cc2f3de4bc8b069db472c679cc7d4bb7f75d60c9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169         fix1             = _mm_setzero_ps();
170         fiy1             = _mm_setzero_ps();
171         fiz1             = _mm_setzero_ps();
172         fix2             = _mm_setzero_ps();
173         fiy2             = _mm_setzero_ps();
174         fiz2             = _mm_setzero_ps();
175
176         /* Reset potential sums */
177         velecsum         = _mm_setzero_ps();
178         vvdwsum          = _mm_setzero_ps();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
196                                               x+j_coord_offsetC,x+j_coord_offsetD,
197                                               &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm_sub_ps(ix0,jx0);
201             dy00             = _mm_sub_ps(iy0,jy0);
202             dz00             = _mm_sub_ps(iz0,jz0);
203             dx10             = _mm_sub_ps(ix1,jx0);
204             dy10             = _mm_sub_ps(iy1,jy0);
205             dz10             = _mm_sub_ps(iz1,jz0);
206             dx20             = _mm_sub_ps(ix2,jx0);
207             dy20             = _mm_sub_ps(iy2,jy0);
208             dz20             = _mm_sub_ps(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
212             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
213             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214
215             rinv00           = gmx_mm_invsqrt_ps(rsq00);
216             rinv10           = gmx_mm_invsqrt_ps(rsq10);
217             rinv20           = gmx_mm_invsqrt_ps(rsq20);
218
219             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
220             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
221             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
225                                                               charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             fjx0             = _mm_setzero_ps();
232             fjy0             = _mm_setzero_ps();
233             fjz0             = _mm_setzero_ps();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             /* Compute parameters for interactions between i and j atoms */
240             qq00             = _mm_mul_ps(iq0,jq0);
241             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
242                                          vdwparam+vdwioffset0+vdwjidx0B,
243                                          vdwparam+vdwioffset0+vdwjidx0C,
244                                          vdwparam+vdwioffset0+vdwjidx0D,
245                                          &c6_00,&c12_00);
246
247             /* REACTION-FIELD ELECTROSTATICS */
248             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
249             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
250
251             /* LENNARD-JONES DISPERSION/REPULSION */
252
253             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
254             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
255             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
256             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
257             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
258
259             /* Update potential sum for this i atom from the interaction with this j atom. */
260             velecsum         = _mm_add_ps(velecsum,velec);
261             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
262
263             fscal            = _mm_add_ps(felec,fvdw);
264
265              /* Update vectorial force */
266             fix0             = _mm_macc_ps(dx00,fscal,fix0);
267             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
268             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
269
270             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
271             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
272             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             /* Compute parameters for interactions between i and j atoms */
279             qq10             = _mm_mul_ps(iq1,jq0);
280
281             /* REACTION-FIELD ELECTROSTATICS */
282             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
283             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
284
285             /* Update potential sum for this i atom from the interaction with this j atom. */
286             velecsum         = _mm_add_ps(velecsum,velec);
287
288             fscal            = felec;
289
290              /* Update vectorial force */
291             fix1             = _mm_macc_ps(dx10,fscal,fix1);
292             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
293             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
294
295             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
296             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
297             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq20             = _mm_mul_ps(iq2,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
308             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_ps(velecsum,velec);
312
313             fscal            = felec;
314
315              /* Update vectorial force */
316             fix2             = _mm_macc_ps(dx20,fscal,fix2);
317             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
318             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
319
320             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
321             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
322             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
323
324             fjptrA             = f+j_coord_offsetA;
325             fjptrB             = f+j_coord_offsetB;
326             fjptrC             = f+j_coord_offsetC;
327             fjptrD             = f+j_coord_offsetD;
328
329             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
330
331             /* Inner loop uses 117 flops */
332         }
333
334         if(jidx<j_index_end)
335         {
336
337             /* Get j neighbor index, and coordinate index */
338             jnrlistA         = jjnr[jidx];
339             jnrlistB         = jjnr[jidx+1];
340             jnrlistC         = jjnr[jidx+2];
341             jnrlistD         = jjnr[jidx+3];
342             /* Sign of each element will be negative for non-real atoms.
