fc3469af5e95d1a4e21319cc7793656af1437b75
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_template_avx_128_fma_single.pre
1 /* #if 0 */
2 /*
3  * This file is part of the GROMACS molecular simulation package.
4  *
5  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36 #error This file must be processed with the Gromacs pre-preprocessor
37 /* #endif */
38 /* #if INCLUDE_HEADER */
39 #include "gmxpre.h"
40
41 #include "config.h"
42
43 #include <math.h>
44
45 #include "../nb_kernel.h"
46 #include "gromacs/gmxlib/nrnb.h"
47
48 #include "kernelutil_x86_avx_128_fma_single.h"
49 /* #endif */
50
51 /* ## List of variables set by the generating script:                                    */
52 /* ##                                                                                    */
53 /* ## Setttings that apply to the entire kernel:                                         */
54 /* ## KERNEL_ELEC:           String, choice for electrostatic interactions               */
55 /* ## KERNEL_VDW:            String, choice for van der Waals interactions               */
56 /* ## KERNEL_NAME:           String, name of this kernel                                 */
57 /* ## KERNEL_VF:             String telling if we calculate potential, force, or both    */
58 /* ## GEOMETRY_I/GEOMETRY_J: String, name of each geometry, e.g. 'Water3' or '1Particle' */
59 /* ##                                                                                    */
60 /* ## Setttings that apply to particles in the outer (I) or inner (J) loops:             */
61 /* ## PARTICLES_I[]/         Arrays with lists of i/j particles to use in kernel. It is  */
62 /* ## PARTICLES_J[]:         just [0] for particle geometry, but can be longer for water */
63 /* ## PARTICLES_ELEC_I[]/    Arrays with lists of i/j particle that have electrostatics  */
64 /* ## PARTICLES_ELEC_J[]:    interactions that should be calculated in this kernel.      */
65 /* ## PARTICLES_VDW_I[]/     Arrays with the list of i/j particle that have VdW          */
66 /* ## PARTICLES_VDW_J[]:     interactions that should be calculated in this kernel.      */
67 /* ##                                                                                    */
68 /* ## Setttings for pairs of interactions (e.g. 2nd i particle against 1st j particle)   */
69 /* ## PAIRS_IJ[]:            Array with (i,j) tuples of pairs for which interactions     */
70 /* ##                        should be calculated in this kernel. Zero-charge particles  */
71 /* ##                        do not have interactions with particles without vdw, and    */
72 /* ##                        Vdw-only interactions are not evaluated in a no-vdw-kernel. */
73 /* ## INTERACTION_FLAGS[][]: 2D matrix, dimension e.g. 3*3 for water-water interactions. */
74 /* ##                        For each i-j pair, the element [I][J] is a list of strings  */
75 /* ##                        defining properties/flags of this interaction. Examples     */
76 /* ##                        include 'electrostatics'/'vdw' if that type of interaction  */
77 /* ##                        should be evaluated, 'rsq'/'rinv'/'rinvsq' if those values  */
78 /* ##                        are needed, and 'exactcutoff' or 'shift','switch' to        */
79 /* ##                        decide if the force/potential should be modified. This way  */
80 /* ##                        we only calculate values absolutely needed for each case.   */
81
82 /* ## Calculate the size and offset for (merged/interleaved) table data */
83
84 /*
85  * Gromacs nonbonded kernel:   {KERNEL_NAME}
86  * Electrostatics interaction: {KERNEL_ELEC}
87  * VdW interaction:            {KERNEL_VDW}
88  * Geometry:                   {GEOMETRY_I}-{GEOMETRY_J}
89  * Calculate force/pot:        {KERNEL_VF}
90  */
91 void
92 {KERNEL_NAME}
93                     (t_nblist                    * gmx_restrict       nlist,
94                      rvec                        * gmx_restrict          xx,
95                      rvec                        * gmx_restrict          ff,
96                      struct t_forcerec           * gmx_restrict          fr,
97                      t_mdatoms                   * gmx_restrict     mdatoms,
98                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
99                      t_nrnb                      * gmx_restrict        nrnb)
100 {
101     /* ## Not all variables are used for all kernels, but any optimizing compiler fixes that, */
102     /* ## so there is no point in going to extremes to exclude variables that are not needed. */
103     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
104      * just 0 for non-waters.
105      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
106      * jnr indices corresponding to data put in the four positions in the SIMD register.
