847b18bd987119e446a2774cb2336e6104cdaf6d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
166                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168         fix0             = _mm_setzero_ps();
169         fiy0             = _mm_setzero_ps();
170         fiz0             = _mm_setzero_ps();
171         fix1             = _mm_setzero_ps();
172         fiy1             = _mm_setzero_ps();
173         fiz1             = _mm_setzero_ps();
174         fix2             = _mm_setzero_ps();
175         fiy2             = _mm_setzero_ps();
176         fiz2             = _mm_setzero_ps();
177
178         /* Reset potential sums */
179         velecsum         = _mm_setzero_ps();
180         vvdwsum          = _mm_setzero_ps();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198                                               x+j_coord_offsetC,x+j_coord_offsetD,
199                                               &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm_sub_ps(ix0,jx0);
203             dy00             = _mm_sub_ps(iy0,jy0);
204             dz00             = _mm_sub_ps(iz0,jz0);
205             dx10             = _mm_sub_ps(ix1,jx0);
206             dy10             = _mm_sub_ps(iy1,jy0);
207             dz10             = _mm_sub_ps(iz1,jz0);
208             dx20             = _mm_sub_ps(ix2,jx0);
209             dy20             = _mm_sub_ps(iy2,jy0);
210             dz20             = _mm_sub_ps(iz2,jz0);
211
212             /* Calculate squared distance and things based on it */
213             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216
217             rinv00           = gmx_mm_invsqrt_ps(rsq00);
218             rinv10           = gmx_mm_invsqrt_ps(rsq10);
219             rinv20           = gmx_mm_invsqrt_ps(rsq20);
220
221             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
222             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
223             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
224
225             /* Load parameters for j particles */
226             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227                                                               charge+jnrC+0,charge+jnrD+0);
228             vdwjidx0A        = 2*vdwtype[jnrA+0];
229             vdwjidx0B        = 2*vdwtype[jnrB+0];
230             vdwjidx0C        = 2*vdwtype[jnrC+0];
231             vdwjidx0D        = 2*vdwtype[jnrD+0];
232
233             fjx0             = _mm_setzero_ps();
234             fjy0             = _mm_setzero_ps();
235             fjz0             = _mm_setzero_ps();
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             /* Compute parameters for interactions between i and j atoms */
242             qq00             = _mm_mul_ps(iq0,jq0);
243             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244                                          vdwparam+vdwioffset0+vdwjidx0B,
245                                          vdwparam+vdwioffset0+vdwjidx0C,
246                                          vdwparam+vdwioffset0+vdwjidx0D,
247                                          &c6_00,&c12_00);
248
249             /* REACTION-FIELD ELECTROSTATICS */
250             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
251             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
252
253             /* LENNARD-JONES DISPERSION/REPULSION */
254
255             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
256             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
257             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
258             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
259             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velecsum         = _mm_add_ps(velecsum,velec);
263             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
264
265             fscal            = _mm_add_ps(felec,fvdw);
266
267              /* Update vectorial force */
268             fix0             = _mm_macc_ps(dx00,fscal,fix0);
269             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
270             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
271
272             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
273             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
274             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             /* Compute parameters for interactions between i and j atoms */
281             qq10             = _mm_mul_ps(iq1,jq0);
282
283             /* REACTION-FIELD ELECTROSTATICS */
284             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
285             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm_add_ps(velecsum,velec);
289
290             fscal            = felec;
291
292              /* Update vectorial force */
293             fix1             = _mm_macc_ps(dx10,fscal,fix1);
294             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
295             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
296
297             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
298             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
299             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             /* Compute parameters for interactions between i and j atoms */
306             qq20             = _mm_mul_ps(iq2,jq0);
307
308             /* REACTION-FIELD ELECTROSTATICS */
309             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
310             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velecsum         = _mm_add_ps(velecsum,velec);
314
315             fscal            = felec;
316
317              /* Update vectorial force */
318             fix2             = _mm_macc_ps(dx20,fscal,fix2);
319             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
320             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
321
322             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
323             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
324             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
325
326             fjptrA             = f+j_coord_offsetA;
327             fjptrB             = f+j_coord_offsetB;
328             fjptrC             = f+j_coord_offsetC;
329             fjptrD             = f+j_coord_offsetD;
330
331             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
332
333             /* Inner loop uses 117 flops */
334         }
335
336         if(jidx<j_index_end)
337         {
338
339             /* Get j neighbor index, and coordinate index */
340             jnrlistA         = jjnr[jidx];
341             jnrlistB         = jjnr[jidx+1];
342             jnrlistC         = jjnr[jidx+2];
343             jnrlistD         = jjnr[jidx+3];
344             /* Sign of each element will be negative for non-real atoms.
