Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128           dummy_mask,cutoff_mask;
108     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109     __m128           one     = _mm_set1_ps(1.0);
110     __m128           two     = _mm_set1_ps(2.0);
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = _mm_set1_ps(fr->epsfac);
123     charge           = mdatoms->chargeA;
124     krf              = _mm_set1_ps(fr->ic->k_rf);
125     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
126     crf              = _mm_set1_ps(fr->ic->c_rf);
127     nvdwtype         = fr->ntype;
128     vdwparam         = fr->nbfp;
129     vdwtype          = mdatoms->typeA;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174         fix1             = _mm_setzero_ps();
175         fiy1             = _mm_setzero_ps();
176         fiz1             = _mm_setzero_ps();
177         fix2             = _mm_setzero_ps();
178         fiy2             = _mm_setzero_ps();
179         fiz2             = _mm_setzero_ps();
180         fix3             = _mm_setzero_ps();
181         fiy3             = _mm_setzero_ps();
182         fiz3             = _mm_setzero_ps();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211             dx10             = _mm_sub_ps(ix1,jx0);
212             dy10             = _mm_sub_ps(iy1,jy0);
213             dz10             = _mm_sub_ps(iz1,jz0);
214             dx20             = _mm_sub_ps(ix2,jx0);
215             dy20             = _mm_sub_ps(iy2,jy0);
216             dz20             = _mm_sub_ps(iz2,jz0);
217             dx30             = _mm_sub_ps(ix3,jx0);
218             dy30             = _mm_sub_ps(iy3,jy0);
219             dz30             = _mm_sub_ps(iz3,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
223             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
224             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
225             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
226
227             rinv10           = gmx_mm_invsqrt_ps(rsq10);
228             rinv20           = gmx_mm_invsqrt_ps(rsq20);
229             rinv30           = gmx_mm_invsqrt_ps(rsq30);
230
231             rinvsq00         = gmx_mm_inv_ps(rsq00);
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
235
236             /* Load parameters for j particles */
237             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238                                                               charge+jnrC+0,charge+jnrD+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243
244             fjx0             = _mm_setzero_ps();
245             fjy0             = _mm_setzero_ps();
246             fjz0             = _mm_setzero_ps();
247
248             /**************************
249              * CALCULATE INTERACTIONS *
250              **************************/
251
252             /* Compute parameters for interactions between i and j atoms */
253             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
254                                          vdwparam+vdwioffset0+vdwjidx0B,
255                                          vdwparam+vdwioffset0+vdwjidx0C,
256                                          vdwparam+vdwioffset0+vdwjidx0D,
257                                          &c6_00,&c12_00);
258
259             /* LENNARD-JONES DISPERSION/REPULSION */
260
261             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
262             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
263             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
264             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
265             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
266
267             /* Update potential sum for this i atom from the interaction with this j atom. */
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = fvdw;
271
272              /* Update vectorial force */
273             fix0             = _mm_macc_ps(dx00,fscal,fix0);
274             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
276
277             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
278             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
279             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
280
281             /**************************
282              * CALCULATE INTERACTIONS *
283              **************************/
284
285             /* Compute parameters for interactions between i and j atoms */
286             qq10             = _mm_mul_ps(iq1,jq0);
287
288             /* REACTION-FIELD ELECTROSTATICS */
289             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
290             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm_add_ps(velecsum,velec);
294
295             fscal            = felec;
296
297              /* Update vectorial force */
298             fix1             = _mm_macc_ps(dx10,fscal,fix1);
299             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
300             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
301
302             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
303             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
304             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq20             = _mm_mul_ps(iq2,jq0);
312
313             /* REACTION-FIELD ELECTROSTATICS */
314             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
315             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             velecsum         = _mm_add_ps(velecsum,velec);
319
320             fscal            = felec;
321
322              /* Update vectorial force */
323             fix2             = _mm_macc_ps(dx20,fscal,fix2);
324             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
325             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
326
327             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
328             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
329             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq30             = _mm_mul_ps(iq3,jq0);
337
338             /* REACTION-FIELD ELECTROSTATICS */
339             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
340             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347              /* Update vectorial force */
348             fix3             = _mm_macc_ps(dx30,fscal,fix3);
349             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
350             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
351
352             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
353             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
354             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
355
356             fjptrA             = f+j_coord_offsetA;
357             fjptrB             = f+j_coord_offsetB;
358             fjptrC             = f+j_coord_offsetC;
359             fjptrD             = f+j_coord_offsetD;
360
361             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
362
363             /* Inner loop uses 140 flops */
364         }
365
366         if(jidx<j_index_end)
367         {
368
369             /* Get j neighbor index, and coordinate index */
370             jnrlistA         = jjnr[jidx];
371             jnrlistB         = jjnr[jidx+1];
372             jnrlistC         = jjnr[jidx+2];
373             jnrlistD         = jjnr[jidx+3];
374             /* Sign of each element will be negative for non-real atoms.