107      */
108     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
109     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
110     int              jnrA,jnrB,jnrC,jnrD;
111     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
112     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
113     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
114     real             rcutoff_scalar;
115     real             *shiftvec,*fshift,*x,*f;
116     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
117     real             scratch[4*DIM];
118     __m128           fscal,rcutoff,rcutoff2,jidxall;
119     /* #for I in PARTICLES_I */
120     int              vdwioffset{I};
121     __m128           ix{I},iy{I},iz{I},fix{I},fiy{I},fiz{I},iq{I},isai{I};
122     /* #endfor */
123     /* #for J in PARTICLES_J */
124     int              vdwjidx{J}A,vdwjidx{J}B,vdwjidx{J}C,vdwjidx{J}D;
125     __m128           jx{J},jy{J},jz{J},fjx{J},fjy{J},fjz{J},jq{J},isaj{J};
126     /* #endfor */
127     /* #for I,J in PAIRS_IJ */
128     __m128           dx{I}{J},dy{I}{J},dz{I}{J},rsq{I}{J},rinv{I}{J},rinvsq{I}{J},r{I}{J},qq{I}{J},c6_{I}{J},c12_{I}{J};
129     /* #endfor */
130     /* #if KERNEL_ELEC != 'None' */
131     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
132     real             *charge;
133     /* #endif */
134     /* #if 'GeneralizedBorn' in KERNEL_ELEC */
135     __m128i          gbitab;
136     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
137     __m128           minushalf = _mm_set1_ps(-0.5);
138     real             *invsqrta,*dvda,*gbtab;
139     /* #endif */
140     /* #if KERNEL_VDW != 'None' */
141     int              nvdwtype;
142     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
143     int              *vdwtype;
144     real             *vdwparam;
145     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
146     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
147     /* #endif */
148     /* #if 'Table' in KERNEL_ELEC or 'GeneralizedBorn' in KERNEL_ELEC or 'Table' in KERNEL_VDW */
149     __m128i          vfitab;
150     __m128i          ifour       = _mm_set1_epi32(4);
151     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
152     real             *vftab;
153     /* #endif */
154     /* #if 'LJEwald' in KERNEL_VDW */
155     /* #for I,J in PAIRS_IJ */
156     __m128           c6grid_{I}{J};
157     /* #endfor */
158     real             *vdwgridparam;
159     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
160     __m128           one_half = _mm_set1_ps(0.5);
161     __m128           minus_one = _mm_set1_ps(-1.0);
162     /* #endif */
163     /* #if 'Ewald' in KERNEL_ELEC */
164     __m128i          ewitab;
165     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
166     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
167     real             *ewtab;
168     /* #endif */
169     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
170     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
171     real             rswitch_scalar,d_scalar;
172     /* #endif */
173     __m128           dummy_mask,cutoff_mask;
174     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
175     __m128           one     = _mm_set1_ps(1.0);
176     __m128           two     = _mm_set1_ps(2.0);
177     x                = xx[0];
178     f                = ff[0];
179
180     nri              = nlist->nri;
181     iinr             = nlist->iinr;
182     jindex           = nlist->jindex;
183     jjnr             = nlist->jjnr;
184     shiftidx         = nlist->shift;
185     gid              = nlist->gid;
186     shiftvec         = fr->shift_vec[0];
187     fshift           = fr->fshift[0];
188     /* #if KERNEL_ELEC != 'None' */
189     facel            = _mm_set1_ps(fr->ic->epsfac);
190     charge           = mdatoms->chargeA;
191     /*     #if 'ReactionField' in KERNEL_ELEC */
192     krf              = _mm_set1_ps(fr->ic->k_rf);
193     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
194     crf              = _mm_set1_ps(fr->ic->c_rf);
195     /*     #endif */
196     /* #endif */
197     /* #if KERNEL_VDW != 'None' */
198     nvdwtype         = fr->ntype;
199     vdwparam         = fr->nbfp;
200     vdwtype          = mdatoms->typeA;
201     /* #endif */
202     /* #if 'LJEwald' in KERNEL_VDW */
203     vdwgridparam     = fr->ljpme_c6grid;
204     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
205     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
206     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
207     /* #endif */
208
209     /* #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW */
210     vftab            = kernel_data->table_elec_vdw->data;
211     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
212     /* #elif 'Table' in KERNEL_ELEC */
213     vftab            = kernel_data->table_elec->data;
214     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
215     /* #elif 'Table' in KERNEL_VDW */
216     vftab            = kernel_data->table_vdw->data;
217     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
218     /* #endif */
219
220     /* #if 'Ewald' in KERNEL_ELEC */
221     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
222     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
223     beta2            = _mm_mul_ps(beta,beta);
224     beta3            = _mm_mul_ps(beta,beta2);
225     /*     #if KERNEL_VF=='Force' and KERNEL_MOD_ELEC!='PotentialSwitch' */
226     ewtab            = fr->ic->tabq_coul_F;
227     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
228     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
229     /*     #else */
230     ewtab            = fr->ic->tabq_coul_FDV0;
231     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
232     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
233      /*     #endif */
234     /* #endif */
235
236     /* #if KERNEL_ELEC=='GeneralizedBorn' */
237     invsqrta         = fr->invsqrta;
238     dvda             = fr->dvda;
239     gbtabscale       = _mm_set1_ps(fr->gbtab->scale);
240     gbtab            = fr->gbtab->data;
241     gbinvepsdiff     = _mm_set1_ps((1.0/fr->ic->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
242     /* #endif */
243
244     /* #if 'Water' in GEOMETRY_I */
245     /* Setup water-specific parameters */
246     inr              = nlist->iinr[0];
247     /*     #for I in PARTICLES_ELEC_I */
248     iq{I}              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+{I}]));
249     /*     #endfor */
250     /*     #for I in PARTICLES_VDW_I */
251     vdwioffset{I}      = 2*nvdwtype*vdwtype[inr+{I}];
252     /*     #endfor */
253     /* #endif */
254
255     /* #if 'Water' in GEOMETRY_J */
256     /*     #for J in PARTICLES_ELEC_J */
257     jq{J}              = _mm_set1_ps(charge[inr+{J}]);
258     /*     #endfor */
259     /*     #for J in PARTICLES_VDW_J */
260     vdwjidx{J}A        = 2*vdwtype[inr+{J}];
261     /*     #endfor */
262     /*     #for I,J in PAIRS_IJ */
263     /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
264     qq{I}{J}             = _mm_mul_ps(iq{I},jq{J});
