Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm_set1_ps(fr->ic->k_rf);
127     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
128     crf              = _mm_set1_ps(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185         fix3             = _mm_setzero_ps();
186         fiy3             = _mm_setzero_ps();
187         fiz3             = _mm_setzero_ps();
188
189         /* Reset potential sums */
190         velecsum         = _mm_setzero_ps();
191         vvdwsum          = _mm_setzero_ps();
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195         {
196
197             /* Get j neighbor index, and coordinate index */
198             jnrA             = jjnr[jidx];
199             jnrB             = jjnr[jidx+1];
200             jnrC             = jjnr[jidx+2];
201             jnrD             = jjnr[jidx+3];
202             j_coord_offsetA  = DIM*jnrA;
203             j_coord_offsetB  = DIM*jnrB;
204             j_coord_offsetC  = DIM*jnrC;
205             j_coord_offsetD  = DIM*jnrD;
206
207             /* load j atom coordinates */
208             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
209                                               x+j_coord_offsetC,x+j_coord_offsetD,
210                                               &jx0,&jy0,&jz0);
211
212             /* Calculate displacement vector */
213             dx00             = _mm_sub_ps(ix0,jx0);
214             dy00             = _mm_sub_ps(iy0,jy0);
215             dz00             = _mm_sub_ps(iz0,jz0);
216             dx10             = _mm_sub_ps(ix1,jx0);
217             dy10             = _mm_sub_ps(iy1,jy0);
218             dz10             = _mm_sub_ps(iz1,jz0);
219             dx20             = _mm_sub_ps(ix2,jx0);
220             dy20             = _mm_sub_ps(iy2,jy0);
221             dz20             = _mm_sub_ps(iz2,jz0);
222             dx30             = _mm_sub_ps(ix3,jx0);
223             dy30             = _mm_sub_ps(iy3,jy0);
224             dz30             = _mm_sub_ps(iz3,jz0);
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
231
232             rinv00           = gmx_mm_invsqrt_ps(rsq00);
233             rinv10           = gmx_mm_invsqrt_ps(rsq10);
234             rinv20           = gmx_mm_invsqrt_ps(rsq20);
235             rinv30           = gmx_mm_invsqrt_ps(rsq30);
236
237             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
238             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
239             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             r00              = _mm_mul_ps(rsq00,rinv00);
258
259             /* Compute parameters for interactions between i and j atoms */
260             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,
262                                          vdwparam+vdwioffset0+vdwjidx0C,
263                                          vdwparam+vdwioffset0+vdwjidx0D,
264                                          &c6_00,&c12_00);
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = _mm_mul_ps(r00,vftabscale);
268             vfitab           = _mm_cvttps_epi32(rt);
269 #ifdef __XOP__
270             vfeps            = _mm_frcz_ps(rt);
271 #else
272             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
273 #endif
274             twovfeps         = _mm_add_ps(vfeps,vfeps);
275             vfitab           = _mm_slli_epi32(vfitab,3);
276
277             /* CUBIC SPLINE TABLE DISPERSION */
278             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
280             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
281             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
282             _MM_TRANSPOSE4_PS(Y,F,G,H);
283             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
284             VV               = _mm_macc_ps(vfeps,Fp,Y);
285             vvdw6            = _mm_mul_ps(c6_00,VV);
286             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
287             fvdw6            = _mm_mul_ps(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab           = _mm_add_epi32(vfitab,ifour);
291             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
292             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
293             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
294             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
295             _MM_TRANSPOSE4_PS(Y,F,G,H);
296             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
297             VV               = _mm_macc_ps(vfeps,Fp,Y);
298             vvdw12           = _mm_mul_ps(c12_00,VV);
299             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
300             fvdw12           = _mm_mul_ps(c12_00,FF);
301             vvdw             = _mm_add_ps(vvdw12,vvdw6);
302             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
303
304             /* Update potential sum for this i atom from the interaction with this j atom. */
305             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
306
307             fscal            = fvdw;
308
309              /* Update vectorial force */
310             fix0             = _mm_macc_ps(dx00,fscal,fix0);
311             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
312             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
313
314             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
315             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
316             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq10             = _mm_mul_ps(iq1,jq0);
324
325             /* REACTION-FIELD ELECTROSTATICS */
326             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
327             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
328
329             /* Update potential sum for this i atom from the interaction with this j atom. */
330             velecsum         = _mm_add_ps(velecsum,velec);
331
332             fscal            = felec;
333
334              /* Update vectorial force */
335             fix1             = _mm_macc_ps(dx10,fscal,fix1);
336             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
337             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
338
339             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
340             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
341             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             /* Compute parameters for interactions between i and j atoms */
348             qq20             = _mm_mul_ps(iq2,jq0);
349
350             /* REACTION-FIELD ELECTROSTATICS */
351             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
352             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velecsum         = _mm_add_ps(velecsum,velec);
356
357             fscal            = felec;
358