375              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
376              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
377              */
378             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
379             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
380             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
381             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
382             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
383             j_coord_offsetA  = DIM*jnrA;
384             j_coord_offsetB  = DIM*jnrB;
385             j_coord_offsetC  = DIM*jnrC;
386             j_coord_offsetD  = DIM*jnrD;
387
388             /* load j atom coordinates */
389             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
390                                               x+j_coord_offsetC,x+j_coord_offsetD,
391                                               &jx0,&jy0,&jz0);
392
393             /* Calculate displacement vector */
394             dx00             = _mm_sub_ps(ix0,jx0);
395             dy00             = _mm_sub_ps(iy0,jy0);
396             dz00             = _mm_sub_ps(iz0,jz0);
397             dx10             = _mm_sub_ps(ix1,jx0);
398             dy10             = _mm_sub_ps(iy1,jy0);
399             dz10             = _mm_sub_ps(iz1,jz0);
400             dx20             = _mm_sub_ps(ix2,jx0);
401             dy20             = _mm_sub_ps(iy2,jy0);
402             dz20             = _mm_sub_ps(iz2,jz0);
403             dx30             = _mm_sub_ps(ix3,jx0);
404             dy30             = _mm_sub_ps(iy3,jy0);
405             dz30             = _mm_sub_ps(iz3,jz0);
406
407             /* Calculate squared distance and things based on it */
408             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
409             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
410             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
411             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
412
413             rinv10           = gmx_mm_invsqrt_ps(rsq10);
414             rinv20           = gmx_mm_invsqrt_ps(rsq20);
415             rinv30           = gmx_mm_invsqrt_ps(rsq30);
416
417             rinvsq00         = gmx_mm_inv_ps(rsq00);
418             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
419             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
420             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
421
422             /* Load parameters for j particles */
423             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
424                                                               charge+jnrC+0,charge+jnrD+0);
425             vdwjidx0A        = 2*vdwtype[jnrA+0];
426             vdwjidx0B        = 2*vdwtype[jnrB+0];
427             vdwjidx0C        = 2*vdwtype[jnrC+0];
428             vdwjidx0D        = 2*vdwtype[jnrD+0];
429
430             fjx0             = _mm_setzero_ps();
431             fjy0             = _mm_setzero_ps();
432             fjz0             = _mm_setzero_ps();
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             /* Compute parameters for interactions between i and j atoms */
439             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
440                                          vdwparam+vdwioffset0+vdwjidx0B,
441                                          vdwparam+vdwioffset0+vdwjidx0C,
442                                          vdwparam+vdwioffset0+vdwjidx0D,
443                                          &c6_00,&c12_00);
444
445             /* LENNARD-JONES DISPERSION/REPULSION */
446
447             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
448             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
449             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
450             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
451             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
455             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
456
457             fscal            = fvdw;
458
459             fscal            = _mm_andnot_ps(dummy_mask,fscal);
460
461              /* Update vectorial force */
462             fix0             = _mm_macc_ps(dx00,fscal,fix0);
463             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
464             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
465
466             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
467             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
468             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             /* Compute parameters for interactions between i and j atoms */
475             qq10             = _mm_mul_ps(iq1,jq0);
476
477             /* REACTION-FIELD ELECTROSTATICS */
478             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
479             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_andnot_ps(dummy_mask,velec);
483             velecsum         = _mm_add_ps(velecsum,velec);
484
485             fscal            = felec;
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489              /* Update vectorial force */
490             fix1             = _mm_macc_ps(dx10,fscal,fix1);
491             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
492             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
493