265     /*         #endif */
266     /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
267     /*             #if 'LJEwald' in KERNEL_VDW */
268     c6_{I}{J}            = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A]);
269     c12_{I}{J}           = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A+1]);
270     c6grid_{I}{J}        = _mm_set1_ps(vdwgridparam[vdwioffset{I}+vdwjidx{J}A]);
271     /*             #else */
272     c6_{I}{J}            = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A]);
273     c12_{I}{J}           = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A+1]);
274     /*             #endif */
275     /*         #endif */
276     /*     #endfor */
277     /* #endif */
278
279     /* #if KERNEL_MOD_ELEC!='None' or KERNEL_MOD_VDW!='None' */
280     /*     #if KERNEL_ELEC!='None' */
281     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
282     rcutoff_scalar   = fr->ic->rcoulomb;
283     /*     #else */
284     rcutoff_scalar   = fr->ic->rvdw;
285     /*     #endif */
286     rcutoff          = _mm_set1_ps(rcutoff_scalar);
287     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
288     /* #endif */
289
290     /* #if KERNEL_MOD_VDW=='PotentialShift' */
291     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
292     rvdw             = _mm_set1_ps(fr->ic->rvdw);
293     /* #endif */
294
295     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
296     /*     #if KERNEL_MOD_ELEC=='PotentialSwitch'  */
297     rswitch_scalar   = fr->ic->rcoulomb_switch;
298     rswitch          = _mm_set1_ps(rswitch_scalar);
299     /*     #else */
300     rswitch_scalar   = fr->ic->rvdw_switch;
301     rswitch          = _mm_set1_ps(rswitch_scalar);
302     /*     #endif */
303     /* Setup switch parameters */
304     d_scalar         = rcutoff_scalar-rswitch_scalar;
305     d                = _mm_set1_ps(d_scalar);
306     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
307     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
308     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
309     /*     #if 'Force' in KERNEL_VF */
310     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
311     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
312     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
313     /*     #endif */
314     /* #endif */
315
316     /* Avoid stupid compiler warnings */
317     jnrA = jnrB = jnrC = jnrD = 0;
318     j_coord_offsetA = 0;
319     j_coord_offsetB = 0;
320     j_coord_offsetC = 0;
321     j_coord_offsetD = 0;
322
323     /* ## Keep track of the floating point operations we issue for reporting! */
324     /* #define OUTERFLOPS 0 */
325     outeriter        = 0;
326     inneriter        = 0;
327
328     for(iidx=0;iidx<4*DIM;iidx++)
329     {
330         scratch[iidx] = 0.0;
331     }
332
333     /* Start outer loop over neighborlists */
334     for(iidx=0; iidx<nri; iidx++)
335     {
336         /* Load shift vector for this list */
337         i_shift_offset   = DIM*shiftidx[iidx];
338
339         /* Load limits for loop over neighbors */
340         j_index_start    = jindex[iidx];
341         j_index_end      = jindex[iidx+1];
342
343         /* Get outer coordinate index */
344         inr              = iinr[iidx];
345         i_coord_offset   = DIM*inr;
346
347         /* Load i particle coords and add shift vector */
348         /* #if GEOMETRY_I == 'Particle' */
349         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
350         /* #elif GEOMETRY_I == 'Water3' */
351         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
352                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
353         /* #elif GEOMETRY_I == 'Water4' */
354         /*     #if 0 in PARTICLES_I                 */
355         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
356                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
357         /*     #else                                */
358         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
359                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
360         /*     #endif                               */
361         /* #endif                                   */
362
363         /* #if 'Force' in KERNEL_VF */
364         /*     #for I in PARTICLES_I */
365         fix{I}             = _mm_setzero_ps();
366         fiy{I}             = _mm_setzero_ps();
367         fiz{I}             = _mm_setzero_ps();
368         /*     #endfor */
369         /* #endif */
370
371         /* ## For water we already preloaded parameters at the start of the kernel */
372         /* #if not 'Water' in GEOMETRY_I */
373         /* Load parameters for i particles */
374         /*     #for I in PARTICLES_ELEC_I */
375         iq{I}              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+{I}));
376         /*         #define OUTERFLOPS OUTERFLOPS+1 */
377         /*         #if KERNEL_ELEC=='GeneralizedBorn' */
378         isai{I}            = _mm_load1_ps(invsqrta+inr+{I});
379         /*         #endif */
380         /*     #endfor */
381         /*     #for I in PARTICLES_VDW_I */
382         vdwioffset{I}      = 2*nvdwtype*vdwtype[inr+{I}];
383         /*     #endfor */
384         /* #endif */
385
386         /* #if 'Potential' in KERNEL_VF */
387         /* Reset potential sums */
388         /*     #if KERNEL_ELEC != 'None' */
389         velecsum         = _mm_setzero_ps();
390         /*     #endif */
391         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
392         vgbsum           = _mm_setzero_ps();
393         /*     #endif */
394         /*     #if KERNEL_VDW != 'None' */
395         vvdwsum          = _mm_setzero_ps();
396         /*     #endif */
397         /* #endif */
398         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
399         dvdasum          = _mm_setzero_ps();
400         /*     #endif */
401
402         /* #for ROUND in ['Loop','Epilogue'] */
403
404         /* #if ROUND =='Loop' */
405         /* Start inner kernel loop */
406         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
407         {
408         /* ## First round is normal loop (next statement resets indentation) */
409         /*     #if 0 */
410         }
411         /*     #endif */
412         /* #else */
413         if(jidx<j_index_end)
414         {
415         /* ## Second round is epilogue */
416         /* #endif */
417         /* #define INNERFLOPS 0 */
418
419             /* Get j neighbor index, and coordinate index */
420             /* #if ROUND =='Loop' */
421             jnrA             = jjnr[jidx];
422             jnrB             = jjnr[jidx+1];
423             jnrC             = jjnr[jidx+2];
424             jnrD             = jjnr[jidx+3];
425             /* #else */
426             jnrlistA         = jjnr[jidx];
427             jnrlistB         = jjnr[jidx+1];
428             jnrlistC         = jjnr[jidx+2];
429             jnrlistD         = jjnr[jidx+3];
430             /* Sign of each element will be negative for non-real atoms.
