Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_template_avx_128_fma_single.pre
1 /* #if 0 */
2 /*
3  * This file is part of the GROMACS molecular simulation package.
4  *
5  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36 #error This file must be processed with the Gromacs pre-preprocessor
37 /* #endif */
38 /* #if INCLUDE_HEADER */
39 #include "gmxpre.h"
40
41 #include "config.h"
42
43 #include <math.h>
44
45 #include "../nb_kernel.h"
46 #include "gromacs/legacyheaders/types/simple.h"
47 #include "gromacs/math/vec.h"
48 #include "gromacs/legacyheaders/nrnb.h"
49
50 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
51 #include "kernelutil_x86_avx_128_fma_single.h"
52 /* #endif */
53
54 /* ## List of variables set by the generating script:                                    */
55 /* ##                                                                                    */
56 /* ## Setttings that apply to the entire kernel:                                         */
57 /* ## KERNEL_ELEC:           String, choice for electrostatic interactions               */
58 /* ## KERNEL_VDW:            String, choice for van der Waals interactions               */
59 /* ## KERNEL_NAME:           String, name of this kernel                                 */
60 /* ## KERNEL_VF:             String telling if we calculate potential, force, or both    */
61 /* ## GEOMETRY_I/GEOMETRY_J: String, name of each geometry, e.g. 'Water3' or '1Particle' */
62 /* ##                                                                                    */
63 /* ## Setttings that apply to particles in the outer (I) or inner (J) loops:             */
64 /* ## PARTICLES_I[]/         Arrays with lists of i/j particles to use in kernel. It is  */
65 /* ## PARTICLES_J[]:         just [0] for particle geometry, but can be longer for water */
66 /* ## PARTICLES_ELEC_I[]/    Arrays with lists of i/j particle that have electrostatics  */
67 /* ## PARTICLES_ELEC_J[]:    interactions that should be calculated in this kernel.      */
68 /* ## PARTICLES_VDW_I[]/     Arrays with the list of i/j particle that have VdW          */
69 /* ## PARTICLES_VDW_J[]:     interactions that should be calculated in this kernel.      */
70 /* ##                                                                                    */
71 /* ## Setttings for pairs of interactions (e.g. 2nd i particle against 1st j particle)   */
72 /* ## PAIRS_IJ[]:            Array with (i,j) tuples of pairs for which interactions     */
73 /* ##                        should be calculated in this kernel. Zero-charge particles  */
74 /* ##                        do not have interactions with particles without vdw, and    */
75 /* ##                        Vdw-only interactions are not evaluated in a no-vdw-kernel. */
76 /* ## INTERACTION_FLAGS[][]: 2D matrix, dimension e.g. 3*3 for water-water interactions. */
77 /* ##                        For each i-j pair, the element [I][J] is a list of strings  */
78 /* ##                        defining properties/flags of this interaction. Examples     */
79 /* ##                        include 'electrostatics'/'vdw' if that type of interaction  */
80 /* ##                        should be evaluated, 'rsq'/'rinv'/'rinvsq' if those values  */
81 /* ##                        are needed, and 'exactcutoff' or 'shift','switch' to        */
82 /* ##                        decide if the force/potential should be modified. This way  */
83 /* ##                        we only calculate values absolutely needed for each case.   */
84
85 /* ## Calculate the size and offset for (merged/interleaved) table data */
86
87 /*
88  * Gromacs nonbonded kernel:   {KERNEL_NAME}
89  * Electrostatics interaction: {KERNEL_ELEC}
90  * VdW interaction:            {KERNEL_VDW}
91  * Geometry:                   {GEOMETRY_I}-{GEOMETRY_J}
92  * Calculate force/pot:        {KERNEL_VF}
93  */
94 void
95 {KERNEL_NAME}
96                     (t_nblist                    * gmx_restrict       nlist,
97                      rvec                        * gmx_restrict          xx,
98                      rvec                        * gmx_restrict          ff,
99                      t_forcerec                  * gmx_restrict          fr,
100                      t_mdatoms                   * gmx_restrict     mdatoms,
101                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
102                      t_nrnb                      * gmx_restrict        nrnb)
103 {
104     /* ## Not all variables are used for all kernels, but any optimizing compiler fixes that, */
105     /* ## so there is no point in going to extremes to exclude variables that are not needed. */
106     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
107      * just 0 for non-waters.
108      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
109      * jnr indices corresponding to data put in the four positions in the SIMD register.
110      */
111     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
112     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
113     int              jnrA,jnrB,jnrC,jnrD;
114     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
115     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
116     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
117     real             rcutoff_scalar;
118     real             *shiftvec,*fshift,*x,*f;
119     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
120     real             scratch[4*DIM];
121     __m128           fscal,rcutoff,rcutoff2,jidxall;
122     /* #for I in PARTICLES_I */
123     int              vdwioffset{I};
124     __m128           ix{I},iy{I},iz{I},fix{I},fiy{I},fiz{I},iq{I},isai{I};
125     /* #endfor */
126     /* #for J in PARTICLES_J */
127     int              vdwjidx{J}A,vdwjidx{J}B,vdwjidx{J}C,vdwjidx{J}D;
128     __m128           jx{J},jy{J},jz{J},fjx{J},fjy{J},fjz{J},jq{J},isaj{J};
129     /* #endfor */
130     /* #for I,J in PAIRS_IJ */
131     __m128           dx{I}{J},dy{I}{J},dz{I}{J},rsq{I}{J},rinv{I}{J},rinvsq{I}{J},r{I}{J},qq{I}{J},c6_{I}{J},c12_{I}{J};
132     /* #endfor */
133     /* #if KERNEL_ELEC != 'None' */
134     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
135     real             *charge;
136     /* #endif */
137     /* #if 'GeneralizedBorn' in KERNEL_ELEC */
138     __m128i          gbitab;
139     __m128           vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,twogbeps,dvdatmp;
140     __m128           minushalf = _mm_set1_ps(-0.5);
141     real             *invsqrta,*dvda,*gbtab;
142     /* #endif */
143     /* #if KERNEL_VDW != 'None' */
144     int              nvdwtype;
145     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
146     int              *vdwtype;
147     real             *vdwparam;
148     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
149     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
150     /* #endif */
151     /* #if 'Table' in KERNEL_ELEC or 'GeneralizedBorn' in KERNEL_ELEC or 'Table' in KERNEL_VDW */
152     __m128i          vfitab;
153     __m128i          ifour       = _mm_set1_epi32(4);
154     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
155     real             *vftab;
156     /* #endif */
157     /* #if 'LJEwald' in KERNEL_VDW */
158     /* #for I,J in PAIRS_IJ */
159     __m128           c6grid_{I}{J};
160     /* #endfor */
161     real             *vdwgridparam;
162     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
163     __m128           one_half = _mm_set1_ps(0.5);
164     __m128           minus_one = _mm_set1_ps(-1.0);
165     /* #endif */
166     /* #if 'Ewald' in KERNEL_ELEC */