494             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
495             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
496             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq20             = _mm_mul_ps(iq2,jq0);
504
505             /* REACTION-FIELD ELECTROSTATICS */
506             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
507             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_andnot_ps(dummy_mask,velec);
511             velecsum         = _mm_add_ps(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_andnot_ps(dummy_mask,fscal);
516
517              /* Update vectorial force */
518             fix2             = _mm_macc_ps(dx20,fscal,fix2);
519             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
520             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
521
522             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
523             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
524             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq30             = _mm_mul_ps(iq3,jq0);
532
533             /* REACTION-FIELD ELECTROSTATICS */
534             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
535             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545              /* Update vectorial force */
546             fix3             = _mm_macc_ps(dx30,fscal,fix3);
547             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
548             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
549
550             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
551             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
552             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
553
554             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
555             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
556             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
557             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
558
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
560
561             /* Inner loop uses 140 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
567                                               f+i_coord_offset,fshift+i_shift_offset);
568
569         ggid                        = gid[iidx];
570         /* Update potential energies */
571         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
572         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
573
574         /* Increment number of inner iterations */
575         inneriter                  += j_index_end - j_index_start;
576
577         /* Outer loop uses 26 flops */
578     }
579
580     /* Increment number of outer iterations */
581     outeriter        += nri;
582
583     /* Update outer/inner flops */
584
585     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*140);
586 }
587 /*
588  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_128_fma_single
589  * Electrostatics interaction: ReactionField
590  * VdW interaction:            LennardJones
591  * Geometry:                   Water4-Particle
592  * Calculate force/pot:        Force
593  */
594 void
595 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_128_fma_single
596                     (t_nblist                    * gmx_restrict       nlist,
597                      rvec                        * gmx_restrict          xx,
598                      rvec                        * gmx_restrict          ff,
599                      t_forcerec                  * gmx_restrict          fr,
600                      t_mdatoms                   * gmx_restrict     mdatoms,
601                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
602                      t_nrnb                      * gmx_restrict        nrnb)
603 {
604     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
605      * just 0 for non-waters.
606      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
607      * jnr indices corresponding to data put in the four positions in the SIMD register.
608      */
609     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
610     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
611     int              jnrA,jnrB,jnrC,jnrD;
612     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
613     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
614     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
615     real             rcutoff_scalar;
616     real             *shiftvec,*fshift,*x,*f;
617     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
618     real             scratch[4*DIM];
619     __m128           fscal,rcutoff,rcutoff2,jidxall;
620     int              vdwioffset0;
621     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
622     int              vdwioffset1;
623     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
624     int              vdwioffset2;
625     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
626     int              vdwioffset3;
627     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
628     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
629     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
630     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
631     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
632     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
633     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