431              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
433              */
434             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
436             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
437             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
438             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
439             /* #endif */
440             j_coord_offsetA  = DIM*jnrA;
441             j_coord_offsetB  = DIM*jnrB;
442             j_coord_offsetC  = DIM*jnrC;
443             j_coord_offsetD  = DIM*jnrD;
444
445             /* load j atom coordinates */
446             /* #if GEOMETRY_J == 'Particle'             */
447             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
448                                               x+j_coord_offsetC,x+j_coord_offsetD,
449                                               &jx0,&jy0,&jz0);
450             /* #elif GEOMETRY_J == 'Water3'             */
451             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
452                                               x+j_coord_offsetC,x+j_coord_offsetD,
453                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
454             /* #elif GEOMETRY_J == 'Water4'             */
455             /*     #if 0 in PARTICLES_J                 */
456             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
457                                               x+j_coord_offsetC,x+j_coord_offsetD,
458                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
459                                               &jy2,&jz2,&jx3,&jy3,&jz3);
460             /*     #else                                */
461             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
462                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
463                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
464             /*     #endif                               */
465             /* #endif                                   */
466
467             /* Calculate displacement vector */
468             /* #for I,J in PAIRS_IJ */
469             dx{I}{J}             = _mm_sub_ps(ix{I},jx{J});
470             dy{I}{J}             = _mm_sub_ps(iy{I},jy{J});
471             dz{I}{J}             = _mm_sub_ps(iz{I},jz{J});
472             /*     #define INNERFLOPS INNERFLOPS+3 */
473             /* #endfor */
474
475             /* Calculate squared distance and things based on it */
476             /* #for I,J in PAIRS_IJ */
477             rsq{I}{J}            = gmx_mm_calc_rsq_ps(dx{I}{J},dy{I}{J},dz{I}{J});
478             /*     #define INNERFLOPS INNERFLOPS+5 */
479             /* #endfor */
480
481             /* #for I,J in PAIRS_IJ */
482             /*     #if 'rinv' in INTERACTION_FLAGS[I][J] */
483             rinv{I}{J}           = avx128fma_invsqrt_f(rsq{I}{J});
484             /*         #define INNERFLOPS INNERFLOPS+5 */
485             /*     #endif */
486             /* #endfor */
487
488             /* #for I,J in PAIRS_IJ */
489             /*     #if 'rinvsq' in INTERACTION_FLAGS[I][J] */
490             /*         # if 'rinv' not in INTERACTION_FLAGS[I][J] */
491             rinvsq{I}{J}         = avx128fma_inv_f(rsq{I}{J});
492             /*             #define INNERFLOPS INNERFLOPS+4 */
493             /*         #else */
494             rinvsq{I}{J}         = _mm_mul_ps(rinv{I}{J},rinv{I}{J});
495             /*             #define INNERFLOPS INNERFLOPS+1 */
496             /*         #endif */
497             /*     #endif */
498             /* #endfor */
499
500             /* #if not 'Water' in GEOMETRY_J */
501             /* Load parameters for j particles */
502             /*     #for J in PARTICLES_ELEC_J */
503             jq{J}              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+{J},charge+jnrB+{J},
504                                                               charge+jnrC+{J},charge+jnrD+{J});
505             /*         #if KERNEL_ELEC=='GeneralizedBorn' */
506             isaj{J}            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+{J},invsqrta+jnrB+{J},
507                                                               invsqrta+jnrC+{J},invsqrta+jnrD+{J});
508             /*         #endif */
509             /*     #endfor */
510             /*     #for J in PARTICLES_VDW_J */
511             vdwjidx{J}A        = 2*vdwtype[jnrA+{J}];
512             vdwjidx{J}B        = 2*vdwtype[jnrB+{J}];
513             vdwjidx{J}C        = 2*vdwtype[jnrC+{J}];
514             vdwjidx{J}D        = 2*vdwtype[jnrD+{J}];
515             /*     #endfor */
516             /* #endif */
517
518             /* #if 'Force' in KERNEL_VF and not 'Particle' in GEOMETRY_I */
519             /*     #for J in PARTICLES_J */
520             fjx{J}             = _mm_setzero_ps();
521             fjy{J}             = _mm_setzero_ps();
522             fjz{J}             = _mm_setzero_ps();
523             /*     #endfor */
524             /* #endif */
525
526             /* #for I,J in PAIRS_IJ */
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
533             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
534             /*         ## We always calculate rinv/rinvsq above to enable pipelineing in compilers (performance tested on x86) */
535             if (gmx_mm_any_lt(rsq{I}{J},rcutoff2))
536             {
537                 /*     #if 0    ## this and the next two lines is a hack to maintain auto-indentation in template file */
538             }
539             /*         #endif */
540             /*         #define INNERFLOPS INNERFLOPS+1 */
541             /*     #endif */
542
543             /*     #if 'r' in INTERACTION_FLAGS[I][J] */
544             r{I}{J}              = _mm_mul_ps(rsq{I}{J},rinv{I}{J});
545             /*         #if ROUND == 'Epilogue' */
546             r{I}{J}              = _mm_andnot_ps(dummy_mask,r{I}{J});
547             /*             #define INNERFLOPS INNERFLOPS+1 */
548             /*         #endif */
549             /*         #define INNERFLOPS INNERFLOPS+1 */
550             /*     #endif */
551
552             /*     ## For water geometries we already loaded parameters at the start of the kernel */
553             /*     #if not 'Water' in GEOMETRY_J */
554             /* Compute parameters for interactions between i and j atoms */
555             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
556             qq{I}{J}             = _mm_mul_ps(iq{I},jq{J});
557             /*             #define INNERFLOPS INNERFLOPS+1 */
558             /*         #endif */
559             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
560             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset{I}+vdwjidx{J}A,
561                                          vdwparam+vdwioffset{I}+vdwjidx{J}B,
562                                          vdwparam+vdwioffset{I}+vdwjidx{J}C,
563                                          vdwparam+vdwioffset{I}+vdwjidx{J}D,
564                                          &c6_{I}{J},&c12_{I}{J});
565
566             /*           #if 'LJEwald' in KERNEL_VDW */
567             c6grid_{I}{J}       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset{I}+vdwjidx{J}A,
568                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}B,
569                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}C,
570                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}D);
571             /*           #endif */
572
573             /*         #endif */
574             /*     #endif */
575
576             /*     #if 'table' in INTERACTION_FLAGS[I][J] */
577             /* Calculate table index by multiplying r with table scale and truncate to integer */
578             rt               = _mm_mul_ps(r{I}{J},vftabscale);
579             vfitab           = _mm_cvttps_epi32(rt);
580 #ifdef __XOP__