167     __m128i          ewitab;
168     __m128           ewtabscale,eweps,twoeweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
169     __m128           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
170     real             *ewtab;
171     /* #endif */
172     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
173     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
174     real             rswitch_scalar,d_scalar;
175     /* #endif */
176     __m128           dummy_mask,cutoff_mask;
177     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
178     __m128           one     = _mm_set1_ps(1.0);
179     __m128           two     = _mm_set1_ps(2.0);
180     x                = xx[0];
181     f                = ff[0];
182
183     nri              = nlist->nri;
184     iinr             = nlist->iinr;
185     jindex           = nlist->jindex;
186     jjnr             = nlist->jjnr;
187     shiftidx         = nlist->shift;
188     gid              = nlist->gid;
189     shiftvec         = fr->shift_vec[0];
190     fshift           = fr->fshift[0];
191     /* #if KERNEL_ELEC != 'None' */
192     facel            = _mm_set1_ps(fr->epsfac);
193     charge           = mdatoms->chargeA;
194     /*     #if 'ReactionField' in KERNEL_ELEC */
195     krf              = _mm_set1_ps(fr->ic->k_rf);
196     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
197     crf              = _mm_set1_ps(fr->ic->c_rf);
198     /*     #endif */
199     /* #endif */
200     /* #if KERNEL_VDW != 'None' */
201     nvdwtype         = fr->ntype;
202     vdwparam         = fr->nbfp;
203     vdwtype          = mdatoms->typeA;
204     /* #endif */
205     /* #if 'LJEwald' in KERNEL_VDW */
206     vdwgridparam     = fr->ljpme_c6grid;
207     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
208     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
209     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
210     /* #endif */
211
212     /* #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW */
213     vftab            = kernel_data->table_elec_vdw->data;
214     vftabscale       = _mm_set1_ps(kernel_data->table_elec_vdw->scale);
215     /* #elif 'Table' in KERNEL_ELEC */
216     vftab            = kernel_data->table_elec->data;
217     vftabscale       = _mm_set1_ps(kernel_data->table_elec->scale);
218     /* #elif 'Table' in KERNEL_VDW */
219     vftab            = kernel_data->table_vdw->data;
220     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
221     /* #endif */
222
223     /* #if 'Ewald' in KERNEL_ELEC */
224     sh_ewald         = _mm_set1_ps(fr->ic->sh_ewald);
225     beta             = _mm_set1_ps(fr->ic->ewaldcoeff_q);
226     beta2            = _mm_mul_ps(beta,beta);
227     beta3            = _mm_mul_ps(beta,beta2);
228     /*     #if KERNEL_VF=='Force' and KERNEL_MOD_ELEC!='PotentialSwitch' */
229     ewtab            = fr->ic->tabq_coul_F;
230     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
231     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
232     /*     #else */
233     ewtab            = fr->ic->tabq_coul_FDV0;
234     ewtabscale       = _mm_set1_ps(fr->ic->tabq_scale);
235     ewtabhalfspace   = _mm_set1_ps(0.5/fr->ic->tabq_scale);
236      /*     #endif */
237     /* #endif */
238
239     /* #if KERNEL_ELEC=='GeneralizedBorn' */
240     invsqrta         = fr->invsqrta;
241     dvda             = fr->dvda;
242     gbtabscale       = _mm_set1_ps(fr->gbtab.scale);
243     gbtab            = fr->gbtab.data;
244     gbinvepsdiff     = _mm_set1_ps((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
245     /* #endif */
246
247     /* #if 'Water' in GEOMETRY_I */
248     /* Setup water-specific parameters */
249     inr              = nlist->iinr[0];
250     /*     #for I in PARTICLES_ELEC_I */
251     iq{I}              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+{I}]));
252     /*     #endfor */
253     /*     #for I in PARTICLES_VDW_I */
254     vdwioffset{I}      = 2*nvdwtype*vdwtype[inr+{I}];
255     /*     #endfor */
256     /* #endif */
257
258     /* #if 'Water' in GEOMETRY_J */
259     /*     #for J in PARTICLES_ELEC_J */
260     jq{J}              = _mm_set1_ps(charge[inr+{J}]);
261     /*     #endfor */
262     /*     #for J in PARTICLES_VDW_J */
263     vdwjidx{J}A        = 2*vdwtype[inr+{J}];
264     /*     #endfor */
265     /*     #for I,J in PAIRS_IJ */
266     /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
267     qq{I}{J}             = _mm_mul_ps(iq{I},jq{J});
268     /*         #endif */
269     /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
270     /*             #if 'LJEwald' in KERNEL_VDW */
271     c6_{I}{J}            = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A]);
272     c12_{I}{J}           = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A+1]);
273     c6grid_{I}{J}        = _mm_set1_ps(vdwgridparam[vdwioffset{I}+vdwjidx{J}A]);
274     /*             #else */
275     c6_{I}{J}            = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A]);
276     c12_{I}{J}           = _mm_set1_ps(vdwparam[vdwioffset{I}+vdwjidx{J}A+1]);
277     /*             #endif */
278     /*         #endif */
279     /*     #endfor */
280     /* #endif */
281
282     /* #if KERNEL_MOD_ELEC!='None' or KERNEL_MOD_VDW!='None' */
283     /*     #if KERNEL_ELEC!='None' */
284     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
285     rcutoff_scalar   = fr->rcoulomb;
286     /*     #else */
287     rcutoff_scalar   = fr->rvdw;
288     /*     #endif */
289     rcutoff          = _mm_set1_ps(rcutoff_scalar);
290     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
291     /* #endif */
292
293     /* #if KERNEL_MOD_VDW=='PotentialShift' */
294     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
295     rvdw             = _mm_set1_ps(fr->rvdw);
296     /* #endif */
297
298     /* #if 'PotentialSwitch' in [KERNEL_MOD_ELEC,KERNEL_MOD_VDW] */
299     /*     #if KERNEL_MOD_ELEC=='PotentialSwitch'  */
300     rswitch_scalar   = fr->rcoulomb_switch;
301     rswitch          = _mm_set1_ps(rswitch_scalar);
302     /*     #else */
303     rswitch_scalar   = fr->rvdw_switch;
304     rswitch          = _mm_set1_ps(rswitch_scalar);
305     /*     #endif */
306     /* Setup switch parameters */
307     d_scalar         = rcutoff_scalar-rswitch_scalar;
308     d                = _mm_set1_ps(d_scalar);
309     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
310     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
311     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
312     /*     #if 'Force' in KERNEL_VF */
313     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
314     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
315     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
316     /*     #endif */
317     /* #endif */
318
319     /* Avoid stupid compiler warnings */
320     jnrA = jnrB = jnrC = jnrD = 0;
321     j_coord_offsetA = 0;
322     j_coord_offsetB = 0;
323     j_coord_offsetC = 0;
324     j_coord_offsetD = 0;
325
326     /* ## Keep track of the floating point operations we issue for reporting! */
327     /* #define OUTERFLOPS 0 */
328     outeriter        = 0;
329     inneriter        = 0;
330
331     for(iidx=0;iidx<4*DIM;iidx++)
332     {
333         scratch[iidx] = 0.0;
334     }
335
336     /* Start outer loop over neighborlists */
337     for(iidx=0; iidx<nri; iidx++)
338     {
339         /* Load shift vector for this list */
340         i_shift_offset   = DIM*shiftidx[iidx];
341
342         /* Load limits for loop over neighbors */
343         j_index_start    = jindex[iidx];
344         j_index_end      = jindex[iidx+1];