634     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
635     real             *charge;
636     int              nvdwtype;
637     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
638     int              *vdwtype;
639     real             *vdwparam;
640     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
641     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
642     __m128           dummy_mask,cutoff_mask;
643     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
644     __m128           one     = _mm_set1_ps(1.0);
645     __m128           two     = _mm_set1_ps(2.0);
646     x                = xx[0];
647     f                = ff[0];
648
649     nri              = nlist->nri;
650     iinr             = nlist->iinr;
651     jindex           = nlist->jindex;
652     jjnr             = nlist->jjnr;
653     shiftidx         = nlist->shift;
654     gid              = nlist->gid;
655     shiftvec         = fr->shift_vec[0];
656     fshift           = fr->fshift[0];
657     facel            = _mm_set1_ps(fr->epsfac);
658     charge           = mdatoms->chargeA;
659     krf              = _mm_set1_ps(fr->ic->k_rf);
660     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
661     crf              = _mm_set1_ps(fr->ic->c_rf);
662     nvdwtype         = fr->ntype;
663     vdwparam         = fr->nbfp;
664     vdwtype          = mdatoms->typeA;
665
666     /* Setup water-specific parameters */
667     inr              = nlist->iinr[0];
668     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
669     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
670     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
671     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
672
673     /* Avoid stupid compiler warnings */
674     jnrA = jnrB = jnrC = jnrD = 0;
675     j_coord_offsetA = 0;
676     j_coord_offsetB = 0;
677     j_coord_offsetC = 0;
678     j_coord_offsetD = 0;
679
680     outeriter        = 0;
681     inneriter        = 0;
682
683     for(iidx=0;iidx<4*DIM;iidx++)
684     {
685         scratch[iidx] = 0.0;
686     }
687
688     /* Start outer loop over neighborlists */
689     for(iidx=0; iidx<nri; iidx++)
690     {
691         /* Load shift vector for this list */
692         i_shift_offset   = DIM*shiftidx[iidx];
693
694         /* Load limits for loop over neighbors */
695         j_index_start    = jindex[iidx];
696         j_index_end      = jindex[iidx+1];
697
698         /* Get outer coordinate index */
699         inr              = iinr[iidx];
700         i_coord_offset   = DIM*inr;
701
702         /* Load i particle coords and add shift vector */
703         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
704                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
705
706         fix0             = _mm_setzero_ps();
707         fiy0             = _mm_setzero_ps();
708         fiz0             = _mm_setzero_ps();
709         fix1             = _mm_setzero_ps();
710         fiy1             = _mm_setzero_ps();
711         fiz1             = _mm_setzero_ps();
712         fix2             = _mm_setzero_ps();
713         fiy2             = _mm_setzero_ps();
714         fiz2             = _mm_setzero_ps();
715         fix3             = _mm_setzero_ps();
716         fiy3             = _mm_setzero_ps();
717         fiz3             = _mm_setzero_ps();
718
719         /* Start inner kernel loop */
720         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
721         {
722
723             /* Get j neighbor index, and coordinate index */
724             jnrA             = jjnr[jidx];
725             jnrB             = jjnr[jidx+1];
726             jnrC             = jjnr[jidx+2];
727             jnrD             = jjnr[jidx+3];
728             j_coord_offsetA  = DIM*jnrA;
729             j_coord_offsetB  = DIM*jnrB;
730             j_coord_offsetC  = DIM*jnrC;
731             j_coord_offsetD  = DIM*jnrD;
732
733             /* load j atom coordinates */
734             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
735                                               x+j_coord_offsetC,x+j_coord_offsetD,
736                                               &jx0,&jy0,&jz0);
737
738             /* Calculate displacement vector */
739             dx00             = _mm_sub_ps(ix0,jx0);
740             dy00             = _mm_sub_ps(iy0,jy0);
741             dz00             = _mm_sub_ps(iz0,jz0);
742             dx10             = _mm_sub_ps(ix1,jx0);
743             dy10             = _mm_sub_ps(iy1,jy0);
744             dz10             = _mm_sub_ps(iz1,jz0);
745             dx20             = _mm_sub_ps(ix2,jx0);
746             dy20             = _mm_sub_ps(iy2,jy0);
747             dz20             = _mm_sub_ps(iz2,jz0);
748             dx30             = _mm_sub_ps(ix3,jx0);
749             dy30             = _mm_sub_ps(iy3,jy0);
750             dz30             = _mm_sub_ps(iz3,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
754             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
755             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
756             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
757
758             rinv10           = gmx_mm_invsqrt_ps(rsq10);
759             rinv20           = gmx_mm_invsqrt_ps(rsq20);
760             rinv30           = gmx_mm_invsqrt_ps(rsq30);
761
762             rinvsq00         = gmx_mm_inv_ps(rsq00);