343              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
344              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
345              */
346             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
347             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
348             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
349             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
350             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
351             j_coord_offsetA  = DIM*jnrA;
352             j_coord_offsetB  = DIM*jnrB;
353             j_coord_offsetC  = DIM*jnrC;
354             j_coord_offsetD  = DIM*jnrD;
355
356             /* load j atom coordinates */
357             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
358                                               x+j_coord_offsetC,x+j_coord_offsetD,
359                                               &jx0,&jy0,&jz0);
360
361             /* Calculate displacement vector */
362             dx00             = _mm_sub_ps(ix0,jx0);
363             dy00             = _mm_sub_ps(iy0,jy0);
364             dz00             = _mm_sub_ps(iz0,jz0);
365             dx10             = _mm_sub_ps(ix1,jx0);
366             dy10             = _mm_sub_ps(iy1,jy0);
367             dz10             = _mm_sub_ps(iz1,jz0);
368             dx20             = _mm_sub_ps(ix2,jx0);
369             dy20             = _mm_sub_ps(iy2,jy0);
370             dz20             = _mm_sub_ps(iz2,jz0);
371
372             /* Calculate squared distance and things based on it */
373             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
374             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
375             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
376
377             rinv00           = gmx_mm_invsqrt_ps(rsq00);
378             rinv10           = gmx_mm_invsqrt_ps(rsq10);
379             rinv20           = gmx_mm_invsqrt_ps(rsq20);
380
381             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
382             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
383             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
384
385             /* Load parameters for j particles */
386             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
387                                                               charge+jnrC+0,charge+jnrD+0);
388             vdwjidx0A        = 2*vdwtype[jnrA+0];
389             vdwjidx0B        = 2*vdwtype[jnrB+0];
390             vdwjidx0C        = 2*vdwtype[jnrC+0];
391             vdwjidx0D        = 2*vdwtype[jnrD+0];
392
393             fjx0             = _mm_setzero_ps();
394             fjy0             = _mm_setzero_ps();
395             fjz0             = _mm_setzero_ps();
396
397             /**************************
398              * CALCULATE INTERACTIONS *
399              **************************/
400
401             /* Compute parameters for interactions between i and j atoms */
402             qq00             = _mm_mul_ps(iq0,jq0);
403             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
404                                          vdwparam+vdwioffset0+vdwjidx0B,
405                                          vdwparam+vdwioffset0+vdwjidx0C,
406                                          vdwparam+vdwioffset0+vdwjidx0D,
407                                          &c6_00,&c12_00);
408
409             /* REACTION-FIELD ELECTROSTATICS */
410             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
411             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
412
413             /* LENNARD-JONES DISPERSION/REPULSION */
414
415             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
416             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
417             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
418             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
419             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
420
421             /* Update potential sum for this i atom from the interaction with this j atom. */
422             velec            = _mm_andnot_ps(dummy_mask,velec);
423             velecsum         = _mm_add_ps(velecsum,velec);
424             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
425             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
426
427             fscal            = _mm_add_ps(felec,fvdw);
428
429             fscal            = _mm_andnot_ps(dummy_mask,fscal);
430
431              /* Update vectorial force */
432             fix0             = _mm_macc_ps(dx00,fscal,fix0);
433             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
434             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
435
436             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
437             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
438             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
439
440             /**************************
441              * CALCULATE INTERACTIONS *
442              **************************/
443
444             /* Compute parameters for interactions between i and j atoms */
445             qq10             = _mm_mul_ps(iq1,jq0);
446
447             /* REACTION-FIELD ELECTROSTATICS */
448             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
449             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
450
451             /* Update potential sum for this i atom from the interaction with this j atom. */
452             velec            = _mm_andnot_ps(dummy_mask,velec);
453             velecsum         = _mm_add_ps(velecsum,velec);
454
455             fscal            = felec;
456
457             fscal            = _mm_andnot_ps(dummy_mask,fscal);
458
459              /* Update vectorial force */
460             fix1             = _mm_macc_ps(dx10,fscal,fix1);
461             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
462             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
463
464             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
465             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
466             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             /* Compute parameters for interactions between i and j atoms */
473             qq20             = _mm_mul_ps(iq2,jq0);
474
475             /* REACTION-FIELD ELECTROSTATICS */
476             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
477             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm_andnot_ps(dummy_mask,velec);
481             velecsum         = _mm_add_ps(velecsum,velec);
482
483             fscal            = felec;
484
485             fscal            = _mm_andnot_ps(dummy_mask,fscal);
486
487              /* Update vectorial force */
488             fix2             = _mm_macc_ps(dx20,fscal,fix2);
489             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
490             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
491
492             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
493             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
494             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
495
496             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
497             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
498             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
499             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
500
501             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
502
503             /* Inner loop uses 117 flops */
504         }
505
506         /* End of innermost loop */
507
508         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
509                                               f+i_coord_offset,fshift+i_shift_offset);
510
511         ggid                        = gid[iidx];
512         /* Update potential energies */
513         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
514         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
515
516         /* Increment number of inner iterations */
517         inneriter                  += j_index_end - j_index_start;
518
519         /* Outer loop uses 20 flops */
520     }
521
522     /* Increment number of outer iterations */
523     outeriter        += nri;
524
525     /* Update outer/inner flops */
526
527     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*117);
528 }
529 /*
530  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
531  * Electrostatics interaction: ReactionField
532  * VdW interaction:            LennardJones
533  * Geometry:                   Water3-Particle
534  * Calculate force/pot:        Force
535  */
536 void
537 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
538                     (t_nblist                    * gmx_restrict       nlist,
539                      rvec                        * gmx_restrict          xx,
540                      rvec                        * gmx_restrict          ff,
541                      t_forcerec                  * gmx_restrict          fr,
542                      t_mdatoms                   * gmx_restrict     mdatoms,
543                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
544                      t_nrnb                      * gmx_restrict        nrnb)
545 {
546     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
547      * just 0 for non-waters.