345
346         /* Get outer coordinate index */
347         inr              = iinr[iidx];
348         i_coord_offset   = DIM*inr;
349
350         /* Load i particle coords and add shift vector */
351         /* #if GEOMETRY_I == 'Particle' */
352         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
353         /* #elif GEOMETRY_I == 'Water3' */
354         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
355                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
356         /* #elif GEOMETRY_I == 'Water4' */
357         /*     #if 0 in PARTICLES_I                 */
358         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
359                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
360         /*     #else                                */
361         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM,
362                                                  &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
363         /*     #endif                               */
364         /* #endif                                   */
365
366         /* #if 'Force' in KERNEL_VF */
367         /*     #for I in PARTICLES_I */
368         fix{I}             = _mm_setzero_ps();
369         fiy{I}             = _mm_setzero_ps();
370         fiz{I}             = _mm_setzero_ps();
371         /*     #endfor */
372         /* #endif */
373
374         /* ## For water we already preloaded parameters at the start of the kernel */
375         /* #if not 'Water' in GEOMETRY_I */
376         /* Load parameters for i particles */
377         /*     #for I in PARTICLES_ELEC_I */
378         iq{I}              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+{I}));
379         /*         #define OUTERFLOPS OUTERFLOPS+1 */
380         /*         #if KERNEL_ELEC=='GeneralizedBorn' */
381         isai{I}            = _mm_load1_ps(invsqrta+inr+{I});
382         /*         #endif */
383         /*     #endfor */
384         /*     #for I in PARTICLES_VDW_I */
385         vdwioffset{I}      = 2*nvdwtype*vdwtype[inr+{I}];
386         /*     #endfor */
387         /* #endif */
388
389         /* #if 'Potential' in KERNEL_VF */
390         /* Reset potential sums */
391         /*     #if KERNEL_ELEC != 'None' */
392         velecsum         = _mm_setzero_ps();
393         /*     #endif */
394         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
395         vgbsum           = _mm_setzero_ps();
396         /*     #endif */
397         /*     #if KERNEL_VDW != 'None' */
398         vvdwsum          = _mm_setzero_ps();
399         /*     #endif */
400         /* #endif */
401         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
402         dvdasum          = _mm_setzero_ps();
403         /*     #endif */
404
405         /* #for ROUND in ['Loop','Epilogue'] */
406
407         /* #if ROUND =='Loop' */
408         /* Start inner kernel loop */
409         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
410         {
411         /* ## First round is normal loop (next statement resets indentation) */
412         /*     #if 0 */
413         }
414         /*     #endif */
415         /* #else */
416         if(jidx<j_index_end)
417         {
418         /* ## Second round is epilogue */
419         /* #endif */
420         /* #define INNERFLOPS 0 */
421
422             /* Get j neighbor index, and coordinate index */
423             /* #if ROUND =='Loop' */
424             jnrA             = jjnr[jidx];
425             jnrB             = jjnr[jidx+1];
426             jnrC             = jjnr[jidx+2];
427             jnrD             = jjnr[jidx+3];
428             /* #else */
429             jnrlistA         = jjnr[jidx];
430             jnrlistB         = jjnr[jidx+1];
431             jnrlistC         = jjnr[jidx+2];
432             jnrlistD         = jjnr[jidx+3];
433             /* Sign of each element will be negative for non-real atoms.
434              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
435              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
436              */
437             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
438             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
439             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
440             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
441             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
442             /* #endif */
443             j_coord_offsetA  = DIM*jnrA;
444             j_coord_offsetB  = DIM*jnrB;
445             j_coord_offsetC  = DIM*jnrC;
446             j_coord_offsetD  = DIM*jnrD;
447
448             /* load j atom coordinates */
449             /* #if GEOMETRY_J == 'Particle'             */
450             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
451                                               x+j_coord_offsetC,x+j_coord_offsetD,
452                                               &jx0,&jy0,&jz0);
453             /* #elif GEOMETRY_J == 'Water3'             */
454             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
455                                               x+j_coord_offsetC,x+j_coord_offsetD,
456                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
457             /* #elif GEOMETRY_J == 'Water4'             */
458             /*     #if 0 in PARTICLES_J                 */
459             gmx_mm_load_4rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                               x+j_coord_offsetC,x+j_coord_offsetD,
461                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,
462                                               &jy2,&jz2,&jx3,&jy3,&jz3);
463             /*     #else                                */
464             gmx_mm_load_3rvec_4ptr_swizzle_ps(x+j_coord_offsetA+DIM,x+j_coord_offsetB+DIM,
465                                               x+j_coord_offsetC+DIM,x+j_coord_offsetD+DIM,
466                                               &jx1,&jy1,&jz1,&jx2,&jy2,&jz2,&jx3,&jy3,&jz3);
467             /*     #endif                               */
468             /* #endif                                   */
469
470             /* Calculate displacement vector */
471             /* #for I,J in PAIRS_IJ */
472             dx{I}{J}             = _mm_sub_ps(ix{I},jx{J});
473             dy{I}{J}             = _mm_sub_ps(iy{I},jy{J});
474             dz{I}{J}             = _mm_sub_ps(iz{I},jz{J});
475             /*     #define INNERFLOPS INNERFLOPS+3 */
476             /* #endfor */
477
478             /* Calculate squared distance and things based on it */
479             /* #for I,J in PAIRS_IJ */
480             rsq{I}{J}            = gmx_mm_calc_rsq_ps(dx{I}{J},dy{I}{J},dz{I}{J});
481             /*     #define INNERFLOPS INNERFLOPS+5 */
482             /* #endfor */
483
484             /* #for I,J in PAIRS_IJ */
485             /*     #if 'rinv' in INTERACTION_FLAGS[I][J] */
486             rinv{I}{J}           = gmx_mm_invsqrt_ps(rsq{I}{J});
487             /*         #define INNERFLOPS INNERFLOPS+5 */
488             /*     #endif */
489             /* #endfor */
490
491             /* #for I,J in PAIRS_IJ */
492             /*     #if 'rinvsq' in INTERACTION_FLAGS[I][J] */
493             /*         # if 'rinv' not in INTERACTION_FLAGS[I][J] */
494             rinvsq{I}{J}         = gmx_mm_inv_ps(rsq{I}{J});
495             /*             #define INNERFLOPS INNERFLOPS+4 */
496             /*         #else */
497             rinvsq{I}{J}         = _mm_mul_ps(rinv{I}{J},rinv{I}{J});
498             /*             #define INNERFLOPS INNERFLOPS+1 */