763             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
764             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
765             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
766
767             /* Load parameters for j particles */
768             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
769                                                               charge+jnrC+0,charge+jnrD+0);
770             vdwjidx0A        = 2*vdwtype[jnrA+0];
771             vdwjidx0B        = 2*vdwtype[jnrB+0];
772             vdwjidx0C        = 2*vdwtype[jnrC+0];
773             vdwjidx0D        = 2*vdwtype[jnrD+0];
774
775             fjx0             = _mm_setzero_ps();
776             fjy0             = _mm_setzero_ps();
777             fjz0             = _mm_setzero_ps();
778
779             /**************************
780              * CALCULATE INTERACTIONS *
781              **************************/
782
783             /* Compute parameters for interactions between i and j atoms */
784             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
785                                          vdwparam+vdwioffset0+vdwjidx0B,
786                                          vdwparam+vdwioffset0+vdwjidx0C,
787                                          vdwparam+vdwioffset0+vdwjidx0D,
788                                          &c6_00,&c12_00);
789
790             /* LENNARD-JONES DISPERSION/REPULSION */
791
792             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
793             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
794
795             fscal            = fvdw;
796
797              /* Update vectorial force */
798             fix0             = _mm_macc_ps(dx00,fscal,fix0);
799             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
800             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
801
802             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
803             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
804             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
805
806             /**************************
807              * CALCULATE INTERACTIONS *
808              **************************/
809
810             /* Compute parameters for interactions between i and j atoms */
811             qq10             = _mm_mul_ps(iq1,jq0);
812
813             /* REACTION-FIELD ELECTROSTATICS */
814             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
815
816             fscal            = felec;
817
818              /* Update vectorial force */
819             fix1             = _mm_macc_ps(dx10,fscal,fix1);
820             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
821             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
822
823             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
824             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
825             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
826
827             /**************************
828              * CALCULATE INTERACTIONS *
829              **************************/
830
831             /* Compute parameters for interactions between i and j atoms */
832             qq20             = _mm_mul_ps(iq2,jq0);
833
834             /* REACTION-FIELD ELECTROSTATICS */
835             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
836
837             fscal            = felec;
838
839              /* Update vectorial force */
840             fix2             = _mm_macc_ps(dx20,fscal,fix2);
841             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
842             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
843
844             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
845             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
846             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             /* Compute parameters for interactions between i and j atoms */
853             qq30             = _mm_mul_ps(iq3,jq0);
854
855             /* REACTION-FIELD ELECTROSTATICS */
856             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
857
858             fscal            = felec;
859
860              /* Update vectorial force */
861             fix3             = _mm_macc_ps(dx30,fscal,fix3);
862             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
863             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
864
865             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
866             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
867             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
868
869             fjptrA             = f+j_coord_offsetA;
870             fjptrB             = f+j_coord_offsetB;
871             fjptrC             = f+j_coord_offsetC;
872             fjptrD             = f+j_coord_offsetD;
873
874             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
875
876             /* Inner loop uses 120 flops */
877         }
878
879         if(jidx<j_index_end)
880         {
881
882             /* Get j neighbor index, and coordinate index */
883             jnrlistA         = jjnr[jidx];
884             jnrlistB         = jjnr[jidx+1];
885             jnrlistC         = jjnr[jidx+2];
886             jnrlistD         = jjnr[jidx+3];
887             /* Sign of each element will be negative for non-real atoms.