359              /* Update vectorial force */
360             fix2             = _mm_macc_ps(dx20,fscal,fix2);
361             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
362             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
363
364             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
365             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
366             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             /* Compute parameters for interactions between i and j atoms */
373             qq30             = _mm_mul_ps(iq3,jq0);
374
375             /* REACTION-FIELD ELECTROSTATICS */
376             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
377             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
378
379             /* Update potential sum for this i atom from the interaction with this j atom. */
380             velecsum         = _mm_add_ps(velecsum,velec);
381
382             fscal            = felec;
383
384              /* Update vectorial force */
385             fix3             = _mm_macc_ps(dx30,fscal,fix3);
386             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
387             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
388
389             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
390             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
391             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
392
393             fjptrA             = f+j_coord_offsetA;
394             fjptrB             = f+j_coord_offsetB;
395             fjptrC             = f+j_coord_offsetC;
396             fjptrD             = f+j_coord_offsetD;
397
398             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
399
400             /* Inner loop uses 164 flops */
401         }
402
403         if(jidx<j_index_end)
404         {
405
406             /* Get j neighbor index, and coordinate index */
407             jnrlistA         = jjnr[jidx];
408             jnrlistB         = jjnr[jidx+1];
409             jnrlistC         = jjnr[jidx+2];
410             jnrlistD         = jjnr[jidx+3];
411             /* Sign of each element will be negative for non-real atoms.
412              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
413              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
414              */
415             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
416             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
417             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
418             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
419             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
420             j_coord_offsetA  = DIM*jnrA;
421             j_coord_offsetB  = DIM*jnrB;
422             j_coord_offsetC  = DIM*jnrC;
423             j_coord_offsetD  = DIM*jnrD;
424
425             /* load j atom coordinates */
426             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
427                                               x+j_coord_offsetC,x+j_coord_offsetD,
428                                               &jx0,&jy0,&jz0);
429
430             /* Calculate displacement vector */
431             dx00             = _mm_sub_ps(ix0,jx0);
432             dy00             = _mm_sub_ps(iy0,jy0);
433             dz00             = _mm_sub_ps(iz0,jz0);
434             dx10             = _mm_sub_ps(ix1,jx0);
435             dy10             = _mm_sub_ps(iy1,jy0);
436             dz10             = _mm_sub_ps(iz1,jz0);
437             dx20             = _mm_sub_ps(ix2,jx0);
438             dy20             = _mm_sub_ps(iy2,jy0);
439             dz20             = _mm_sub_ps(iz2,jz0);
440             dx30             = _mm_sub_ps(ix3,jx0);
441             dy30             = _mm_sub_ps(iy3,jy0);
442             dz30             = _mm_sub_ps(iz3,jz0);
443
444             /* Calculate squared distance and things based on it */
445             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
446             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
447             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
448             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
449
450             rinv00           = gmx_mm_invsqrt_ps(rsq00);
451             rinv10           = gmx_mm_invsqrt_ps(rsq10);
452             rinv20           = gmx_mm_invsqrt_ps(rsq20);
453             rinv30           = gmx_mm_invsqrt_ps(rsq30);
454
455             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
456             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
457             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
458
459             /* Load parameters for j particles */
460             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
461                                                               charge+jnrC+0,charge+jnrD+0);
462             vdwjidx0A        = 2*vdwtype[jnrA+0];
463             vdwjidx0B        = 2*vdwtype[jnrB+0];
464             vdwjidx0C        = 2*vdwtype[jnrC+0];
465             vdwjidx0D        = 2*vdwtype[jnrD+0];
466
467             fjx0             = _mm_setzero_ps();
468             fjy0             = _mm_setzero_ps();
469             fjz0             = _mm_setzero_ps();
470
471             /**************************
472              * CALCULATE INTERACTIONS *
473              **************************/
474
475             r00              = _mm_mul_ps(rsq00,rinv00);
476             r00              = _mm_andnot_ps(dummy_mask,r00);
477
478             /* Compute parameters for interactions between i and j atoms */
479             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
480                                          vdwparam+vdwioffset0+vdwjidx0B,
481                                          vdwparam+vdwioffset0+vdwjidx0C,
482                                          vdwparam+vdwioffset0+vdwjidx0D,
483                                          &c6_00,&c12_00);
484
485             /* Calculate table index by multiplying r with table scale and truncate to integer */
486             rt               = _mm_mul_ps(r00,vftabscale);
487             vfitab           = _mm_cvttps_epi32(rt);
488 #ifdef __XOP__
489             vfeps            = _mm_frcz_ps(rt);
490 #else
491             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
492 #endif
493             twovfeps         = _mm_add_ps(vfeps,vfeps);
494             vfitab           = _mm_slli_epi32(vfitab,3);
495
496             /* CUBIC SPLINE TABLE DISPERSION */
497             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
498             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
499             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
500             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
501             _MM_TRANSPOSE4_PS(Y,F,G,H);