581             vfeps            = _mm_frcz_ps(rt);
582 #else
583             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
584 #endif
585             twovfeps         = _mm_add_ps(vfeps,vfeps);
586             /*         #define INNERFLOPS INNERFLOPS+4                          */
587             /*         #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW     */
588             /*             ## 3 tables, 4 bytes per point: multiply index by 12 */
589             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
590             /*         #elif 'Table' in KERNEL_ELEC                             */
591             /*             ## 1 table, 4 bytes per point: multiply index by 4   */
592             vfitab           = _mm_slli_epi32(vfitab,2);
593             /*         #elif 'Table' in KERNEL_VDW                              */
594             /*             ## 2 tables, 4 bytes per point: multiply index by 8  */
595             vfitab           = _mm_slli_epi32(vfitab,3);
596             /*         #endif                                                   */
597             /*     #endif */
598
599             /*     ## ELECTROSTATIC INTERACTIONS */
600             /*     #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
601
602             /*         #if KERNEL_ELEC=='Coulomb' */
603
604             /* COULOMB ELECTROSTATICS */
605             velec            = _mm_mul_ps(qq{I}{J},rinv{I}{J});
606             /*             #define INNERFLOPS INNERFLOPS+1 */
607             /*             #if 'Force' in KERNEL_VF */
608             felec            = _mm_mul_ps(velec,rinvsq{I}{J});
609             /*                 #define INNERFLOPS INNERFLOPS+2 */
610             /*             #endif */
611
612             /*         #elif KERNEL_ELEC=='ReactionField' */
613
614             /* REACTION-FIELD ELECTROSTATICS */
615             /*             #if 'Potential' in KERNEL_VF */
616             velec            = _mm_mul_ps(qq{I}{J},_mm_sub_ps(_mm_macc_ps(krf,rsq{I}{J},rinv{I}{J}),crf));
617             /*                 #define INNERFLOPS INNERFLOPS+4 */
618             /*             #endif */
619             /*             #if 'Force' in KERNEL_VF */
620             felec            = _mm_mul_ps(qq{I}{J},_mm_msub_ps(rinv{I}{J},rinvsq{I}{J},krf2));
621             /*                 #define INNERFLOPS INNERFLOPS+3 */
622             /*             #endif */
623
624             /*         #elif KERNEL_ELEC=='GeneralizedBorn' */
625
626             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
627             isaprod          = _mm_mul_ps(isai{I},isaj{J});
628             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq{I}{J},_mm_mul_ps(isaprod,gbinvepsdiff)));
629             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
630             /*             #define INNERFLOPS INNERFLOPS+5 */
631
632             /* Calculate generalized born table index - this is a separate table from the normal one,
633              * but we use the same procedure by multiplying r with scale and truncating to integer.
634              */
635             rt               = _mm_mul_ps(r{I}{J},gbscale);
636             gbitab           = _mm_cvttps_epi32(rt);
637 #ifdef __XOP__
638             gbeps            = _mm_frcz_ps(rt);
639 #else
640             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
641 #endif
642             gbitab           = _mm_slli_epi32(gbitab,2);
643
644             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
645             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
646             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
647             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
648             _MM_TRANSPOSE4_PS(Y,F,G,H);
649             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
650             VV               = _mm_macc_ps(gbeps,Fp,Y);
651             vgb              = _mm_mul_ps(gbqqfactor,VV);
652             /*             #define INNERFLOPS INNERFLOPS+10 */
653
654             /*             #if 'Force' in KERNEL_VF */
655             twogbeps         = _mm_add_ps(gbeps,gbeps);
656             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
657             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
658             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r{I}{J},vgb));
659             /*                 #if ROUND == 'Epilogue' */
660             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
661             /*                 #endif */
662             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
663             /*                 #if ROUND == 'Loop' */
664             fjptrA           = dvda+jnrA;
665             fjptrB           = dvda+jnrB;
666             fjptrC           = dvda+jnrC;
667             fjptrD           = dvda+jnrD;
668             /*                 #else */
669             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
670             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
671             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
672             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
673             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
674             /*                 #endif */
675             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj{J},isaj{J})));
676             /*                 #define INNERFLOPS INNERFLOPS+13 */
677             /*             #endif */
678             velec            = _mm_mul_ps(qq{I}{J},rinv{I}{J});
679             /*                 #define INNERFLOPS INNERFLOPS+1 */
680             /*             #if 'Force' in KERNEL_VF */
681             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv{I}{J},fgb),rinv{I}{J});
682             /*                 #define INNERFLOPS INNERFLOPS+3 */
683             /*             #endif */
684
685             /*         #elif KERNEL_ELEC=='Ewald' */
686             /* EWALD ELECTROSTATICS */
687
688             /* Analytical PME correction */
689             zeta2            = _mm_mul_ps(beta2,rsq{I}{J});
690             /*             #if 'Force' in KERNEL_VF */
691             rinv3            = _mm_mul_ps(rinvsq{I}{J},rinv{I}{J});
692             pmecorrF         = avx128fma_pmecorrF_f(zeta2);
693             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
694             felec            = _mm_mul_ps(qq{I}{J},felec);
695             /*             #endif */
696             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_ELEC=='PotentialSwitch' */
697             pmecorrV         = avx128fma_pmecorrV_f(zeta2);
698             /*                 #if KERNEL_MOD_ELEC=='PotentialShift' */
699             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv{I}{J},sh_ewald));
700             /*                 #else */
701             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv{I}{J});
702             /*                 #endif */
703             velec            = _mm_mul_ps(qq{I}{J},velec);
704             /*             #endif */
705
706             /*         #elif KERNEL_ELEC=='CubicSplineTable' */
707
708             /* CUBIC SPLINE TABLE ELECTROSTATICS */
709             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
710             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
711             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
712             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
713             _MM_TRANSPOSE4_PS(Y,F,G,H);
714             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
715             /*             #define INNERFLOPS INNERFLOPS+4 */
716             /*             #if 'Potential' in KERNEL_VF */
717             VV               = _mm_macc_ps(vfeps,Fp,Y);
718             velec            = _mm_mul_ps(qq{I}{J},VV);
719             /*                 #define INNERFLOPS INNERFLOPS+3 */