888              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
889              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
890              */
891             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
892             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
893             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
894             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
895             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
896             j_coord_offsetA  = DIM*jnrA;
897             j_coord_offsetB  = DIM*jnrB;
898             j_coord_offsetC  = DIM*jnrC;
899             j_coord_offsetD  = DIM*jnrD;
900
901             /* load j atom coordinates */
902             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
903                                               x+j_coord_offsetC,x+j_coord_offsetD,
904                                               &jx0,&jy0,&jz0);
905
906             /* Calculate displacement vector */
907             dx00             = _mm_sub_ps(ix0,jx0);
908             dy00             = _mm_sub_ps(iy0,jy0);
909             dz00             = _mm_sub_ps(iz0,jz0);
910             dx10             = _mm_sub_ps(ix1,jx0);
911             dy10             = _mm_sub_ps(iy1,jy0);
912             dz10             = _mm_sub_ps(iz1,jz0);
913             dx20             = _mm_sub_ps(ix2,jx0);
914             dy20             = _mm_sub_ps(iy2,jy0);
915             dz20             = _mm_sub_ps(iz2,jz0);
916             dx30             = _mm_sub_ps(ix3,jx0);
917             dy30             = _mm_sub_ps(iy3,jy0);
918             dz30             = _mm_sub_ps(iz3,jz0);
919
920             /* Calculate squared distance and things based on it */
921             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
922             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
923             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
924             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
925
926             rinv10           = gmx_mm_invsqrt_ps(rsq10);
927             rinv20           = gmx_mm_invsqrt_ps(rsq20);
928             rinv30           = gmx_mm_invsqrt_ps(rsq30);
929
930             rinvsq00         = gmx_mm_inv_ps(rsq00);
931             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
932             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
933             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
934
935             /* Load parameters for j particles */
936             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
937                                                               charge+jnrC+0,charge+jnrD+0);
938             vdwjidx0A        = 2*vdwtype[jnrA+0];
939             vdwjidx0B        = 2*vdwtype[jnrB+0];
940             vdwjidx0C        = 2*vdwtype[jnrC+0];
941             vdwjidx0D        = 2*vdwtype[jnrD+0];
942
943             fjx0             = _mm_setzero_ps();
944             fjy0             = _mm_setzero_ps();
945             fjz0             = _mm_setzero_ps();
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             /* Compute parameters for interactions between i and j atoms */
952             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
953                                          vdwparam+vdwioffset0+vdwjidx0B,
954                                          vdwparam+vdwioffset0+vdwjidx0C,
955                                          vdwparam+vdwioffset0+vdwjidx0D,
956                                          &c6_00,&c12_00);
957
958             /* LENNARD-JONES DISPERSION/REPULSION */
959
960             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
961             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
962
963             fscal            = fvdw;
964
965             fscal            = _mm_andnot_ps(dummy_mask,fscal);
966
967              /* Update vectorial force */
968             fix0             = _mm_macc_ps(dx00,fscal,fix0);
969             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
970             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
971
972             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
973             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
974             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
975
976             /**************************
977              * CALCULATE INTERACTIONS *
978              **************************/
979
980             /* Compute parameters for interactions between i and j atoms */
981             qq10             = _mm_mul_ps(iq1,jq0);
982
983             /* REACTION-FIELD ELECTROSTATICS */
984             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
985
986             fscal            = felec;
987
988             fscal            = _mm_andnot_ps(dummy_mask,fscal);
989
990              /* Update vectorial force */
991             fix1             = _mm_macc_ps(dx10,fscal,fix1);
992             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
993             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
994
995             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
996             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
997             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq20             = _mm_mul_ps(iq2,jq0);
1005
1006             /* REACTION-FIELD ELECTROSTATICS */
1007             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1008
1009             fscal            = felec;
1010
1011             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1012
1013              /* Update vectorial force */
1014             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1015             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1016             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1017
1018             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1019             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1020             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1021
1022             /**************************
1023              * CALCULATE INTERACTIONS *
1024              **************************/
1025
1026             /* Compute parameters for interactions between i and j atoms */
1027             qq30             = _mm_mul_ps(iq3,jq0);
1028
1029             /* REACTION-FIELD ELECTROSTATICS */
1030             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1035
1036              /* Update vectorial force */
1037             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1038             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1039             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1040
1041             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1042             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1043             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1044
1045             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1046             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1047             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1048             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1049
1050             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1051
1052             /* Inner loop uses 120 flops */
1053         }
1054
1055         /* End of innermost loop */
1056
1057         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1058                                               f+i_coord_offset,fshift+i_shift_offset);
1059
1060         /* Increment number of inner iterations */
1061         inneriter                  += j_index_end - j_index_start;
1062
1063         /* Outer loop uses 24 flops */
1064     }
1065
1066     /* Increment number of outer iterations */
1067     outeriter        += nri;
1068
1069     /* Update outer/inner flops */
1070
1071     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*120);
1072 }