345              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
346              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
347              */
348             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
349             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
350             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
351             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
352             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
353             j_coord_offsetA  = DIM*jnrA;
354             j_coord_offsetB  = DIM*jnrB;
355             j_coord_offsetC  = DIM*jnrC;
356             j_coord_offsetD  = DIM*jnrD;
357
358             /* load j atom coordinates */
359             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
360                                               x+j_coord_offsetC,x+j_coord_offsetD,
361                                               &jx0,&jy0,&jz0);
362
363             /* Calculate displacement vector */
364             dx00             = _mm_sub_ps(ix0,jx0);
365             dy00             = _mm_sub_ps(iy0,jy0);
366             dz00             = _mm_sub_ps(iz0,jz0);
367             dx10             = _mm_sub_ps(ix1,jx0);
368             dy10             = _mm_sub_ps(iy1,jy0);
369             dz10             = _mm_sub_ps(iz1,jz0);
370             dx20             = _mm_sub_ps(ix2,jx0);
371             dy20             = _mm_sub_ps(iy2,jy0);
372             dz20             = _mm_sub_ps(iz2,jz0);
373
374             /* Calculate squared distance and things based on it */
375             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
376             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
377             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
378
379             rinv00           = gmx_mm_invsqrt_ps(rsq00);
380             rinv10           = gmx_mm_invsqrt_ps(rsq10);
381             rinv20           = gmx_mm_invsqrt_ps(rsq20);
382
383             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
384             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
385             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
386
387             /* Load parameters for j particles */
388             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
389                                                               charge+jnrC+0,charge+jnrD+0);
390             vdwjidx0A        = 2*vdwtype[jnrA+0];
391             vdwjidx0B        = 2*vdwtype[jnrB+0];
392             vdwjidx0C        = 2*vdwtype[jnrC+0];
393             vdwjidx0D        = 2*vdwtype[jnrD+0];
394
395             fjx0             = _mm_setzero_ps();
396             fjy0             = _mm_setzero_ps();
397             fjz0             = _mm_setzero_ps();
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             /* Compute parameters for interactions between i and j atoms */
404             qq00             = _mm_mul_ps(iq0,jq0);
405             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
406                                          vdwparam+vdwioffset0+vdwjidx0B,
407                                          vdwparam+vdwioffset0+vdwjidx0C,
408                                          vdwparam+vdwioffset0+vdwjidx0D,
409                                          &c6_00,&c12_00);
410
411             /* REACTION-FIELD ELECTROSTATICS */
412             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
413             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
414
415             /* LENNARD-JONES DISPERSION/REPULSION */
416
417             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
418             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
419             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
420             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
421             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
422
423             /* Update potential sum for this i atom from the interaction with this j atom. */
424             velec            = _mm_andnot_ps(dummy_mask,velec);
425             velecsum         = _mm_add_ps(velecsum,velec);
426             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
427             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
428
429             fscal            = _mm_add_ps(felec,fvdw);
430
431             fscal            = _mm_andnot_ps(dummy_mask,fscal);
432
433              /* Update vectorial force */
434             fix0             = _mm_macc_ps(dx00,fscal,fix0);
435             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
436             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
437
438             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
439             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