720             /*             #endif */
721             /*             #if 'Force' in KERNEL_VF */
722             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
723             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq{I}{J},FF),_mm_mul_ps(vftabscale,rinv{I}{J})));
724             /*                 #define INNERFLOPS INNERFLOPS+7 */
725             /*             #endif */
726             /*         #endif */
727             /*         ## End of check for electrostatics interaction forms */
728             /*     #endif */
729             /*     ## END OF ELECTROSTATIC INTERACTION CHECK FOR PAIR I-J */
730
731             /*     #if 'vdw' in INTERACTION_FLAGS[I][J] */
732
733             /*         #if KERNEL_VDW=='LennardJones' */
734
735             /* LENNARD-JONES DISPERSION/REPULSION */
736
737             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
738             /*             #define INNERFLOPS INNERFLOPS+2 */
739             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
740             vvdw6            = _mm_mul_ps(c6_{I}{J},rinvsix);
741             vvdw12           = _mm_mul_ps(c12_{I}{J},_mm_mul_ps(rinvsix,rinvsix));
742             /*                 #define INNERFLOPS INNERFLOPS+3 */
743             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
744             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_{I}{J},_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
745                                           _mm_mul_ps( _mm_nmacc_ps(c6_{I}{J},sh_vdw_invrcut6,vvdw6),one_sixth));
746             /*                     #define INNERFLOPS INNERFLOPS+8 */
747             /*                 #else */
748             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
749             /*                     #define INNERFLOPS INNERFLOPS+3 */
750             /*                 #endif */
751             /*                 ## Check for force inside potential check, i.e. this means we already did the potential part */
752             /*                 #if 'Force' in KERNEL_VF */
753             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq{I}{J});
754             /*                     #define INNERFLOPS INNERFLOPS+2 */
755             /*                 #endif */
756             /*             #elif KERNEL_VF=='Force' */
757             /*                 ## Force-only LennardJones makes it possible to save 1 flop (they do add up...) */
758             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_{I}{J},rinvsix,c6_{I}{J}),_mm_mul_ps(rinvsix,rinvsq{I}{J}));
759             /*                 #define INNERFLOPS INNERFLOPS+4 */
760             /*             #endif */
761
762             /*         #elif KERNEL_VDW=='CubicSplineTable' */
763
764             /* CUBIC SPLINE TABLE DISPERSION */
765             /*             #if 'Table' in KERNEL_ELEC */
766             vfitab           = _mm_add_epi32(vfitab,ifour);
767             /*             #endif                     */
768             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
769             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
770             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
771             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
772             _MM_TRANSPOSE4_PS(Y,F,G,H);
773             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
774             /*             #define INNERFLOPS INNERFLOPS+4 */
775             /*             #if 'Potential' in KERNEL_VF */
776             VV               = _mm_macc_ps(vfeps,Fp,Y);
777             vvdw6            = _mm_mul_ps(c6_{I}{J},VV);
778             /*                 #define INNERFLOPS INNERFLOPS+3 */
779             /*             #endif */
780             /*             #if 'Force' in KERNEL_VF */
781             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
782             fvdw6            = _mm_mul_ps(c6_{I}{J},FF);
783             /*                 #define INNERFLOPS INNERFLOPS+4 */
784             /*             #endif */
785
786             /* CUBIC SPLINE TABLE REPULSION */
787             vfitab           = _mm_add_epi32(vfitab,ifour);
788             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
789             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
790             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
791             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
792             _MM_TRANSPOSE4_PS(Y,F,G,H);
793             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
794             /*             #define INNERFLOPS INNERFLOPS+4 */
795             /*             #if 'Potential' in KERNEL_VF */
796             VV               = _mm_macc_ps(vfeps,Fp,Y);
797             vvdw12           = _mm_mul_ps(c12_{I}{J},VV);
798             /*                 #define INNERFLOPS INNERFLOPS+3 */
799             /*             #endif */
800             /*             #if 'Force' in KERNEL_VF */
801             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
802             fvdw12           = _mm_mul_ps(c12_{I}{J},FF);
803             /*                 #define INNERFLOPS INNERFLOPS+5 */
804             /*             #endif */
805             /*             #if 'Potential' in KERNEL_VF */
806             vvdw             = _mm_add_ps(vvdw12,vvdw6);
807             /*                 #define INNERFLOPS INNERFLOPS+1 */
808             /*             #endif */
809             /*             #if 'Force' in KERNEL_VF */
810             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv{I}{J})));
811             /*                 #define INNERFLOPS INNERFLOPS+4 */
812             /*             #endif */
813
814             /*         #elif KERNEL_VDW=='LJEwald' */
815
816             /* Analytical LJ-PME */
817             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
818             ewcljrsq         = _mm_mul_ps(ewclj2,rsq{I}{J});
819             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
820             exponent         = avx128fma_exp_f(ewcljrsq);
821             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
822             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
823             /*                 #define INNERFLOPS INNERFLOPS+10 */
824             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
825             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
826             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_{I}{J},_mm_sub_ps(one,poly),c6_{I}{J}),rinvsix);
827             vvdw12           = _mm_mul_ps(c12_{I}{J},_mm_mul_ps(rinvsix,rinvsix));
828             /*                     #define INNERFLOPS INNERFLOPS+5 */
829             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
830             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_{I}{J},_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
831                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_{I}{J},sh_lj_ewald,_mm_mul_ps(c6_{I}{J},sh_vdw_invrcut6))),one_sixth));
832             /*                     #define INNERFLOPS INNERFLOPS+7 */
833             /*                 #else */
834             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
835             /*                     #define INNERFLOPS INNERFLOPS+2 */
836             /*                 #endif */
837             /*                  ## Check for force inside potential check, i.e. this means we already did the potential part */
838             /*                  #if 'Force' in KERNEL_VF */
839             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
840             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_{I}{J},one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq{I}{J});
841             /*                 #define INNERFLOPS INNERFLOPS+5 */
842             /*                  #endif */
843             /*              #elif KERNEL_VF=='Force' */