502             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
503             VV               = _mm_macc_ps(vfeps,Fp,Y);
504             vvdw6            = _mm_mul_ps(c6_00,VV);
505             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
506             fvdw6            = _mm_mul_ps(c6_00,FF);
507
508             /* CUBIC SPLINE TABLE REPULSION */
509             vfitab           = _mm_add_epi32(vfitab,ifour);
510             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
511             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
512             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
513             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
514             _MM_TRANSPOSE4_PS(Y,F,G,H);
515             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
516             VV               = _mm_macc_ps(vfeps,Fp,Y);
517             vvdw12           = _mm_mul_ps(c12_00,VV);
518             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
519             fvdw12           = _mm_mul_ps(c12_00,FF);
520             vvdw             = _mm_add_ps(vvdw12,vvdw6);
521             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
525             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
526
527             fscal            = fvdw;
528
529             fscal            = _mm_andnot_ps(dummy_mask,fscal);
530
531              /* Update vectorial force */
532             fix0             = _mm_macc_ps(dx00,fscal,fix0);
533             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
534             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
535
536             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
537             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
538             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq10             = _mm_mul_ps(iq1,jq0);
546
547             /* REACTION-FIELD ELECTROSTATICS */
548             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
549             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559              /* Update vectorial force */
560             fix1             = _mm_macc_ps(dx10,fscal,fix1);
561             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
562             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
563
564             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
565             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
566             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_ps(iq2,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
577             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
578
579             /* Update potential sum for this i atom from the interaction with this j atom. */
580             velec            = _mm_andnot_ps(dummy_mask,velec);
581             velecsum         = _mm_add_ps(velecsum,velec);
582
583             fscal            = felec;
584
585             fscal            = _mm_andnot_ps(dummy_mask,fscal);
586
587              /* Update vectorial force */
588             fix2             = _mm_macc_ps(dx20,fscal,fix2);
589             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
590             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
591
592             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
593             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
594             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             /* Compute parameters for interactions between i and j atoms */
601             qq30             = _mm_mul_ps(iq3,jq0);
602
603             /* REACTION-FIELD ELECTROSTATICS */
604             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
605             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
606
607             /* Update potential sum for this i atom from the interaction with this j atom. */
608             velec            = _mm_andnot_ps(dummy_mask,velec);
609             velecsum         = _mm_add_ps(velecsum,velec);
610
611             fscal            = felec;
612
613             fscal            = _mm_andnot_ps(dummy_mask,fscal);
614
615              /* Update vectorial force */
616             fix3             = _mm_macc_ps(dx30,fscal,fix3);
617             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
618             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
619
620             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
621             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
622             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
623
624             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
625             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
626             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
627             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
628
629             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
630
631             /* Inner loop uses 165 flops */
632         }
633
634         /* End of innermost loop */
635
636         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
637                                               f+i_coord_offset,fshift+i_shift_offset);
638
639         ggid                        = gid[iidx];
640         /* Update potential energies */
641         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
642         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
643
644         /* Increment number of inner iterations */
645         inneriter                  += j_index_end - j_index_start;
646
647         /* Outer loop uses 26 flops */
648     }
649
650     /* Increment number of outer iterations */
651     outeriter        += nri;
652
653     /* Update outer/inner flops */
654
655     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
656 }
657 /*
658  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
659  * Electrostatics interaction: ReactionField
660  * VdW interaction:            CubicSplineTable
661  * Geometry:                   Water4-Particle
662  * Calculate force/pot:        Force
663  */
664 void
665 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
666                     (t_nblist                    * gmx_restrict       nlist,
667                      rvec                        * gmx_restrict          xx,
668                      rvec                        * gmx_restrict          ff,
669                      t_forcerec                  * gmx_restrict          fr,
670                      t_mdatoms                   * gmx_restrict     mdatoms,
671                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
672                      t_nrnb                      * gmx_restrict        nrnb)
673 {
674     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
675      * just 0 for non-waters.
