fiy0,ty);
286             fiz0             = _mm256_add_pd(fiz0,tz);
287
288             fjptrA             = f+j_coord_offsetA;
289             fjptrB             = f+j_coord_offsetB;
290             fjptrC             = f+j_coord_offsetC;
291             fjptrD             = f+j_coord_offsetD;
292             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
293
294             /* Inner loop uses 73 flops */
295         }
296
297         if(jidx<j_index_end)
298         {
299
300             /* Get j neighbor index, and coordinate index */
301             jnrlistA         = jjnr[jidx];
302             jnrlistB         = jjnr[jidx+1];
303             jnrlistC         = jjnr[jidx+2];
304             jnrlistD         = jjnr[jidx+3];
305             /* Sign of each element will be negative for non-real atoms.
306              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
307              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
308              */
309             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
310
311             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
312             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
313             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
314
315             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
316             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
317             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
318             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
319             j_coord_offsetA  = DIM*jnrA;
320             j_coord_offsetB  = DIM*jnrB;
321             j_coord_offsetC  = DIM*jnrC;
322             j_coord_offsetD  = DIM*jnrD;
323
324             /* load j atom coordinates */
325             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
326                                                  x+j_coord_offsetC,x+j_coord_offsetD,
327                                                  &jx0,&jy0,&jz0);
328
329             /* Calculate displacement vector */
330             dx00             = _mm256_sub_pd(ix0,jx0);
331             dy00             = _mm256_sub_pd(iy0,jy0);
332             dz00             = _mm256_sub_pd(iz0,jz0);
333
334             /* Calculate squared distance and things based on it */
335             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
336
337             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
338
339             /* Load parameters for j particles */
340             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
341                                                                  charge+jnrC+0,charge+jnrD+0);
342             vdwjidx0A        = 2*vdwtype[jnrA+0];
343             vdwjidx0B        = 2*vdwtype[jnrB+0];
344             vdwjidx0C        = 2*vdwtype[jnrC+0];
345             vdwjidx0D        = 2*vdwtype[jnrD+0];
346
347             /**************************
348              * CALCULATE INTERACTIONS *
349              **************************/
350
351             r00              = _mm256_mul_pd(rsq00,rinv00);
352             r00              = _mm256_andnot_pd(dummy_mask,r00);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq00             = _mm256_mul_pd(iq0,jq0);
356             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
357                                             vdwioffsetptr0+vdwjidx0B,
358                                             vdwioffsetptr0+vdwjidx0C,
359                                             vdwioffsetptr0+vdwjidx0D,
360                                             &c6_00,&c12_00);
361
362             /* Calculate table index by multiplying r with table scale and truncate to integer */
363             rt               = _mm256_mul_pd(r00,vftabscale);
364             vfitab           = _mm256_cvttpd_epi32(rt);
365             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
366             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
367
368             /* CUBIC SPLINE TABLE ELECTROSTATICS */
369             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
370             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
371             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
372             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
373             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
374             Heps             = _mm256_mul_pd(vfeps,H);
375             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
376             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
377             velec            = _mm256_mul_pd(qq00,VV);
378             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
379             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
380
381             /* CUBIC SPLINE TABLE DISPERSION */
382             vfitab           = _mm_add_epi32(vfitab,ifour);
383             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
384             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
385             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
386             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
387             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
388             Heps             = _mm256_mul_pd(vfeps,H);
389             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
390             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
391             vvdw6            = _mm256_mul_pd(c6_00,VV);
392             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
393             fvdw6            = _mm256_mul_pd(c6_00,FF);
394
395             /* CUBIC SPLINE TABLE REPULSION */
396             vfitab           = _mm_add_epi32(vfitab,ifour);
397             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
398             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
399             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
400             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
401             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
402             Heps             = _mm256_mul_pd(vfeps,H);
403             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
404             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
405             vvdw12           = _mm256_mul_pd(c12_00,VV);
406             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
407             fvdw12           = _mm256_mul_pd(c12_00,FF);
408             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
409             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velec            = _mm256_andnot_pd(dummy_mask,velec);