440             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
441
442             /**************************
443              * CALCULATE INTERACTIONS *
444              **************************/
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq10             = _mm_mul_ps(iq1,jq0);
448
449             /* REACTION-FIELD ELECTROSTATICS */
450             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
451             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
452
453             /* Update potential sum for this i atom from the interaction with this j atom. */
454             velec            = _mm_andnot_ps(dummy_mask,velec);
455             velecsum         = _mm_add_ps(velecsum,velec);
456
457             fscal            = felec;
458
459             fscal            = _mm_andnot_ps(dummy_mask,fscal);
460
461              /* Update vectorial force */
462             fix1             = _mm_macc_ps(dx10,fscal,fix1);
463             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
464             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
465
466             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
467             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
468             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             /* Compute parameters for interactions between i and j atoms */
475             qq20             = _mm_mul_ps(iq2,jq0);
476
477             /* REACTION-FIELD ELECTROSTATICS */
478             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
479             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
480
481             /* Update potential sum for this i atom from the interaction with this j atom. */
482             velec            = _mm_andnot_ps(dummy_mask,velec);
483             velecsum         = _mm_add_ps(velecsum,velec);
484
485             fscal            = felec;
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489              /* Update vectorial force */
490             fix2             = _mm_macc_ps(dx20,fscal,fix2);
491             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
492             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
493
494             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
495             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
496             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
497
498             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
499             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
500             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
501             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
502
503             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
504
505             /* Inner loop uses 117 flops */
506         }
507
508         /* End of innermost loop */
509
510         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
511                                               f+i_coord_offset,fshift+i_shift_offset);
512
513         ggid                        = gid[iidx];
514         /* Update potential energies */
515         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
516         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
517
518         /* Increment number of inner iterations */
519         inneriter                  += j_index_end - j_index_start;
520
521         /* Outer loop uses 20 flops */
522     }
523
524     /* Increment number of outer iterations */
525     outeriter        += nri;
526
527     /* Update outer/inner flops */
528
529     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*117);
530 }
531 /*
532  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
533  * Electrostatics interaction: ReactionField
534  * VdW interaction:            LennardJones
535  * Geometry:                   Water3-Particle
536  * Calculate force/pot:        Force
537  */
538 void
539 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_128_fma_single
540                     (t_nblist                    * gmx_restrict       nlist,
541                      rvec                        * gmx_restrict          xx,
542                      rvec                        * gmx_restrict          ff,
543                      t_forcerec                  * gmx_restrict          fr,
544                      t_mdatoms                   * gmx_restrict     mdatoms,
545                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
546                      t_nrnb                      * gmx_restrict        nrnb)
547 {
548     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
549      * just 0 for non-waters.
550      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
551      * jnr indices corresponding to data put in the four positions in the SIMD register.