676      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
677      * jnr indices corresponding to data put in the four positions in the SIMD register.
678      */
679     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
680     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
681     int              jnrA,jnrB,jnrC,jnrD;
682     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
683     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
684     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
685     real             rcutoff_scalar;
686     real             *shiftvec,*fshift,*x,*f;
687     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
688     real             scratch[4*DIM];
689     __m128           fscal,rcutoff,rcutoff2,jidxall;
690     int              vdwioffset0;
691     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
692     int              vdwioffset1;
693     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694     int              vdwioffset2;
695     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696     int              vdwioffset3;
697     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
698     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
699     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
701     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
702     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
703     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
704     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
705     real             *charge;
706     int              nvdwtype;
707     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
708     int              *vdwtype;
709     real             *vdwparam;
710     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
711     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
712     __m128i          vfitab;
713     __m128i          ifour       = _mm_set1_epi32(4);
714     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
715     real             *vftab;
716     __m128           dummy_mask,cutoff_mask;
717     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
718     __m128           one     = _mm_set1_ps(1.0);
719     __m128           two     = _mm_set1_ps(2.0);
720     x                = xx[0];
721     f                = ff[0];
722
723     nri              = nlist->nri;
724     iinr             = nlist->iinr;
725     jindex           = nlist->jindex;
726     jjnr             = nlist->jjnr;
727     shiftidx         = nlist->shift;
728     gid              = nlist->gid;
729     shiftvec         = fr->shift_vec[0];
730     fshift           = fr->fshift[0];
731     facel            = _mm_set1_ps(fr->epsfac);
732     charge           = mdatoms->chargeA;
733     krf              = _mm_set1_ps(fr->ic->k_rf);
734     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
735     crf              = _mm_set1_ps(fr->ic->c_rf);
736     nvdwtype         = fr->ntype;
737     vdwparam         = fr->nbfp;
738     vdwtype          = mdatoms->typeA;
739
740     vftab            = kernel_data->table_vdw->data;
741     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
742
743     /* Setup water-specific parameters */
744     inr              = nlist->iinr[0];
745     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
746     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
747     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
748     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
749
750     /* Avoid stupid compiler warnings */
751     jnrA = jnrB = jnrC = jnrD = 0;
752     j_coord_offsetA = 0;
753     j_coord_offsetB = 0;
754     j_coord_offsetC = 0;
755     j_coord_offsetD = 0;
756
757     outeriter        = 0;
758     inneriter        = 0;
759
760     for(iidx=0;iidx<4*DIM;iidx++)
761     {
762         scratch[iidx] = 0.0;
763     }
764
765     /* Start outer loop over neighborlists */
766     for(iidx=0; iidx<nri; iidx++)
767     {
768         /* Load shift vector for this list */
769         i_shift_offset   = DIM*shiftidx[iidx];
770
771         /* Load limits for loop over neighbors */
772         j_index_start    = jindex[iidx];
773         j_index_end      = jindex[iidx+1];
774
775         /* Get outer coordinate index */
776         inr              = iinr[iidx];
777         i_coord_offset   = DIM*inr;
778
779         /* Load i particle coords and add shift vector */
780         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
781                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
782
783         fix0             = _mm_setzero_ps();
784         fiy0             = _mm_setzero_ps();
785         fiz0             = _mm_setzero_ps();
786         fix1             = _mm_setzero_ps();
787         fiy1             = _mm_setzero_ps();
788         fiz1             = _mm_setzero_ps();
789         fix2             = _mm_setzero_ps();
790         fiy2             = _mm_setzero_ps();
791         fiz2             = _mm_setzero_ps();
792         fix3             = _mm_setzero_ps();
793         fiy3             = _mm_setzero_ps();
794         fiz3             = _mm_setzero_ps();
795
796         /* Start inner kernel loop */
797         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrA             = jjnr[jidx];
802             jnrB             = jjnr[jidx+1];
803             jnrC             = jjnr[jidx+2];
804             jnrD             = jjnr[jidx+3];
805             j_coord_offsetA  = DIM*jnrA;
806             j_coord_offsetB  = DIM*jnrB;
807             j_coord_offsetC  = DIM*jnrC;
808             j_coord_offsetD  = DIM*jnrD;
809
810             /* load j atom coordinates */
811             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
812                                               x+j_coord_offsetC,x+j_coord_offsetD,
813                                               &jx0,&jy0,&jz0);
814
815             /* Calculate displacement vector */
816             dx00             = _mm_sub_ps(ix0,jx0);