499             /*         #endif */
500             /*     #endif */
501             /* #endfor */
502
503             /* #if not 'Water' in GEOMETRY_J */
504             /* Load parameters for j particles */
505             /*     #for J in PARTICLES_ELEC_J */
506             jq{J}              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+{J},charge+jnrB+{J},
507                                                               charge+jnrC+{J},charge+jnrD+{J});
508             /*         #if KERNEL_ELEC=='GeneralizedBorn' */
509             isaj{J}            = gmx_mm_load_4real_swizzle_ps(invsqrta+jnrA+{J},invsqrta+jnrB+{J},
510                                                               invsqrta+jnrC+{J},invsqrta+jnrD+{J});
511             /*         #endif */
512             /*     #endfor */
513             /*     #for J in PARTICLES_VDW_J */
514             vdwjidx{J}A        = 2*vdwtype[jnrA+{J}];
515             vdwjidx{J}B        = 2*vdwtype[jnrB+{J}];
516             vdwjidx{J}C        = 2*vdwtype[jnrC+{J}];
517             vdwjidx{J}D        = 2*vdwtype[jnrD+{J}];
518             /*     #endfor */
519             /* #endif */
520
521             /* #if 'Force' in KERNEL_VF and not 'Particle' in GEOMETRY_I */
522             /*     #for J in PARTICLES_J */
523             fjx{J}             = _mm_setzero_ps();
524             fjy{J}             = _mm_setzero_ps();
525             fjz{J}             = _mm_setzero_ps();
526             /*     #endfor */
527             /* #endif */
528
529             /* #for I,J in PAIRS_IJ */
530
531             /**************************
532              * CALCULATE INTERACTIONS *
533              **************************/
534
535             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
536             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
537             /*         ## We always calculate rinv/rinvsq above to enable pipelineing in compilers (performance tested on x86) */
538             if (gmx_mm_any_lt(rsq{I}{J},rcutoff2))
539             {
540                 /*     #if 0    ## this and the next two lines is a hack to maintain auto-indentation in template file */
541             }
542             /*         #endif */
543             /*         #define INNERFLOPS INNERFLOPS+1 */
544             /*     #endif */
545
546             /*     #if 'r' in INTERACTION_FLAGS[I][J] */
547             r{I}{J}              = _mm_mul_ps(rsq{I}{J},rinv{I}{J});
548             /*         #if ROUND == 'Epilogue' */
549             r{I}{J}              = _mm_andnot_ps(dummy_mask,r{I}{J});
550             /*             #define INNERFLOPS INNERFLOPS+1 */
551             /*         #endif */
552             /*         #define INNERFLOPS INNERFLOPS+1 */
553             /*     #endif */
554
555             /*     ## For water geometries we already loaded parameters at the start of the kernel */
556             /*     #if not 'Water' in GEOMETRY_J */
557             /* Compute parameters for interactions between i and j atoms */
558             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
559             qq{I}{J}             = _mm_mul_ps(iq{I},jq{J});
560             /*             #define INNERFLOPS INNERFLOPS+1 */
561             /*         #endif */
562             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
563             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset{I}+vdwjidx{J}A,
564                                          vdwparam+vdwioffset{I}+vdwjidx{J}B,
565                                          vdwparam+vdwioffset{I}+vdwjidx{J}C,
566                                          vdwparam+vdwioffset{I}+vdwjidx{J}D,
567                                          &c6_{I}{J},&c12_{I}{J});
568
569             /*           #if 'LJEwald' in KERNEL_VDW */
570             c6grid_{I}{J}       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset{I}+vdwjidx{J}A,
571                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}B,
572                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}C,
573                                                                vdwgridparam+vdwioffset{I}+vdwjidx{J}D);
574             /*           #endif */
575
576             /*         #endif */
577             /*     #endif */
578
579             /*     #if 'table' in INTERACTION_FLAGS[I][J] */
580             /* Calculate table index by multiplying r with table scale and truncate to integer */
581             rt               = _mm_mul_ps(r{I}{J},vftabscale);
582             vfitab           = _mm_cvttps_epi32(rt);
583 #ifdef __XOP__
584             vfeps            = _mm_frcz_ps(rt);
585 #else
586             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
587 #endif
588             twovfeps         = _mm_add_ps(vfeps,vfeps);
589             /*         #define INNERFLOPS INNERFLOPS+4                          */
590             /*         #if 'Table' in KERNEL_ELEC and 'Table' in KERNEL_VDW     */
591             /*             ## 3 tables, 4 bytes per point: multiply index by 12 */
592             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
593             /*         #elif 'Table' in KERNEL_ELEC                             */
594             /*             ## 1 table, 4 bytes per point: multiply index by 4   */
595             vfitab           = _mm_slli_epi32(vfitab,2);
596             /*         #elif 'Table' in KERNEL_VDW                              */
597             /*             ## 2 tables, 4 bytes per point: multiply index by 8  */
598             vfitab           = _mm_slli_epi32(vfitab,3);
599             /*         #endif                                                   */
600             /*     #endif */
601
602             /*     ## ELECTROSTATIC INTERACTIONS */
603             /*     #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
604
605             /*         #if KERNEL_ELEC=='Coulomb' */
606
607             /* COULOMB ELECTROSTATICS */
608             velec            = _mm_mul_ps(qq{I}{J},rinv{I}{J});
609             /*             #define INNERFLOPS INNERFLOPS+1 */
610             /*             #if 'Force' in KERNEL_VF */
611             felec            = _mm_mul_ps(velec,rinvsq{I}{J});
612             /*                 #define INNERFLOPS INNERFLOPS+2 */
613             /*             #endif */
614
615             /*         #elif KERNEL_ELEC=='ReactionField' */
616
617             /* REACTION-FIELD ELECTROSTATICS */
618             /*             #if 'Potential' in KERNEL_VF */
619             velec            = _mm_mul_ps(qq{I}{J},_mm_sub_ps(_mm_macc_ps(krf,rsq{I}{J},rinv{I}{J}),crf));
620             /*                 #define INNERFLOPS INNERFLOPS+4 */
621             /*             #endif */
622             /*             #if 'Force' in KERNEL_VF */
623             felec            = _mm_mul_ps(qq{I}{J},_mm_msub_ps(rinv{I}{J},rinvsq{I}{J},krf2));
624             /*                 #define INNERFLOPS INNERFLOPS+3 */
625             /*             #endif */
626
627             /*         #elif KERNEL_ELEC=='GeneralizedBorn' */
628
629             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
630             isaprod          = _mm_mul_ps(isai{I},isaj{J});
631             gbqqfactor       = _mm_xor_ps(signbit,_mm_mul_ps(qq{I}{J},_mm_mul_ps(isaprod,gbinvepsdiff)));
632             gbscale          = _mm_mul_ps(isaprod,gbtabscale);
633             /*             #define INNERFLOPS INNERFLOPS+5 */
634
635             /* Calculate generalized born table index - this is a separate table from the normal one,
636              * but we use the same procedure by multiplying r with scale and truncating to integer.