548      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
549      * jnr indices corresponding to data put in the four positions in the SIMD register.
550      */
551     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
552     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
553     int              jnrA,jnrB,jnrC,jnrD;
554     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
555     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
556     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
557     real             rcutoff_scalar;
558     real             *shiftvec,*fshift,*x,*f;
559     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
560     real             scratch[4*DIM];
561     __m128           fscal,rcutoff,rcutoff2,jidxall;
562     int              vdwioffset0;
563     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
564     int              vdwioffset1;
565     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
566     int              vdwioffset2;
567     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
568     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
569     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
570     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
571     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
572     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
573     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
574     real             *charge;
575     int              nvdwtype;
576     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
577     int              *vdwtype;
578     real             *vdwparam;
579     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
580     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
581     __m128           dummy_mask,cutoff_mask;
582     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
583     __m128           one     = _mm_set1_ps(1.0);
584     __m128           two     = _mm_set1_ps(2.0);
585     x                = xx[0];
586     f                = ff[0];
587
588     nri              = nlist->nri;
589     iinr             = nlist->iinr;
590     jindex           = nlist->jindex;
591     jjnr             = nlist->jjnr;
592     shiftidx         = nlist->shift;
593     gid              = nlist->gid;
594     shiftvec         = fr->shift_vec[0];
595     fshift           = fr->fshift[0];
596     facel            = _mm_set1_ps(fr->epsfac);
597     charge           = mdatoms->chargeA;
598     krf              = _mm_set1_ps(fr->ic->k_rf);
599     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
600     crf              = _mm_set1_ps(fr->ic->c_rf);
601     nvdwtype         = fr->ntype;
602     vdwparam         = fr->nbfp;
603     vdwtype          = mdatoms->typeA;
604
605     /* Setup water-specific parameters */
606     inr              = nlist->iinr[0];
607     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
608     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
609     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
610     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
611
612     /* Avoid stupid compiler warnings */
613     jnrA = jnrB = jnrC = jnrD = 0;
614     j_coord_offsetA = 0;
615     j_coord_offsetB = 0;
616     j_coord_offsetC = 0;
617     j_coord_offsetD = 0;
618
619     outeriter        = 0;
620     inneriter        = 0;
621
622     for(iidx=0;iidx<4*DIM;iidx++)
623     {
624         scratch[iidx] = 0.0;
625     }
626
627     /* Start outer loop over neighborlists */
628     for(iidx=0; iidx<nri; iidx++)
629     {
630         /* Load shift vector for this list */
631         i_shift_offset   = DIM*shiftidx[iidx];
632
633         /* Load limits for loop over neighbors */
634         j_index_start    = jindex[iidx];
635         j_index_end      = jindex[iidx+1];
636
637         /* Get outer coordinate index */
638         inr              = iinr[iidx];
639         i_coord_offset   = DIM*inr;
640
641         /* Load i particle coords and add shift vector */
642         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
643                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
644
645         fix0             = _mm_setzero_ps();
646         fiy0             = _mm_setzero_ps();
647         fiz0             = _mm_setzero_ps();
648         fix1             = _mm_setzero_ps();
649         fiy1             = _mm_setzero_ps();
650         fiz1             = _mm_setzero_ps();
651         fix2             = _mm_setzero_ps();
652         fiy2             = _mm_setzero_ps();
653         fiz2             = _mm_setzero_ps();
654
655         /* Start inner kernel loop */
656         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
657         {
658
659             /* Get j neighbor index, and coordinate index */
660             jnrA             = jjnr[jidx];
661             jnrB             = jjnr[jidx+1];
662             jnrC             = jjnr[jidx+2];
663             jnrD             = jjnr[jidx+3];
664             j_coord_offsetA  = DIM*jnrA;
665             j_coord_offsetB  = DIM*jnrB;
666             j_coord_offsetC  = DIM*jnrC;
667             j_coord_offsetD  = DIM*jnrD;
668
669             /* load j atom coordinates */
670             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
671                                               x+j_coord_offsetC,x+j_coord_offsetD,
672                                               &jx0,&jy0,&jz0);
673
674             /* Calculate displacement vector */
675             dx00             = _mm_sub_ps(ix0,jx0);
676             dy00             = _mm_sub_ps(iy0,jy0);
677             dz00             = _mm_sub_ps(iz0,jz0);