817             dy00             = _mm_sub_ps(iy0,jy0);
818             dz00             = _mm_sub_ps(iz0,jz0);
819             dx10             = _mm_sub_ps(ix1,jx0);
820             dy10             = _mm_sub_ps(iy1,jy0);
821             dz10             = _mm_sub_ps(iz1,jz0);
822             dx20             = _mm_sub_ps(ix2,jx0);
823             dy20             = _mm_sub_ps(iy2,jy0);
824             dz20             = _mm_sub_ps(iz2,jz0);
825             dx30             = _mm_sub_ps(ix3,jx0);
826             dy30             = _mm_sub_ps(iy3,jy0);
827             dz30             = _mm_sub_ps(iz3,jz0);
828
829             /* Calculate squared distance and things based on it */
830             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
831             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
832             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
833             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
834
835             rinv00           = gmx_mm_invsqrt_ps(rsq00);
836             rinv10           = gmx_mm_invsqrt_ps(rsq10);
837             rinv20           = gmx_mm_invsqrt_ps(rsq20);
838             rinv30           = gmx_mm_invsqrt_ps(rsq30);
839
840             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
841             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
842             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
843
844             /* Load parameters for j particles */
845             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
846                                                               charge+jnrC+0,charge+jnrD+0);
847             vdwjidx0A        = 2*vdwtype[jnrA+0];
848             vdwjidx0B        = 2*vdwtype[jnrB+0];
849             vdwjidx0C        = 2*vdwtype[jnrC+0];
850             vdwjidx0D        = 2*vdwtype[jnrD+0];
851
852             fjx0             = _mm_setzero_ps();
853             fjy0             = _mm_setzero_ps();
854             fjz0             = _mm_setzero_ps();
855
856             /**************************
857              * CALCULATE INTERACTIONS *
858              **************************/
859
860             r00              = _mm_mul_ps(rsq00,rinv00);
861
862             /* Compute parameters for interactions between i and j atoms */
863             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
864                                          vdwparam+vdwioffset0+vdwjidx0B,
865                                          vdwparam+vdwioffset0+vdwjidx0C,
866                                          vdwparam+vdwioffset0+vdwjidx0D,
867                                          &c6_00,&c12_00);
868
869             /* Calculate table index by multiplying r with table scale and truncate to integer */
870             rt               = _mm_mul_ps(r00,vftabscale);
871             vfitab           = _mm_cvttps_epi32(rt);
872 #ifdef __XOP__
873             vfeps            = _mm_frcz_ps(rt);
874 #else
875             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
876 #endif
877             twovfeps         = _mm_add_ps(vfeps,vfeps);
878             vfitab           = _mm_slli_epi32(vfitab,3);
879
880             /* CUBIC SPLINE TABLE DISPERSION */
881             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
882             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
883             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
884             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
885             _MM_TRANSPOSE4_PS(Y,F,G,H);
886             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
887             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
888             fvdw6            = _mm_mul_ps(c6_00,FF);
889
890             /* CUBIC SPLINE TABLE REPULSION */
891             vfitab           = _mm_add_epi32(vfitab,ifour);
892             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
893             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
894             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
895             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
896             _MM_TRANSPOSE4_PS(Y,F,G,H);
897             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
898             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
899             fvdw12           = _mm_mul_ps(c12_00,FF);
900             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
901
902             fscal            = fvdw;
903
904              /* Update vectorial force */
905             fix0             = _mm_macc_ps(dx00,fscal,fix0);
906             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
907             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
908
909             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
910             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
911             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             /* Compute parameters for interactions between i and j atoms */
918             qq10             = _mm_mul_ps(iq1,jq0);
919
920             /* REACTION-FIELD ELECTROSTATICS */
921             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
922
923             fscal            = felec;
924
925              /* Update vectorial force */
926             fix1             = _mm_macc_ps(dx10,fscal,fix1);
927             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
928             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
929
930             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
931             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
932             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
933
934             /**************************
935              * CALCULATE INTERACTIONS *
936              **************************/
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq20             = _mm_mul_ps(iq2,jq0);