844             /* f6A = 6 * C6grid * (1 - poly) */
845             f6A              = _mm_mul_ps(c6grid_{I}{J},_mm_sub_ps(one,poly));
846             /* f6B = C6grid * exponent * beta^6 */
847             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_{I}{J},one_sixth),_mm_mul_ps(exponent,ewclj6));
848             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
849             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_{I}{J},rinvsix,_mm_sub_ps(c6_{I}{J},f6A)),rinvsix,f6B),rinvsq{I}{J});
850             /*                 #define INNERFLOPS INNERFLOPS+10 */
851             /*              #endif */
852             /*         #endif */
853             /*         ## End of check for vdw interaction forms */
854             /*     #endif */
855             /*     ## END OF VDW INTERACTION CHECK FOR PAIR I-J */
856
857             /*     #if 'switch' in INTERACTION_FLAGS[I][J] */
858             d                = _mm_sub_ps(r{I}{J},rswitch);
859             d                = _mm_max_ps(d,_mm_setzero_ps());
860             d2               = _mm_mul_ps(d,d);
861             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
862             /*         #define INNERFLOPS INNERFLOPS+10 */
863
864             /*         #if 'Force' in KERNEL_VF */
865             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
866             /*             #define INNERFLOPS INNERFLOPS+5 */
867             /*         #endif */
868
869             /* Evaluate switch function */
870             /*         #if 'Force' in KERNEL_VF */
871             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
872             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
873             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv{I}{J},_mm_mul_ps(velec,dsw)) );
874             /*                 #define INNERFLOPS INNERFLOPS+4 */
875             /*             #endif */
876             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
877             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv{I}{J},_mm_mul_ps(vvdw,dsw)) );
878             /*                 #define INNERFLOPS INNERFLOPS+4 */
879             /*             #endif */
880             /*         #endif */
881             /*         #if 'Potential' in KERNEL_VF */
882             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
883             velec            = _mm_mul_ps(velec,sw);
884             /*                 #define INNERFLOPS INNERFLOPS+1 */
885             /*             #endif */
886             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
887             vvdw             = _mm_mul_ps(vvdw,sw);
888             /*                 #define INNERFLOPS INNERFLOPS+1 */
889             /*             #endif */
890             /*         #endif */
891             /*     #endif */
892             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
893             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
894             cutoff_mask      = _mm_cmplt_ps(rsq{I}{J},rcutoff2);
895             /*         #define INNERFLOPS INNERFLOPS+1 */
896             /*     #endif */
897
898             /*     #if 'Potential' in KERNEL_VF */
899             /* Update potential sum for this i atom from the interaction with this j atom. */
900             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
901             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
902             velec            = _mm_and_ps(velec,cutoff_mask);
903             /*                 #define INNERFLOPS INNERFLOPS+1 */
904             /*             #endif                                       */
905             /*             #if ROUND == 'Epilogue' */
906             velec            = _mm_andnot_ps(dummy_mask,velec);
907             /*             #endif */
908             velecsum         = _mm_add_ps(velecsum,velec);
909             /*             #define INNERFLOPS INNERFLOPS+1 */
910             /*             #if KERNEL_ELEC=='GeneralizedBorn' */
911             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
912             vgb              = _mm_and_ps(vgb,cutoff_mask);
913             /*                 #define INNERFLOPS INNERFLOPS+1 */
914             /*             #endif                                       */
915             /*             #if ROUND == 'Epilogue' */
916             vgb              = _mm_andnot_ps(dummy_mask,vgb);
917             /*             #endif */
918             vgbsum           = _mm_add_ps(vgbsum,vgb);
919             /*                 #define INNERFLOPS INNERFLOPS+1 */
920             /*             #endif */
921             /*         #endif */
922             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
923             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
924             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
925             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
926             /*                 #define INNERFLOPS INNERFLOPS+1 */
927             /*             #endif                                       */
928             /*             #if ROUND == 'Epilogue' */
929             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
930             /*             #endif */
931             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
932             /*             #define INNERFLOPS INNERFLOPS+1 */
933             /*         #endif */
934             /*     #endif */
935
936             /*     #if 'Force' in KERNEL_VF */
937
938             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] and 'vdw' in INTERACTION_FLAGS[I][J] */
939             fscal            = _mm_add_ps(felec,fvdw);
940             /*             #define INNERFLOPS INNERFLOPS+1 */
941             /*         #elif 'electrostatics' in INTERACTION_FLAGS[I][J] */
942             fscal            = felec;
943             /*         #elif 'vdw' in INTERACTION_FLAGS[I][J] */
944             fscal            = fvdw;
945             /*        #endif */
946
947             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
948             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
949             fscal            = _mm_and_ps(fscal,cutoff_mask);
950             /*                 #define INNERFLOPS INNERFLOPS+1 */
951             /*             #endif                                       */
952
953             /*             #if ROUND == 'Epilogue' */
954             fscal            = _mm_andnot_ps(dummy_mask,fscal);
955             /*             #endif */
956
957             /* ## Construction of vectorial force built into FMA instructions now */
958             /* #define INNERFLOPS INNERFLOPS+3      */
959
960              /* Update vectorial force */
961             fix{I}             = _mm_macc_ps(dx{I}{J},fscal,fix{I});
962             fiy{I}             = _mm_macc_ps(dy{I}{J},fscal,fiy{I});
963             fiz{I}             = _mm_macc_ps(dz{I}{J},fscal,fiz{I});
964             /*             #define INNERFLOPS INNERFLOPS+6 */
965
966             /* #if GEOMETRY_I == 'Particle'             */
967             /*     #if ROUND == 'Loop' */
968             fjptrA             = f+j_coord_offsetA;
969             fjptrB             = f+j_coord_offsetB;
970             fjptrC             = f+j_coord_offsetC;
971             fjptrD             = f+j_coord_offsetD;
972             /*     #else */
973             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
974             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
975             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
976             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
977             /*     #endif */
978             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
979                                                    _mm_mul_ps(dx{I}{J},fscal),