637              */
638             rt               = _mm_mul_ps(r{I}{J},gbscale);
639             gbitab           = _mm_cvttps_epi32(rt);
640 #ifdef __XOP__
641             gbeps            = _mm_frcz_ps(rt);
642 #else
643             gbeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
644 #endif
645             gbitab           = _mm_slli_epi32(gbitab,2);
646
647             Y                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,0) );
648             F                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,1) );
649             G                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,2) );
650             H                = _mm_load_ps( gbtab + _mm_extract_epi32(gbitab,3) );
651             _MM_TRANSPOSE4_PS(Y,F,G,H);
652             Fp               = _mm_macc_ps(gbeps,_mm_macc_ps(gbeps,H,G),F);
653             VV               = _mm_macc_ps(gbeps,Fp,Y);
654             vgb              = _mm_mul_ps(gbqqfactor,VV);
655             /*             #define INNERFLOPS INNERFLOPS+10 */
656
657             /*             #if 'Force' in KERNEL_VF */
658             twogbeps         = _mm_add_ps(gbeps,gbeps);
659             FF               = _mm_macc_ps(_mm_macc_ps(twogbeps,H,G),gbeps,Fp);
660             fgb              = _mm_mul_ps(gbqqfactor,_mm_mul_ps(FF,gbscale));
661             dvdatmp          = _mm_mul_ps(minushalf,_mm_macc_ps(fgb,r{I}{J},vgb));
662             /*                 #if ROUND == 'Epilogue' */
663             dvdatmp          = _mm_andnot_ps(dummy_mask,dvdatmp);
664             /*                 #endif */
665             dvdasum          = _mm_add_ps(dvdasum,dvdatmp);
666             /*                 #if ROUND == 'Loop' */
667             fjptrA           = dvda+jnrA;
668             fjptrB           = dvda+jnrB;
669             fjptrC           = dvda+jnrC;
670             fjptrD           = dvda+jnrD;
671             /*                 #else */
672             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
673             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
674             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
675             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
676             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
677             /*                 #endif */
678             gmx_mm_increment_4real_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,_mm_mul_ps(dvdatmp,_mm_mul_ps(isaj{J},isaj{J})));
679             /*                 #define INNERFLOPS INNERFLOPS+13 */
680             /*             #endif */
681             velec            = _mm_mul_ps(qq{I}{J},rinv{I}{J});
682             /*                 #define INNERFLOPS INNERFLOPS+1 */
683             /*             #if 'Force' in KERNEL_VF */
684             felec            = _mm_mul_ps(_mm_msub_ps(velec,rinv{I}{J},fgb),rinv{I}{J});
685             /*                 #define INNERFLOPS INNERFLOPS+3 */
686             /*             #endif */
687
688             /*         #elif KERNEL_ELEC=='Ewald' */
689             /* EWALD ELECTROSTATICS */
690
691             /* Analytical PME correction */
692             zeta2            = _mm_mul_ps(beta2,rsq{I}{J});
693             /*             #if 'Force' in KERNEL_VF */
694             rinv3            = _mm_mul_ps(rinvsq{I}{J},rinv{I}{J});
695             pmecorrF         = gmx_mm_pmecorrF_ps(zeta2);
696             felec            = _mm_macc_ps(pmecorrF,beta3,rinv3);
697             felec            = _mm_mul_ps(qq{I}{J},felec);
698             /*             #endif */
699             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_ELEC=='PotentialSwitch' */
700             pmecorrV         = gmx_mm_pmecorrV_ps(zeta2);
701             /*                 #if KERNEL_MOD_ELEC=='PotentialShift' */
702             velec            = _mm_nmacc_ps(pmecorrV,beta,_mm_sub_ps(rinv{I}{J},sh_ewald));
703             /*                 #else */
704             velec            = _mm_nmacc_ps(pmecorrV,beta,rinv{I}{J});
705             /*                 #endif */
706             velec            = _mm_mul_ps(qq{I}{J},velec);
707             /*             #endif */
708
709             /*         #elif KERNEL_ELEC=='CubicSplineTable' */
710
711             /* CUBIC SPLINE TABLE ELECTROSTATICS */
712             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
713             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
714             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
715             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
716             _MM_TRANSPOSE4_PS(Y,F,G,H);
717             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
718             /*             #define INNERFLOPS INNERFLOPS+4 */
719             /*             #if 'Potential' in KERNEL_VF */
720             VV               = _mm_macc_ps(vfeps,Fp,Y);
721             velec            = _mm_mul_ps(qq{I}{J},VV);
722             /*                 #define INNERFLOPS INNERFLOPS+3 */
723             /*             #endif */
724             /*             #if 'Force' in KERNEL_VF */
725             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
726             felec            = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq{I}{J},FF),_mm_mul_ps(vftabscale,rinv{I}{J})));
727             /*                 #define INNERFLOPS INNERFLOPS+7 */
728             /*             #endif */
729             /*         #endif */
730             /*         ## End of check for electrostatics interaction forms */
731             /*     #endif */
732             /*     ## END OF ELECTROSTATIC INTERACTION CHECK FOR PAIR I-J */
733
734             /*     #if 'vdw' in INTERACTION_FLAGS[I][J] */
735
736             /*         #if KERNEL_VDW=='LennardJones' */
737
738             /* LENNARD-JONES DISPERSION/REPULSION */
739
740             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
741             /*             #define INNERFLOPS INNERFLOPS+2 */
742             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
743             vvdw6            = _mm_mul_ps(c6_{I}{J},rinvsix);
744             vvdw12           = _mm_mul_ps(c12_{I}{J},_mm_mul_ps(rinvsix,rinvsix));
745             /*                 #define INNERFLOPS INNERFLOPS+3 */
746             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
747             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_{I}{J},_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
748                                           _mm_mul_ps( _mm_nmacc_ps(c6_{I}{J},sh_vdw_invrcut6,vvdw6),one_sixth));
749             /*                     #define INNERFLOPS INNERFLOPS+8 */
750             /*                 #else */
751             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
752             /*                     #define INNERFLOPS INNERFLOPS+3 */
753             /*                 #endif */
754             /*                 ## Check for force inside potential check, i.e. this means we already did the potential part */
755             /*                 #if 'Force' in KERNEL_VF */
756             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq{I}{J});
757             /*                     #define INNERFLOPS INNERFLOPS+2 */
758             /*                 #endif */
759             /*             #elif KERNEL_VF=='Force' */