552      */
553     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
554     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
555     int              jnrA,jnrB,jnrC,jnrD;
556     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
557     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
558     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
559     real             rcutoff_scalar;
560     real             *shiftvec,*fshift,*x,*f;
561     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
562     real             scratch[4*DIM];
563     __m128           fscal,rcutoff,rcutoff2,jidxall;
564     int              vdwioffset0;
565     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
566     int              vdwioffset1;
567     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
568     int              vdwioffset2;
569     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
570     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
571     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
572     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
573     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
574     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
575     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
576     real             *charge;
577     int              nvdwtype;
578     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
579     int              *vdwtype;
580     real             *vdwparam;
581     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
582     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
583     __m128           dummy_mask,cutoff_mask;
584     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
585     __m128           one     = _mm_set1_ps(1.0);
586     __m128           two     = _mm_set1_ps(2.0);
587     x                = xx[0];
588     f                = ff[0];
589
590     nri              = nlist->nri;
591     iinr             = nlist->iinr;
592     jindex           = nlist->jindex;
593     jjnr             = nlist->jjnr;
594     shiftidx         = nlist->shift;
595     gid              = nlist->gid;
596     shiftvec         = fr->shift_vec[0];
597     fshift           = fr->fshift[0];
598     facel            = _mm_set1_ps(fr->epsfac);
599     charge           = mdatoms->chargeA;
600     krf              = _mm_set1_ps(fr->ic->k_rf);
601     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
602     crf              = _mm_set1_ps(fr->ic->c_rf);
603     nvdwtype         = fr->ntype;
604     vdwparam         = fr->nbfp;
605     vdwtype          = mdatoms->typeA;
606
607     /* Setup water-specific parameters */
608     inr              = nlist->iinr[0];
609     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
610     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
611     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
612     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
613
614     /* Avoid stupid compiler warnings */
615     jnrA = jnrB = jnrC = jnrD = 0;
616     j_coord_offsetA = 0;
617     j_coord_offsetB = 0;
618     j_coord_offsetC = 0;
619     j_coord_offsetD = 0;
620
621     outeriter        = 0;
622     inneriter        = 0;
623
624     for(iidx=0;iidx<4*DIM;iidx++)
625     {
626         scratch[iidx] = 0.0;
627     }
628
629     /* Start outer loop over neighborlists */
630     for(iidx=0; iidx<nri; iidx++)
631     {
632         /* Load shift vector for this list */
633         i_shift_offset   = DIM*shiftidx[iidx];
634
635         /* Load limits for loop over neighbors */
636         j_index_start    = jindex[iidx];
637         j_index_end      = jindex[iidx+1];
638
639         /* Get outer coordinate index */
640         inr              = iinr[iidx];
641         i_coord_offset   = DIM*inr;
642
643         /* Load i particle coords and add shift vector */
644         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
645                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
646
647         fix0             = _mm_setzero_ps();
648         fiy0             = _mm_setzero_ps();
649         fiz0             = _mm_setzero_ps();
650         fix1             = _mm_setzero_ps();
651         fiy1             = _mm_setzero_ps();
652         fiz1             = _mm_setzero_ps();
653         fix2             = _mm_setzero_ps();
654         fiy2             = _mm_setzero_ps();
655         fiz2             = _mm_setzero_ps();
656
657         /* Start inner kernel loop */
658         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
659         {
660
661             /* Get j neighbor index, and coordinate index */
662             jnrA             = jjnr[jidx];
663             jnrB             = jjnr[jidx+1];
664             jnrC             = jjnr[jidx+2];
665             jnrD             = jjnr[jidx+3];
666             j_coord_offsetA  = DIM*jnrA;
667             j_coord_offsetB  = DIM*jnrB;
668             j_coord_offsetC  = DIM*jnrC;
669             j_coord_offsetD  = DIM*jnrD;
670
671             /* load j atom coordinates */
672             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
673                                               x+j_coord_offsetC,x+j_coord_offsetD,
674                                               &jx0,&jy0,&jz0);
675
676             /* Calculate displacement vector */
677             dx00             = _mm_sub_ps(ix0,jx0);
678             dy00             = _mm_sub_ps(iy0,jy0);
679             dz00             = _mm_sub_ps(iz0,jz0);
680             dx10             = _mm_sub_ps(ix1,jx0);