980                                                    _mm_mul_ps(dy{I}{J},fscal),
981                                                    _mm_mul_ps(dz{I}{J},fscal));
982             /*     #define INNERFLOPS INNERFLOPS+3      */
983             /* #else                                    */
984             fjx{J}             = _mm_macc_ps(dx{I}{J},fscal,fjx{J});
985             fjy{J}             = _mm_macc_ps(dy{I}{J},fscal,fjy{J});
986             fjz{J}             = _mm_macc_ps(dz{I}{J},fscal,fjz{J});
987             /*     #define INNERFLOPS INNERFLOPS+3      */
988             /* #endif                                   */
989
990             /*     #endif */
991
992             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
993             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
994             /*         #if 0    ## This and next two lines is a hack to maintain indentation in template file */
995             {
996                 /*     #endif */
997             }
998             /*     #endif */
999             /*    ## End of check for the interaction being outside the cutoff */
1000
1001             /* #endfor */
1002             /* ## End of loop over i-j interaction pairs */
1003
1004             /* #if GEOMETRY_I != 'Particle' */
1005             /*     #if ROUND == 'Loop' */
1006             fjptrA             = f+j_coord_offsetA;
1007             fjptrB             = f+j_coord_offsetB;
1008             fjptrC             = f+j_coord_offsetC;
1009             fjptrD             = f+j_coord_offsetD;
1010             /*     #else */
1011             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1012             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1013             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1014             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1015             /*     #endif */
1016             /* #endif */
1017
1018             /* #if 'Water' in GEOMETRY_I and GEOMETRY_J == 'Particle' */
1019             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1020             /* #elif GEOMETRY_J == 'Water3'               */
1021             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1022                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1023             /*     #define INNERFLOPS INNERFLOPS+9      */
1024             /* #elif GEOMETRY_J == 'Water4'             */
1025             /*     #if 0 in PARTICLES_J                 */
1026             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1027                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1028                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1029             /*     #define INNERFLOPS INNERFLOPS+12     */
1030             /*     #else                                */
1031             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1032                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1033             /*     #define INNERFLOPS INNERFLOPS+9      */
1034             /*     #endif                               */
1035             /* #endif                                   */
1036
1037             /* Inner loop uses {INNERFLOPS} flops */
1038         }
1039
1040         /* #endfor */
1041
1042         /* End of innermost loop */
1043
1044         /* #if 'Force' in KERNEL_VF */
1045         /*     #if GEOMETRY_I == 'Particle'            */
1046         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1047                                               f+i_coord_offset,fshift+i_shift_offset);
1048         /*         #define OUTERFLOPS OUTERFLOPS+6     */
1049         /*     #elif GEOMETRY_I == 'Water3'            */
1050         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1051                                               f+i_coord_offset,fshift+i_shift_offset);
1052         /*         #define OUTERFLOPS OUTERFLOPS+18    */
1053         /*     #elif GEOMETRY_I == 'Water4'            */
1054         /*         #if 0 in PARTICLES_I                */
1055         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1056                                               f+i_coord_offset,fshift+i_shift_offset);
1057         /*             #define OUTERFLOPS OUTERFLOPS+24    */
1058         /*         #else                               */
1059         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1060                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1061         /*             #define OUTERFLOPS OUTERFLOPS+18    */
1062         /*         #endif                              */
1063         /*     #endif                                  */
1064         /* #endif                                      */
1065
1066         /* #if 'Potential' in KERNEL_VF */
1067         ggid                        = gid[iidx];
1068         /* Update potential energies */
1069         /*     #if KERNEL_ELEC != 'None' */
1070         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1071         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1072         /*     #endif */
1073         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
1074         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
1075         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1076         /*     #endif */
1077         /*     #if KERNEL_VDW != 'None' */
1078         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1079         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1080         /*     #endif */
1081         /* #endif */
1082         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
1083         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai{I},isai{I}));
1084         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
1085         /*     #endif */
1086
1087         /* Increment number of inner iterations */
1088         inneriter                  += j_index_end - j_index_start;
1089
1090         /* Outer loop uses {OUTERFLOPS} flops */
1091     }
1092
1093     /* Increment number of outer iterations */
1094     outeriter        += nri;
1095
1096     /* Update outer/inner flops */
1097     /* ## NB: This is not important, it just affects the flopcount. However, since our preprocessor is */
1098     /* ## primitive and replaces aggressively even in strings inside these directives, we need to      */
1099     /* ## assemble the main part of the name (containing KERNEL/ELEC/VDW) directly in the source.      */
1100     /* #if GEOMETRY_I == 'Water3'            */
1101     /*     #define ISUFFIX '_W3'             */
1102     /* #elif GEOMETRY_I == 'Water4'          */
1103     /*     #define ISUFFIX '_W4'             */
1104     /* #else                                 */
1105     /*     #define ISUFFIX ''                */
1106     /* #endif                                */
1107     /* #if GEOMETRY_J == 'Water3'            */
1108     /*     #define JSUFFIX 'W3'              */
1109     /* #elif GEOMETRY_J == 'Water4'          */
1110     /*     #define JSUFFIX 'W4'              */
1111     /* #else                                 */
1112     /*     #define JSUFFIX ''                */
1113     /* #endif                                */
1114     /* #if 'PotentialAndForce' in KERNEL_VF  */
1115     /*     #define VFSUFFIX  '_VF'           */
1116     /* #elif 'Potential' in KERNEL_VF        */
1117     /*     #define VFSUFFIX '_V'             */
1118     /* #else                                 */
1119     /*     #define VFSUFFIX '_F'             */
1120     /* #endif                                */
1121
1122     /* #if KERNEL_ELEC != 'None' and KERNEL_VDW != 'None' */
1123     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1124     /* #elif KERNEL_ELEC != 'None' */
1125     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1126     /* #else */
1127     inc_nrnb(nrnb,eNR_NBKERNEL_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1128     /* #endif  */
1129 }