413             velecsum         = _mm256_add_pd(velecsum,velec);
414             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
415             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
416
417             fscal            = _mm256_add_pd(felec,fvdw);
418
419             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
420
421             /* Calculate temporary vectorial force */
422             tx               = _mm256_mul_pd(fscal,dx00);
423             ty               = _mm256_mul_pd(fscal,dy00);
424             tz               = _mm256_mul_pd(fscal,dz00);
425
426             /* Update vectorial force */
427             fix0             = _mm256_add_pd(fix0,tx);
428             fiy0             = _mm256_add_pd(fiy0,ty);
429             fiz0             = _mm256_add_pd(fiz0,tz);
430
431             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
432             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
433             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
434             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
435             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
436
437             /* Inner loop uses 74 flops */
438         }
439
440         /* End of innermost loop */
441
442         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
443                                                  f+i_coord_offset,fshift+i_shift_offset);
444
445         ggid                        = gid[iidx];
446         /* Update potential energies */
447         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
448         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
449
450         /* Increment number of inner iterations */
451         inneriter                  += j_index_end - j_index_start;
452
453         /* Outer loop uses 9 flops */
454     }
455
456     /* Increment number of outer iterations */
457     outeriter        += nri;
458
459     /* Update outer/inner flops */
460
461     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
462 }
463 /*
464  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
465  * Electrostatics interaction: CubicSplineTable
466  * VdW interaction:            CubicSplineTable
467  * Geometry:                   Particle-Particle
468  * Calculate force/pot:        Force
469  */
470 void
471 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
472                     (t_nblist                    * gmx_restrict       nlist,
473                      rvec                        * gmx_restrict          xx,
474                      rvec                        * gmx_restrict          ff,
475                      t_forcerec                  * gmx_restrict          fr,
476                      t_mdatoms                   * gmx_restrict     mdatoms,
477                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
478                      t_nrnb                      * gmx_restrict        nrnb)
479 {
480     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
481      * just 0 for non-waters.
482      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
483      * jnr indices corresponding to data put in the four positions in the SIMD register.
484      */
485     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
486     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
487     int              jnrA,jnrB,jnrC,jnrD;
488     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
489     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
490     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
491     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
492     real             rcutoff_scalar;
493     real             *shiftvec,*fshift,*x,*f;
494     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
495     real             scratch[4*DIM];
496     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
497     real *           vdwioffsetptr0;
498     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
499     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
500     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
501     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
502     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
503     real             *charge;
504     int              nvdwtype;
505     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
506     int              *vdwtype;
507     real             *vdwparam;
508     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
509     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
510     __m128i          vfitab;
511     __m128i          ifour       = _mm_set1_epi32(4);
512     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
513     real             *vftab;
514     __m256d          dummy_mask,cutoff_mask;
515     __m128           tmpmask0,tmpmask1;
516     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
517     __m256d          one     = _mm256_set1_pd(1.0);
518     __m256d          two     = _mm256_set1_pd(2.0);
519     x                = xx[0];
520     f                = ff[0];
521
522     nri              = nlist->nri;
523     iinr             = nlist->iinr;
524     jindex           = nlist->jindex;
525     jjnr             = nlist->jjnr;
526     shiftidx         = nlist->shift;
527     gid              = nlist->gid;
528     shiftvec         = fr->shift_vec[0];
529     fshift           = fr->fshift[0];
530     facel            = _mm256_set1_pd(fr->epsfac);
531     charge           = mdatoms->chargeA;
532     nvdwtype         = fr->ntype;
533     vdwparam         = fr->nbfp;
534     vdwtype          = mdatoms->typeA;
535
536     vftab            = kernel_data->table_elec_vdw->data;
537     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
538
539     /* Avoid stupid compiler warnings */
540     jnrA = jnrB = jnrC = jnrD = 0;
541     j_coord_offsetA = 0;
542     j_coord_offsetB = 0;
543     j_coord_offsetC = 0;
544     j_coord_offsetD = 0;
545
546     outeriter        = 0;
547     inneriter        = 0;
548
549     for(iidx=0;iidx<4*DIM;iidx++)
550     {
551         scratch[iidx] = 0.0;
552     }
553
554     /* Start outer loop over neighborlists */
555     for(iidx=0; iidx<nri; iidx++)
556     {
557         /* Load shift vector for this list */
558         i_shift_offset   = DIM*shiftidx[iidx];
559
560         /* Load limits for loop over neighbors */
561         j_index_start    = jindex[iidx];
562         j_index_end      = jindex[iidx+1];
563
564         /* Get outer coordinate index */
565         inr              = iinr[iidx];
566         i_coord_offset   = DIM*inr;
567