760             /*                 ## Force-only LennardJones makes it possible to save 1 flop (they do add up...) */
761             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_{I}{J},rinvsix,c6_{I}{J}),_mm_mul_ps(rinvsix,rinvsq{I}{J}));
762             /*                 #define INNERFLOPS INNERFLOPS+4 */
763             /*             #endif */
764
765             /*         #elif KERNEL_VDW=='CubicSplineTable' */
766
767             /* CUBIC SPLINE TABLE DISPERSION */
768             /*             #if 'Table' in KERNEL_ELEC */
769             vfitab           = _mm_add_epi32(vfitab,ifour);
770             /*             #endif                     */
771             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
772             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
773             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
774             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
775             _MM_TRANSPOSE4_PS(Y,F,G,H);
776             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
777             /*             #define INNERFLOPS INNERFLOPS+4 */
778             /*             #if 'Potential' in KERNEL_VF */
779             VV               = _mm_macc_ps(vfeps,Fp,Y);
780             vvdw6            = _mm_mul_ps(c6_{I}{J},VV);
781             /*                 #define INNERFLOPS INNERFLOPS+3 */
782             /*             #endif */
783             /*             #if 'Force' in KERNEL_VF */
784             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
785             fvdw6            = _mm_mul_ps(c6_{I}{J},FF);
786             /*                 #define INNERFLOPS INNERFLOPS+4 */
787             /*             #endif */
788
789             /* CUBIC SPLINE TABLE REPULSION */
790             vfitab           = _mm_add_epi32(vfitab,ifour);
791             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
792             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
793             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
794             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
795             _MM_TRANSPOSE4_PS(Y,F,G,H);
796             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
797             /*             #define INNERFLOPS INNERFLOPS+4 */
798             /*             #if 'Potential' in KERNEL_VF */
799             VV               = _mm_macc_ps(vfeps,Fp,Y);
800             vvdw12           = _mm_mul_ps(c12_{I}{J},VV);
801             /*                 #define INNERFLOPS INNERFLOPS+3 */
802             /*             #endif */
803             /*             #if 'Force' in KERNEL_VF */
804             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
805             fvdw12           = _mm_mul_ps(c12_{I}{J},FF);
806             /*                 #define INNERFLOPS INNERFLOPS+5 */
807             /*             #endif */
808             /*             #if 'Potential' in KERNEL_VF */
809             vvdw             = _mm_add_ps(vvdw12,vvdw6);
810             /*                 #define INNERFLOPS INNERFLOPS+1 */
811             /*             #endif */
812             /*             #if 'Force' in KERNEL_VF */
813             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv{I}{J})));
814             /*                 #define INNERFLOPS INNERFLOPS+4 */
815             /*             #endif */
816
817             /*         #elif KERNEL_VDW=='LJEwald' */
818
819             /* Analytical LJ-PME */
820             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq{I}{J},rinvsq{I}{J}),rinvsq{I}{J});
821             ewcljrsq         = _mm_mul_ps(ewclj2,rsq{I}{J});
822             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
823             exponent         = gmx_simd_exp_r(ewcljrsq);
824             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
825             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
826             /*                 #define INNERFLOPS INNERFLOPS+10 */
827             /*             #if 'Potential' in KERNEL_VF or KERNEL_MOD_VDW=='PotentialSwitch' */
828             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
829             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_{I}{J},_mm_sub_ps(one,poly),c6_{I}{J}),rinvsix);
830             vvdw12           = _mm_mul_ps(c12_{I}{J},_mm_mul_ps(rinvsix,rinvsix));
831             /*                     #define INNERFLOPS INNERFLOPS+5 */
832             /*                 #if KERNEL_MOD_VDW=='PotentialShift' */
833             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_{I}{J},_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
834                                           _mm_mul_ps(_mm_sub_ps(vvdw6,_mm_macc_ps(c6grid_{I}{J},sh_lj_ewald,_mm_mul_ps(c6_{I}{J},sh_vdw_invrcut6))),one_sixth));
835             /*                     #define INNERFLOPS INNERFLOPS+7 */
836             /*                 #else */
837             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
838             /*                     #define INNERFLOPS INNERFLOPS+2 */
839             /*                 #endif */
840             /*                  ## Check for force inside potential check, i.e. this means we already did the potential part */
841             /*                  #if 'Force' in KERNEL_VF */
842             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
843             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_{I}{J},one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq{I}{J});
844             /*                 #define INNERFLOPS INNERFLOPS+5 */
845             /*                  #endif */
846             /*              #elif KERNEL_VF=='Force' */
847             /* f6A = 6 * C6grid * (1 - poly) */
848             f6A              = _mm_mul_ps(c6grid_{I}{J},_mm_sub_ps(one,poly));
849             /* f6B = C6grid * exponent * beta^6 */
850             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_{I}{J},one_sixth),_mm_mul_ps(exponent,ewclj6));
851             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
852             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_{I}{J},rinvsix,_mm_sub_ps(c6_{I}{J},f6A)),rinvsix,f6B),rinvsq{I}{J});
853             /*                 #define INNERFLOPS INNERFLOPS+10 */
854             /*              #endif */
855             /*         #endif */
856             /*         ## End of check for vdw interaction forms */
857             /*     #endif */
858             /*     ## END OF VDW INTERACTION CHECK FOR PAIR I-J */
859
860             /*     #if 'switch' in INTERACTION_FLAGS[I][J] */
861             d                = _mm_sub_ps(r{I}{J},rswitch);
862             d                = _mm_max_ps(d,_mm_setzero_ps());
863             d2               = _mm_mul_ps(d,d);
864             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
865             /*         #define INNERFLOPS INNERFLOPS+10 */
866
867             /*         #if 'Force' in KERNEL_VF */
868             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
869             /*             #define INNERFLOPS INNERFLOPS+5 */
870             /*         #endif */
871
872             /* Evaluate switch function */
873             /*         #if 'Force' in KERNEL_VF */
874             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