678             dx10             = _mm_sub_ps(ix1,jx0);
679             dy10             = _mm_sub_ps(iy1,jy0);
680             dz10             = _mm_sub_ps(iz1,jz0);
681             dx20             = _mm_sub_ps(ix2,jx0);
682             dy20             = _mm_sub_ps(iy2,jy0);
683             dz20             = _mm_sub_ps(iz2,jz0);
684
685             /* Calculate squared distance and things based on it */
686             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
687             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
688             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
689
690             rinv00           = gmx_mm_invsqrt_ps(rsq00);
691             rinv10           = gmx_mm_invsqrt_ps(rsq10);
692             rinv20           = gmx_mm_invsqrt_ps(rsq20);
693
694             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
695             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
696             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
697
698             /* Load parameters for j particles */
699             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
700                                                               charge+jnrC+0,charge+jnrD+0);
701             vdwjidx0A        = 2*vdwtype[jnrA+0];
702             vdwjidx0B        = 2*vdwtype[jnrB+0];
703             vdwjidx0C        = 2*vdwtype[jnrC+0];
704             vdwjidx0D        = 2*vdwtype[jnrD+0];
705
706             fjx0             = _mm_setzero_ps();
707             fjy0             = _mm_setzero_ps();
708             fjz0             = _mm_setzero_ps();
709
710             /**************************
711              * CALCULATE INTERACTIONS *
712              **************************/
713
714             /* Compute parameters for interactions between i and j atoms */
715             qq00             = _mm_mul_ps(iq0,jq0);
716             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
717                                          vdwparam+vdwioffset0+vdwjidx0B,
718                                          vdwparam+vdwioffset0+vdwjidx0C,
719                                          vdwparam+vdwioffset0+vdwjidx0D,
720                                          &c6_00,&c12_00);
721
722             /* REACTION-FIELD ELECTROSTATICS */
723             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
724
725             /* LENNARD-JONES DISPERSION/REPULSION */
726
727             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
728             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
729
730             fscal            = _mm_add_ps(felec,fvdw);
731
732              /* Update vectorial force */
733             fix0             = _mm_macc_ps(dx00,fscal,fix0);
734             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
735             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
736
737             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
738             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
739             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
740
741             /**************************
742              * CALCULATE INTERACTIONS *
743              **************************/
744
745             /* Compute parameters for interactions between i and j atoms */
746             qq10             = _mm_mul_ps(iq1,jq0);
747
748             /* REACTION-FIELD ELECTROSTATICS */
749             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
750
751             fscal            = felec;
752
753              /* Update vectorial force */
754             fix1             = _mm_macc_ps(dx10,fscal,fix1);
755             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
756             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
757
758             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
759             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
760             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
761
762             /**************************
763              * CALCULATE INTERACTIONS *
764              **************************/
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq20             = _mm_mul_ps(iq2,jq0);
768
769             /* REACTION-FIELD ELECTROSTATICS */
770             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
771
772             fscal            = felec;
773
774              /* Update vectorial force */
775             fix2             = _mm_macc_ps(dx20,fscal,fix2);
776             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
777             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
778
779             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
780             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
781             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
782
783             fjptrA             = f+j_coord_offsetA;
784             fjptrB             = f+j_coord_offsetB;
785             fjptrC             = f+j_coord_offsetC;
786             fjptrD             = f+j_coord_offsetD;
787
788             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
789
790             /* Inner loop uses 97 flops */
791         }
792
793         if(jidx<j_index_end)
794         {
795
796             /* Get j neighbor index, and coordinate index */
797             jnrlistA         = jjnr[jidx];
798             jnrlistB         = jjnr[jidx+1];
799             jnrlistC         = jjnr[jidx+2];
800             jnrlistD         = jjnr[jidx+3];
801             /* Sign of each element will be negative for non-real atoms.