568         /* Load i particle coords and add shift vector */
569         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
570
571         fix0             = _mm256_setzero_pd();
572         fiy0             = _mm256_setzero_pd();
573         fiz0             = _mm256_setzero_pd();
574
575         /* Load parameters for i particles */
576         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
577         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
578
579         /* Start inner kernel loop */
580         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
581         {
582
583             /* Get j neighbor index, and coordinate index */
584             jnrA             = jjnr[jidx];
585             jnrB             = jjnr[jidx+1];
586             jnrC             = jjnr[jidx+2];
587             jnrD             = jjnr[jidx+3];
588             j_coord_offsetA  = DIM*jnrA;
589             j_coord_offsetB  = DIM*jnrB;
590             j_coord_offsetC  = DIM*jnrC;
591             j_coord_offsetD  = DIM*jnrD;
592
593             /* load j atom coordinates */
594             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
595                                                  x+j_coord_offsetC,x+j_coord_offsetD,
596                                                  &jx0,&jy0,&jz0);
597
598             /* Calculate displacement vector */
599             dx00             = _mm256_sub_pd(ix0,jx0);
600             dy00             = _mm256_sub_pd(iy0,jy0);
601             dz00             = _mm256_sub_pd(iz0,jz0);
602
603             /* Calculate squared distance and things based on it */
604             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
605
606             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
607
608             /* Load parameters for j particles */
609             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
610                                                                  charge+jnrC+0,charge+jnrD+0);
611             vdwjidx0A        = 2*vdwtype[jnrA+0];
612             vdwjidx0B        = 2*vdwtype[jnrB+0];
613             vdwjidx0C        = 2*vdwtype[jnrC+0];
614             vdwjidx0D        = 2*vdwtype[jnrD+0];
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             r00              = _mm256_mul_pd(rsq00,rinv00);
621
622             /* Compute parameters for interactions between i and j atoms */
623             qq00             = _mm256_mul_pd(iq0,jq0);
624             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
625                                             vdwioffsetptr0+vdwjidx0B,
626                                             vdwioffsetptr0+vdwjidx0C,
627                                             vdwioffsetptr0+vdwjidx0D,
628                                             &c6_00,&c12_00);
629
630             /* Calculate table index by multiplying r with table scale and truncate to integer */
631             rt               = _mm256_mul_pd(r00,vftabscale);
632             vfitab           = _mm256_cvttpd_epi32(rt);
633             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
634             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
635
636             /* CUBIC SPLINE TABLE ELECTROSTATICS */
637             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
638             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
639             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
640             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
641             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
642             Heps             = _mm256_mul_pd(vfeps,H);
643             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
644             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
645             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
646
647             /* CUBIC SPLINE TABLE DISPERSION */
648             vfitab           = _mm_add_epi32(vfitab,ifour);
649             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
650             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
651             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
652             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
653             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
654             Heps             = _mm256_mul_pd(vfeps,H);
655             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
656             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
657             fvdw6            = _mm256_mul_pd(c6_00,FF);
658
659             /* CUBIC SPLINE TABLE REPULSION */
660             vfitab           = _mm_add_epi32(vfitab,ifour);
661             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
662             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
663             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
664             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
665             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
666             Heps             = _mm256_mul_pd(vfeps,H);
667             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
668             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
669             fvdw12           = _mm256_mul_pd(c12_00,FF);
670             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
671
672             fscal            = _mm256_add_pd(felec,fvdw);
673
674             /* Calculate temporary vectorial force */
675             tx               = _mm256_mul_pd(fscal,dx00);
676             ty               = _mm256_mul_pd(fscal,dy00);
677             tz               = _mm256_mul_pd(fscal,dz00);
678
679             /* Update vectorial force */
680             fix0             = _mm256_add_pd(fix0,tx);
681             fiy0             = _mm256_add_pd(fiy0,ty);
682             fiz0             = _mm256_add_pd(fiz0,tz);
683
684             fjptrA             = f+j_coord_offsetA;
685             fjptrB             = f+j_coord_offsetB;
686             fjptrC             = f+j_coord_offsetC;
687             fjptrD             = f+j_coord_offsetD;
688             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
689
690             /* Inner loop uses 61 flops */
691         }
692
693         if(jidx<j_index_end)
694         {
695
696             /* Get j neighbor index, and coordinate index */
697             jnrlistA         = jjnr[jidx];
698             jnrlistB         = jjnr[jidx+1];
699             jnrlistC         = jjnr[jidx+2];
700             jnrlistD         = jjnr[jidx+3];
701             /* Sign of each element will be negative for non-real atoms.