681             dy10             = _mm_sub_ps(iy1,jy0);
682             dz10             = _mm_sub_ps(iz1,jz0);
683             dx20             = _mm_sub_ps(ix2,jx0);
684             dy20             = _mm_sub_ps(iy2,jy0);
685             dz20             = _mm_sub_ps(iz2,jz0);
686
687             /* Calculate squared distance and things based on it */
688             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
689             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
690             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
691
692             rinv00           = gmx_mm_invsqrt_ps(rsq00);
693             rinv10           = gmx_mm_invsqrt_ps(rsq10);
694             rinv20           = gmx_mm_invsqrt_ps(rsq20);
695
696             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
697             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
698             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
699
700             /* Load parameters for j particles */
701             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
702                                                               charge+jnrC+0,charge+jnrD+0);
703             vdwjidx0A        = 2*vdwtype[jnrA+0];
704             vdwjidx0B        = 2*vdwtype[jnrB+0];
705             vdwjidx0C        = 2*vdwtype[jnrC+0];
706             vdwjidx0D        = 2*vdwtype[jnrD+0];
707
708             fjx0             = _mm_setzero_ps();
709             fjy0             = _mm_setzero_ps();
710             fjz0             = _mm_setzero_ps();
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             /* Compute parameters for interactions between i and j atoms */
717             qq00             = _mm_mul_ps(iq0,jq0);
718             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
719                                          vdwparam+vdwioffset0+vdwjidx0B,
720                                          vdwparam+vdwioffset0+vdwjidx0C,
721                                          vdwparam+vdwioffset0+vdwjidx0D,
722                                          &c6_00,&c12_00);
723
724             /* REACTION-FIELD ELECTROSTATICS */
725             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
726
727             /* LENNARD-JONES DISPERSION/REPULSION */
728
729             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
730             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
731
732             fscal            = _mm_add_ps(felec,fvdw);
733
734              /* Update vectorial force */
735             fix0             = _mm_macc_ps(dx00,fscal,fix0);
736             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
737             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
738
739             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
740             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
741             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
742
743             /**************************
744              * CALCULATE INTERACTIONS *
745              **************************/
746
747             /* Compute parameters for interactions between i and j atoms */
748             qq10             = _mm_mul_ps(iq1,jq0);
749
750             /* REACTION-FIELD ELECTROSTATICS */
751             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
752
753             fscal            = felec;
754
755              /* Update vectorial force */
756             fix1             = _mm_macc_ps(dx10,fscal,fix1);
757             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
758             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
759
760             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
761             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
762             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
763
764             /**************************
765              * CALCULATE INTERACTIONS *
766              **************************/
767
768             /* Compute parameters for interactions between i and j atoms */
769             qq20             = _mm_mul_ps(iq2,jq0);
770
771             /* REACTION-FIELD ELECTROSTATICS */
772             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
773
774             fscal            = felec;
775
776              /* Update vectorial force */
777             fix2             = _mm_macc_ps(dx20,fscal,fix2);
778             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
779             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
780
781             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
782             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
783             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
784
785             fjptrA             = f+j_coord_offsetA;
786             fjptrB             = f+j_coord_offsetB;
787             fjptrC             = f+j_coord_offsetC;
788             fjptrD             = f+j_coord_offsetD;
789
790             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
791
792             /* Inner loop uses 97 flops */
793         }
794
795         if(jidx<j_index_end)
796         {
797
798             /* Get j neighbor index, and coordinate index */
799             jnrlistA         = jjnr[jidx];
800             jnrlistB         = jjnr[jidx+1];
801             jnrlistC         = jjnr[jidx+2];
802             jnrlistD         = jjnr[jidx+3];
803             /* Sign of each element will be negative for non-real atoms.