802              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
803              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
804              */
805             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
806             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
807             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
808             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
809             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
810             j_coord_offsetA  = DIM*jnrA;
811             j_coord_offsetB  = DIM*jnrB;
812             j_coord_offsetC  = DIM*jnrC;
813             j_coord_offsetD  = DIM*jnrD;
814
815             /* load j atom coordinates */
816             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
817                                               x+j_coord_offsetC,x+j_coord_offsetD,
818                                               &jx0,&jy0,&jz0);
819
820             /* Calculate displacement vector */
821             dx00             = _mm_sub_ps(ix0,jx0);
822             dy00             = _mm_sub_ps(iy0,jy0);
823             dz00             = _mm_sub_ps(iz0,jz0);
824             dx10             = _mm_sub_ps(ix1,jx0);
825             dy10             = _mm_sub_ps(iy1,jy0);
826             dz10             = _mm_sub_ps(iz1,jz0);
827             dx20             = _mm_sub_ps(ix2,jx0);
828             dy20             = _mm_sub_ps(iy2,jy0);
829             dz20             = _mm_sub_ps(iz2,jz0);
830
831             /* Calculate squared distance and things based on it */
832             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
833             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
834             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
835
836             rinv00           = gmx_mm_invsqrt_ps(rsq00);
837             rinv10           = gmx_mm_invsqrt_ps(rsq10);
838             rinv20           = gmx_mm_invsqrt_ps(rsq20);
839
840             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
841             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
842             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
843
844             /* Load parameters for j particles */
845             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
846                                                               charge+jnrC+0,charge+jnrD+0);
847             vdwjidx0A        = 2*vdwtype[jnrA+0];
848             vdwjidx0B        = 2*vdwtype[jnrB+0];
849             vdwjidx0C        = 2*vdwtype[jnrC+0];
850             vdwjidx0D        = 2*vdwtype[jnrD+0];
851
852             fjx0             = _mm_setzero_ps();
853             fjy0             = _mm_setzero_ps();
854             fjz0             = _mm_setzero_ps();
855
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             /* Compute parameters for interactions between i and j atoms */
861             qq00             = _mm_mul_ps(iq0,jq0);
862             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
863                                          vdwparam+vdwioffset0+vdwjidx0B,
864                                          vdwparam+vdwioffset0+vdwjidx0C,
865                                          vdwparam+vdwioffset0+vdwjidx0D,
866                                          &c6_00,&c12_00);
867
868             /* REACTION-FIELD ELECTROSTATICS */
869             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
870
871             /* LENNARD-JONES DISPERSION/REPULSION */
872
873             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
874             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
875
876             fscal            = _mm_add_ps(felec,fvdw);
877
878             fscal            = _mm_andnot_ps(dummy_mask,fscal);
879
880              /* Update vectorial force */
881             fix0             = _mm_macc_ps(dx00,fscal,fix0);
882             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
883             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
884
885             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
886             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
887             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
888
889             /**************************
890              * CALCULATE INTERACTIONS *
891              **************************/
892
893             /* Compute parameters for interactions between i and j atoms */
894             qq10             = _mm_mul_ps(iq1,jq0);
895
896             /* REACTION-FIELD ELECTROSTATICS */
897             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
898
899             fscal            = felec;
900
901             fscal            = _mm_andnot_ps(dummy_mask,fscal);
902
903              /* Update vectorial force */
904             fix1             = _mm_macc_ps(dx10,fscal,fix1);
905             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
906             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
907
908             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
909             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
910             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             /* Compute parameters for interactions between i and j atoms */
917             qq20             = _mm_mul_ps(iq2,jq0);
918
919             /* REACTION-FIELD ELECTROSTATICS */
920             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
921
922             fscal            = felec;
923
924             fscal            = _mm_andnot_ps(dummy_mask,fscal);
925
926              /* Update vectorial force */
927             fix2             = _mm_macc_ps(dx20,fscal,fix2);
928             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
929             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
930
931             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
932             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
933             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
934
935             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
936             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
937             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
938             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
939
940             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
941
942             /* Inner loop uses 97 flops */
943         }
944
945         /* End of innermost loop */
946
947         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
948                                               f+i_coord_offset,fshift+i_shift_offset);
949
950         /* Increment number of inner iterations */
951         inneriter                  += j_index_end - j_index_start;
952
953         /* Outer loop uses 18 flops */
954     }
955
956     /* Increment number of outer iterations */
957     outeriter        += nri;
958
959     /* Update outer/inner flops */
960
961     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
962 }