875             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
876             felec            = _mm_msub_ps( felec,sw , _mm_mul_ps(rinv{I}{J},_mm_mul_ps(velec,dsw)) );
877             /*                 #define INNERFLOPS INNERFLOPS+4 */
878             /*             #endif */
879             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
880             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv{I}{J},_mm_mul_ps(vvdw,dsw)) );
881             /*                 #define INNERFLOPS INNERFLOPS+4 */
882             /*             #endif */
883             /*         #endif */
884             /*         #if 'Potential' in KERNEL_VF */
885             /*             #if 'electrostatics' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_ELEC=='PotentialSwitch' */
886             velec            = _mm_mul_ps(velec,sw);
887             /*                 #define INNERFLOPS INNERFLOPS+1 */
888             /*             #endif */
889             /*             #if 'vdw' in INTERACTION_FLAGS[I][J] and KERNEL_MOD_VDW=='PotentialSwitch' */
890             vvdw             = _mm_mul_ps(vvdw,sw);
891             /*                 #define INNERFLOPS INNERFLOPS+1 */
892             /*             #endif */
893             /*         #endif */
894             /*     #endif */
895             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
896             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
897             cutoff_mask      = _mm_cmplt_ps(rsq{I}{J},rcutoff2);
898             /*         #define INNERFLOPS INNERFLOPS+1 */
899             /*     #endif */
900
901             /*     #if 'Potential' in KERNEL_VF */
902             /* Update potential sum for this i atom from the interaction with this j atom. */
903             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] */
904             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
905             velec            = _mm_and_ps(velec,cutoff_mask);
906             /*                 #define INNERFLOPS INNERFLOPS+1 */
907             /*             #endif                                       */
908             /*             #if ROUND == 'Epilogue' */
909             velec            = _mm_andnot_ps(dummy_mask,velec);
910             /*             #endif */
911             velecsum         = _mm_add_ps(velecsum,velec);
912             /*             #define INNERFLOPS INNERFLOPS+1 */
913             /*             #if KERNEL_ELEC=='GeneralizedBorn' */
914             /*             #if 'exactcutoff' in INTERACTION_FLAGS[I][J] */
915             vgb              = _mm_and_ps(vgb,cutoff_mask);
916             /*                 #define INNERFLOPS INNERFLOPS+1 */
917             /*             #endif                                       */
918             /*             #if ROUND == 'Epilogue' */
919             vgb              = _mm_andnot_ps(dummy_mask,vgb);
920             /*             #endif */
921             vgbsum           = _mm_add_ps(vgbsum,vgb);
922             /*                 #define INNERFLOPS INNERFLOPS+1 */
923             /*             #endif */
924             /*         #endif */
925             /*         #if 'vdw' in INTERACTION_FLAGS[I][J] */
926             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
927             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
928             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
929             /*                 #define INNERFLOPS INNERFLOPS+1 */
930             /*             #endif                                       */
931             /*             #if ROUND == 'Epilogue' */
932             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
933             /*             #endif */
934             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
935             /*             #define INNERFLOPS INNERFLOPS+1 */
936             /*         #endif */
937             /*     #endif */
938
939             /*     #if 'Force' in KERNEL_VF */
940
941             /*         #if 'electrostatics' in INTERACTION_FLAGS[I][J] and 'vdw' in INTERACTION_FLAGS[I][J] */
942             fscal            = _mm_add_ps(felec,fvdw);
943             /*             #define INNERFLOPS INNERFLOPS+1 */
944             /*         #elif 'electrostatics' in INTERACTION_FLAGS[I][J] */
945             fscal            = felec;
946             /*         #elif 'vdw' in INTERACTION_FLAGS[I][J] */
947             fscal            = fvdw;
948             /*        #endif */
949
950             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
951             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
952             fscal            = _mm_and_ps(fscal,cutoff_mask);
953             /*                 #define INNERFLOPS INNERFLOPS+1 */
954             /*             #endif                                       */
955
956             /*             #if ROUND == 'Epilogue' */
957             fscal            = _mm_andnot_ps(dummy_mask,fscal);
958             /*             #endif */
959
960             /* ## Construction of vectorial force built into FMA instructions now */
961             /* #define INNERFLOPS INNERFLOPS+3      */
962
963              /* Update vectorial force */
964             fix{I}             = _mm_macc_ps(dx{I}{J},fscal,fix{I});
965             fiy{I}             = _mm_macc_ps(dy{I}{J},fscal,fiy{I});
966             fiz{I}             = _mm_macc_ps(dz{I}{J},fscal,fiz{I});
967             /*             #define INNERFLOPS INNERFLOPS+6 */
968
969             /* #if GEOMETRY_I == 'Particle'             */
970             /*     #if ROUND == 'Loop' */
971             fjptrA             = f+j_coord_offsetA;
972             fjptrB             = f+j_coord_offsetB;
973             fjptrC             = f+j_coord_offsetC;
974             fjptrD             = f+j_coord_offsetD;
975             /*     #else */
976             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
977             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
978             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
979             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
980             /*     #endif */
981             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
982                                                    _mm_mul_ps(dx{I}{J},fscal),
983                                                    _mm_mul_ps(dy{I}{J},fscal),
984                                                    _mm_mul_ps(dz{I}{J},fscal));
985             /*     #define INNERFLOPS INNERFLOPS+3      */
986             /* #else                                    */
987             fjx{J}             = _mm_macc_ps(dx{I}{J},fscal,fjx{J});
988             fjy{J}             = _mm_macc_ps(dy{I}{J},fscal,fjy{J});
989             fjz{J}             = _mm_macc_ps(dz{I}{J},fscal,fjz{J});
990             /*     #define INNERFLOPS INNERFLOPS+3      */
991             /* #endif                                   */
992
993             /*     #endif */
994
995             /*     ## Note special check for TIP4P-TIP4P. Since we are cutting of all hydrogen interactions we also cut the LJ-only O-O interaction */
996             /*     #if 'exactcutoff' in INTERACTION_FLAGS[I][J] or (GEOMETRY_I=='Water4' and GEOMETRY_J=='Water4' and 'exactcutoff' in INTERACTION_FLAGS[1][1]) */