804              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
805              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
806              */
807             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
808             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
809             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
810             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
811             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
812             j_coord_offsetA  = DIM*jnrA;
813             j_coord_offsetB  = DIM*jnrB;
814             j_coord_offsetC  = DIM*jnrC;
815             j_coord_offsetD  = DIM*jnrD;
816
817             /* load j atom coordinates */
818             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
819                                               x+j_coord_offsetC,x+j_coord_offsetD,
820                                               &jx0,&jy0,&jz0);
821
822             /* Calculate displacement vector */
823             dx00             = _mm_sub_ps(ix0,jx0);
824             dy00             = _mm_sub_ps(iy0,jy0);
825             dz00             = _mm_sub_ps(iz0,jz0);
826             dx10             = _mm_sub_ps(ix1,jx0);
827             dy10             = _mm_sub_ps(iy1,jy0);
828             dz10             = _mm_sub_ps(iz1,jz0);
829             dx20             = _mm_sub_ps(ix2,jx0);
830             dy20             = _mm_sub_ps(iy2,jy0);
831             dz20             = _mm_sub_ps(iz2,jz0);
832
833             /* Calculate squared distance and things based on it */
834             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
835             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
836             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
837
838             rinv00           = gmx_mm_invsqrt_ps(rsq00);
839             rinv10           = gmx_mm_invsqrt_ps(rsq10);
840             rinv20           = gmx_mm_invsqrt_ps(rsq20);
841
842             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
843             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
844             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
845
846             /* Load parameters for j particles */
847             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
848                                                               charge+jnrC+0,charge+jnrD+0);
849             vdwjidx0A        = 2*vdwtype[jnrA+0];
850             vdwjidx0B        = 2*vdwtype[jnrB+0];
851             vdwjidx0C        = 2*vdwtype[jnrC+0];
852             vdwjidx0D        = 2*vdwtype[jnrD+0];
853
854             fjx0             = _mm_setzero_ps();
855             fjy0             = _mm_setzero_ps();
856             fjz0             = _mm_setzero_ps();
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             /* Compute parameters for interactions between i and j atoms */
863             qq00             = _mm_mul_ps(iq0,jq0);
864             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
865                                          vdwparam+vdwioffset0+vdwjidx0B,
866                                          vdwparam+vdwioffset0+vdwjidx0C,
867                                          vdwparam+vdwioffset0+vdwjidx0D,
868                                          &c6_00,&c12_00);
869
870             /* REACTION-FIELD ELECTROSTATICS */
871             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
872
873             /* LENNARD-JONES DISPERSION/REPULSION */
874
875             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
876             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
877
878             fscal            = _mm_add_ps(felec,fvdw);
879
880             fscal            = _mm_andnot_ps(dummy_mask,fscal);
881
882              /* Update vectorial force */
883             fix0             = _mm_macc_ps(dx00,fscal,fix0);
884             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
885             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
886
887             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
888             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
889             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             /* Compute parameters for interactions between i and j atoms */
896             qq10             = _mm_mul_ps(iq1,jq0);
897
898             /* REACTION-FIELD ELECTROSTATICS */
899             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
900
901             fscal            = felec;
902
903             fscal            = _mm_andnot_ps(dummy_mask,fscal);
904
905              /* Update vectorial force */
906             fix1             = _mm_macc_ps(dx10,fscal,fix1);
907             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
908             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
909
910             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
911             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
912             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
913
914             /**************************
915              * CALCULATE INTERACTIONS *
916              **************************/
917
918             /* Compute parameters for interactions between i and j atoms */
919             qq20             = _mm_mul_ps(iq2,jq0);
920
921             /* REACTION-FIELD ELECTROSTATICS */
922             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
923
924             fscal            = felec;
925
926             fscal            = _mm_andnot_ps(dummy_mask,fscal);
927
928              /* Update vectorial force */
929             fix2             = _mm_macc_ps(dx20,fscal,fix2);
930             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
931             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
932
933             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
934             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
935             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
936
937             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
938             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
939             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
940             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
941
942             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
943
944             /* Inner loop uses 97 flops */
945         }
946
947         /* End of innermost loop */
948
949         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
950                                               f+i_coord_offset,fshift+i_shift_offset);
951
952         /* Increment number of inner iterations */
953         inneriter                  += j_index_end - j_index_start;
954
955         /* Outer loop uses 18 flops */
956     }
957
958     /* Increment number of outer iterations */
959     outeriter        += nri;
960
961     /* Update outer/inner flops */
962
963     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*97);
964 }