940
941             /* REACTION-FIELD ELECTROSTATICS */
942             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
943
944             fscal            = felec;
945
946              /* Update vectorial force */
947             fix2             = _mm_macc_ps(dx20,fscal,fix2);
948             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
949             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
950
951             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
952             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
953             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
954
955             /**************************
956              * CALCULATE INTERACTIONS *
957              **************************/
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq30             = _mm_mul_ps(iq3,jq0);
961
962             /* REACTION-FIELD ELECTROSTATICS */
963             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
964
965             fscal            = felec;
966
967              /* Update vectorial force */
968             fix3             = _mm_macc_ps(dx30,fscal,fix3);
969             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
970             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
971
972             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
973             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
974             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
975
976             fjptrA             = f+j_coord_offsetA;
977             fjptrB             = f+j_coord_offsetB;
978             fjptrC             = f+j_coord_offsetC;
979             fjptrD             = f+j_coord_offsetD;
980
981             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
982
983             /* Inner loop uses 141 flops */
984         }
985
986         if(jidx<j_index_end)
987         {
988
989             /* Get j neighbor index, and coordinate index */
990             jnrlistA         = jjnr[jidx];
991             jnrlistB         = jjnr[jidx+1];
992             jnrlistC         = jjnr[jidx+2];
993             jnrlistD         = jjnr[jidx+3];
994             /* Sign of each element will be negative for non-real atoms.
995              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
996              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
997              */
998             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
999             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1000             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1001             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1002             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1003             j_coord_offsetA  = DIM*jnrA;
1004             j_coord_offsetB  = DIM*jnrB;
1005             j_coord_offsetC  = DIM*jnrC;
1006             j_coord_offsetD  = DIM*jnrD;
1007
1008             /* load j atom coordinates */
1009             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1010                                               x+j_coord_offsetC,x+j_coord_offsetD,
1011                                               &jx0,&jy0,&jz0);
1012
1013             /* Calculate displacement vector */
1014             dx00             = _mm_sub_ps(ix0,jx0);
1015             dy00             = _mm_sub_ps(iy0,jy0);
1016             dz00             = _mm_sub_ps(iz0,jz0);
1017             dx10             = _mm_sub_ps(ix1,jx0);
1018             dy10             = _mm_sub_ps(iy1,jy0);
1019             dz10             = _mm_sub_ps(iz1,jz0);
1020             dx20             = _mm_sub_ps(ix2,jx0);
1021             dy20             = _mm_sub_ps(iy2,jy0);
1022             dz20             = _mm_sub_ps(iz2,jz0);
1023             dx30             = _mm_sub_ps(ix3,jx0);
1024             dy30             = _mm_sub_ps(iy3,jy0);
1025             dz30             = _mm_sub_ps(iz3,jz0);
1026
1027             /* Calculate squared distance and things based on it */
1028             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1029             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1030             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1031             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1032
1033             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1034             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1035             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1036             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1037
1038             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1039             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1040             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1041
1042             /* Load parameters for j particles */
1043             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1044                                                               charge+jnrC+0,charge+jnrD+0);
1045             vdwjidx0A        = 2*vdwtype[jnrA+0];
1046             vdwjidx0B        = 2*vdwtype[jnrB+0];
1047             vdwjidx0C        = 2*vdwtype[jnrC+0];
1048             vdwjidx0D        = 2*vdwtype[jnrD+0];
1049
1050             fjx0             = _mm_setzero_ps();
1051             fjy0             = _mm_setzero_ps();
1052             fjz0             = _mm_setzero_ps();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r00              = _mm_mul_ps(rsq00,rinv00);
1059             r00              = _mm_andnot_ps(dummy_mask,r00);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1063                                          vdwparam+vdwioffset0+vdwjidx0B,
1064                                          vdwparam+vdwioffset0+vdwjidx0C,
1065                                          vdwparam+vdwioffset0+vdwjidx0D,
1066                                          &c6_00,&c12_00);
1067