997             /*         #if 0    ## This and next two lines is a hack to maintain indentation in template file */
998             {
999                 /*     #endif */
1000             }
1001             /*     #endif */
1002             /*    ## End of check for the interaction being outside the cutoff */
1003
1004             /* #endfor */
1005             /* ## End of loop over i-j interaction pairs */
1006
1007             /* #if GEOMETRY_I != 'Particle' */
1008             /*     #if ROUND == 'Loop' */
1009             fjptrA             = f+j_coord_offsetA;
1010             fjptrB             = f+j_coord_offsetB;
1011             fjptrC             = f+j_coord_offsetC;
1012             fjptrD             = f+j_coord_offsetD;
1013             /*     #else */
1014             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1015             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1016             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1017             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1018             /*     #endif */
1019             /* #endif */
1020
1021             /* #if 'Water' in GEOMETRY_I and GEOMETRY_J == 'Particle' */
1022             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1023             /* #elif GEOMETRY_J == 'Water3'               */
1024             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1025                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1026             /*     #define INNERFLOPS INNERFLOPS+9      */
1027             /* #elif GEOMETRY_J == 'Water4'             */
1028             /*     #if 0 in PARTICLES_J                 */
1029             gmx_mm_decrement_4rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
1030                                                    fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,
1031                                                    fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1032             /*     #define INNERFLOPS INNERFLOPS+12     */
1033             /*     #else                                */
1034             gmx_mm_decrement_3rvec_4ptr_swizzle_ps(fjptrA+DIM,fjptrB+DIM,fjptrC+DIM,fjptrD+DIM,
1035                                                    fjx1,fjy1,fjz1,fjx2,fjy2,fjz2,fjx3,fjy3,fjz3);
1036             /*     #define INNERFLOPS INNERFLOPS+9      */
1037             /*     #endif                               */
1038             /* #endif                                   */
1039
1040             /* Inner loop uses {INNERFLOPS} flops */
1041         }
1042
1043         /* #endfor */
1044
1045         /* End of innermost loop */
1046
1047         /* #if 'Force' in KERNEL_VF */
1048         /*     #if GEOMETRY_I == 'Particle'            */
1049         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1050                                               f+i_coord_offset,fshift+i_shift_offset);
1051         /*         #define OUTERFLOPS OUTERFLOPS+6     */
1052         /*     #elif GEOMETRY_I == 'Water3'            */
1053         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1054                                               f+i_coord_offset,fshift+i_shift_offset);
1055         /*         #define OUTERFLOPS OUTERFLOPS+18    */
1056         /*     #elif GEOMETRY_I == 'Water4'            */
1057         /*         #if 0 in PARTICLES_I                */
1058         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1059                                               f+i_coord_offset,fshift+i_shift_offset);
1060         /*             #define OUTERFLOPS OUTERFLOPS+24    */
1061         /*         #else                               */
1062         gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1063                                               f+i_coord_offset+DIM,fshift+i_shift_offset);
1064         /*             #define OUTERFLOPS OUTERFLOPS+18    */
1065         /*         #endif                              */
1066         /*     #endif                                  */
1067         /* #endif                                      */
1068
1069         /* #if 'Potential' in KERNEL_VF */
1070         ggid                        = gid[iidx];
1071         /* Update potential energies */
1072         /*     #if KERNEL_ELEC != 'None' */
1073         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
1074         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1075         /*     #endif */
1076         /*     #if 'GeneralizedBorn' in KERNEL_ELEC */
1077         gmx_mm_update_1pot_ps(vgbsum,kernel_data->energygrp_polarization+ggid);
1078         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1079         /*     #endif */
1080         /*     #if KERNEL_VDW != 'None' */
1081         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
1082         /*         #define OUTERFLOPS OUTERFLOPS+1 */
1083         /*     #endif */
1084         /* #endif */
1085         /*     #if 'GeneralizedBorn' in KERNEL_ELEC and 'Force' in KERNEL_VF */
1086         dvdasum = _mm_mul_ps(dvdasum, _mm_mul_ps(isai{I},isai{I}));
1087         gmx_mm_update_1pot_ps(dvdasum,dvda+inr);
1088         /*     #endif */
1089
1090         /* Increment number of inner iterations */
1091         inneriter                  += j_index_end - j_index_start;
1092
1093         /* Outer loop uses {OUTERFLOPS} flops */
1094     }
1095
1096     /* Increment number of outer iterations */
1097     outeriter        += nri;
1098
1099     /* Update outer/inner flops */
1100     /* ## NB: This is not important, it just affects the flopcount. However, since our preprocessor is */
1101     /* ## primitive and replaces aggressively even in strings inside these directives, we need to      */
1102     /* ## assemble the main part of the name (containing KERNEL/ELEC/VDW) directly in the source.      */
1103     /* #if GEOMETRY_I == 'Water3'            */
1104     /*     #define ISUFFIX '_W3'             */
1105     /* #elif GEOMETRY_I == 'Water4'          */
1106     /*     #define ISUFFIX '_W4'             */
1107     /* #else                                 */
1108     /*     #define ISUFFIX ''                */
1109     /* #endif                                */
1110     /* #if GEOMETRY_J == 'Water3'            */
1111     /*     #define JSUFFIX 'W3'              */
1112     /* #elif GEOMETRY_J == 'Water4'          */
1113     /*     #define JSUFFIX 'W4'              */
1114     /* #else                                 */
1115     /*     #define JSUFFIX ''                */
1116     /* #endif                                */
1117     /* #if 'PotentialAndForce' in KERNEL_VF  */
1118     /*     #define VFSUFFIX  '_VF'           */
1119     /* #elif 'Potential' in KERNEL_VF        */
1120     /*     #define VFSUFFIX '_V'             */
1121     /* #else                                 */
1122     /*     #define VFSUFFIX '_F'             */
1123     /* #endif                                */
1124
1125     /* #if KERNEL_ELEC != 'None' and KERNEL_VDW != 'None' */
1126     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1127     /* #elif KERNEL_ELEC != 'None' */
1128     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1129     /* #else */
1130     inc_nrnb(nrnb,eNR_NBKERNEL_VDW{ISUFFIX}{JSUFFIX}{VFSUFFIX},outeriter*{OUTERFLOPS} + inneriter*{INNERFLOPS});
1131     /* #endif  */
1132 }