702              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
703              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
704              */
705             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
706
707             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
708             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
709             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
710
711             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
712             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
713             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
714             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
715             j_coord_offsetA  = DIM*jnrA;
716             j_coord_offsetB  = DIM*jnrB;
717             j_coord_offsetC  = DIM*jnrC;
718             j_coord_offsetD  = DIM*jnrD;
719
720             /* load j atom coordinates */
721             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
722                                                  x+j_coord_offsetC,x+j_coord_offsetD,
723                                                  &jx0,&jy0,&jz0);
724
725             /* Calculate displacement vector */
726             dx00             = _mm256_sub_pd(ix0,jx0);
727             dy00             = _mm256_sub_pd(iy0,jy0);
728             dz00             = _mm256_sub_pd(iz0,jz0);
729
730             /* Calculate squared distance and things based on it */
731             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
732
733             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
734
735             /* Load parameters for j particles */
736             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
737                                                                  charge+jnrC+0,charge+jnrD+0);
738             vdwjidx0A        = 2*vdwtype[jnrA+0];
739             vdwjidx0B        = 2*vdwtype[jnrB+0];
740             vdwjidx0C        = 2*vdwtype[jnrC+0];
741             vdwjidx0D        = 2*vdwtype[jnrD+0];
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             r00              = _mm256_mul_pd(rsq00,rinv00);
748             r00              = _mm256_andnot_pd(dummy_mask,r00);
749
750             /* Compute parameters for interactions between i and j atoms */
751             qq00             = _mm256_mul_pd(iq0,jq0);
752             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
753                                             vdwioffsetptr0+vdwjidx0B,
754                                             vdwioffsetptr0+vdwjidx0C,
755                                             vdwioffsetptr0+vdwjidx0D,
756                                             &c6_00,&c12_00);
757
758             /* Calculate table index by multiplying r with table scale and truncate to integer */
759             rt               = _mm256_mul_pd(r00,vftabscale);
760             vfitab           = _mm256_cvttpd_epi32(rt);
761             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
762             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
763
764             /* CUBIC SPLINE TABLE ELECTROSTATICS */
765             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
766             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
767             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
768             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
769             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
770             Heps             = _mm256_mul_pd(vfeps,H);
771             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
772             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
773             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
774
775             /* CUBIC SPLINE TABLE DISPERSION */
776             vfitab           = _mm_add_epi32(vfitab,ifour);
777             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
778             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
779             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
780             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
781             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
782             Heps             = _mm256_mul_pd(vfeps,H);
783             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
784             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
785             fvdw6            = _mm256_mul_pd(c6_00,FF);
786
787             /* CUBIC SPLINE TABLE REPULSION */
788             vfitab           = _mm_add_epi32(vfitab,ifour);
789             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
790             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
791             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
792             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
793             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
794             Heps             = _mm256_mul_pd(vfeps,H);
795             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
796             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
797             fvdw12           = _mm256_mul_pd(c12_00,FF);
798             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
799
800             fscal            = _mm256_add_pd(felec,fvdw);
801
802             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
803
804             /* Calculate temporary vectorial force */
805             tx               = _mm256_mul_pd(fscal,dx00);
806             ty               = _mm256_mul_pd(fscal,dy00);
807             tz               = _mm256_mul_pd(fscal,dz00);
808
809             /* Update vectorial force */
810             fix0             = _mm256_add_pd(fix0,tx);
811             fiy0             = _mm256_add_pd(fiy0,ty);
812             fiz0             = _mm256_add_pd(fiz0,tz);
813
814             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
815             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
816             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
817             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
818             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
819
820             /* Inner loop uses 62 flops */
821         }
822
823         /* End of innermost loop */
824
825         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
826                                                  f+i_coord_offset,fshift+i_shift_offset);
827
828         /* Increment number of inner iterations */
829         inneriter                  += j_index_end - j_index_start;
830
831         /* Outer loop uses 7 flops */
832     }
833
834     /* Increment number of outer iterations */
835     outeriter        += nri;
836
837     /* Update outer/inner flops */
838
839     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
840 }