1068             /* Calculate table index by multiplying r with table scale and truncate to integer */
1069             rt               = _mm_mul_ps(r00,vftabscale);
1070             vfitab           = _mm_cvttps_epi32(rt);
1071 #ifdef __XOP__
1072             vfeps            = _mm_frcz_ps(rt);
1073 #else
1074             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1075 #endif
1076             twovfeps         = _mm_add_ps(vfeps,vfeps);
1077             vfitab           = _mm_slli_epi32(vfitab,3);
1078
1079             /* CUBIC SPLINE TABLE DISPERSION */
1080             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1081             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1082             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1083             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1084             _MM_TRANSPOSE4_PS(Y,F,G,H);
1085             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1086             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1087             fvdw6            = _mm_mul_ps(c6_00,FF);
1088
1089             /* CUBIC SPLINE TABLE REPULSION */
1090             vfitab           = _mm_add_epi32(vfitab,ifour);
1091             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1092             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1093             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1094             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1095             _MM_TRANSPOSE4_PS(Y,F,G,H);
1096             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1097             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1098             fvdw12           = _mm_mul_ps(c12_00,FF);
1099             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1100
1101             fscal            = fvdw;
1102
1103             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1104
1105              /* Update vectorial force */
1106             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1107             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1108             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1109
1110             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1111             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1112             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq10             = _mm_mul_ps(iq1,jq0);
1120
1121             /* REACTION-FIELD ELECTROSTATICS */
1122             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1123
1124             fscal            = felec;
1125
1126             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1127
1128              /* Update vectorial force */
1129             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1130             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1131             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1132
1133             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1134             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1135             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             /* Compute parameters for interactions between i and j atoms */
1142             qq20             = _mm_mul_ps(iq2,jq0);
1143
1144             /* REACTION-FIELD ELECTROSTATICS */
1145             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1146
1147             fscal            = felec;
1148
1149             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1150
1151              /* Update vectorial force */
1152             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1153             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1154             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1155
1156             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1157             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1158             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1159
1160             /**************************
1161              * CALCULATE INTERACTIONS *
1162              **************************/
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq30             = _mm_mul_ps(iq3,jq0);
1166
1167             /* REACTION-FIELD ELECTROSTATICS */
1168             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1169
1170             fscal            = felec;
1171
1172             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1173
1174              /* Update vectorial force */
1175             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1176             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1177             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1178
1179             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1180             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1181             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1182
1183             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1184             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1185             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1186             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1187
1188             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1189
1190             /* Inner loop uses 142 flops */
1191         }
1192
1193         /* End of innermost loop */
1194
1195         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1196                                               f+i_coord_offset,fshift+i_shift_offset);
1197
1198         /* Increment number of inner iterations */
1199         inneriter                  += j_index_end - j_index_start;
1200
1201         /* Outer loop uses 24 flops */
1202     }
1203
1204     /* Increment number of outer iterations */
1205     outeriter        += nri;
1206
1207     /* Update outer/inner flops */
1208
1209     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1210 }