Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water4-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwioffset3;
92     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
100     real             *charge;
101     int              nvdwtype;
102     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103     int              *vdwtype;
104     real             *vdwparam;
105     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
106     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
107     __m128i          vfitab;
108     __m128i          ifour       = _mm_set1_epi32(4);
109     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
110     real             *vftab;
111     __m128           dummy_mask,cutoff_mask;
112     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113     __m128           one     = _mm_set1_ps(1.0);
114     __m128           two     = _mm_set1_ps(2.0);
115     x                = xx[0];
116     f                = ff[0];
117
118     nri              = nlist->nri;
119     iinr             = nlist->iinr;
120     jindex           = nlist->jindex;
121     jjnr             = nlist->jjnr;
122     shiftidx         = nlist->shift;
123     gid              = nlist->gid;
124     shiftvec         = fr->shift_vec[0];
125     fshift           = fr->fshift[0];
126     facel            = _mm_set1_ps(fr->epsfac);
127     charge           = mdatoms->chargeA;
128     krf              = _mm_set1_ps(fr->ic->k_rf);
129     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
130     crf              = _mm_set1_ps(fr->ic->c_rf);
131     nvdwtype         = fr->ntype;
132     vdwparam         = fr->nbfp;
133     vdwtype          = mdatoms->typeA;
134
135     vftab            = kernel_data->table_vdw->data;
136     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
137
138     /* Setup water-specific parameters */
139     inr              = nlist->iinr[0];
140     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
143     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187         fix3             = _mm_setzero_ps();
188         fiy3             = _mm_setzero_ps();
189         fiz3             = _mm_setzero_ps();
190
191         /* Reset potential sums */
192         velecsum         = _mm_setzero_ps();
193         vvdwsum          = _mm_setzero_ps();
194
195         /* Start inner kernel loop */
196         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197         {
198
199             /* Get j neighbor index, and coordinate index */
200             jnrA             = jjnr[jidx];
201             jnrB             = jjnr[jidx+1];
202             jnrC             = jjnr[jidx+2];
203             jnrD             = jjnr[jidx+3];
204             j_coord_offsetA  = DIM*jnrA;
205             j_coord_offsetB  = DIM*jnrB;
206             j_coord_offsetC  = DIM*jnrC;
207             j_coord_offsetD  = DIM*jnrD;
208
209             /* load j atom coordinates */
210             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                               x+j_coord_offsetC,x+j_coord_offsetD,
212                                               &jx0,&jy0,&jz0);
213
214             /* Calculate displacement vector */
215             dx00             = _mm_sub_ps(ix0,jx0);
216             dy00             = _mm_sub_ps(iy0,jy0);
217             dz00             = _mm_sub_ps(iz0,jz0);
218             dx10             = _mm_sub_ps(ix1,jx0);
219             dy10             = _mm_sub_ps(iy1,jy0);
220             dz10             = _mm_sub_ps(iz1,jz0);
221             dx20             = _mm_sub_ps(ix2,jx0);
222             dy20             = _mm_sub_ps(iy2,jy0);
223             dz20             = _mm_sub_ps(iz2,jz0);
224             dx30             = _mm_sub_ps(ix3,jx0);
225             dy30             = _mm_sub_ps(iy3,jy0);
226             dz30             = _mm_sub_ps(iz3,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
233
234             rinv00           = gmx_mm_invsqrt_ps(rsq00);
235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
237             rinv30           = gmx_mm_invsqrt_ps(rsq30);
238
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
242
243             /* Load parameters for j particles */
244             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245                                                               charge+jnrC+0,charge+jnrD+0);
246             vdwjidx0A        = 2*vdwtype[jnrA+0];
247             vdwjidx0B        = 2*vdwtype[jnrB+0];
248             vdwjidx0C        = 2*vdwtype[jnrC+0];
249             vdwjidx0D        = 2*vdwtype[jnrD+0];
250
251             fjx0             = _mm_setzero_ps();
252             fjy0             = _mm_setzero_ps();
253             fjz0             = _mm_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r00              = _mm_mul_ps(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263                                          vdwparam+vdwioffset0+vdwjidx0B,
264                                          vdwparam+vdwioffset0+vdwjidx0C,
265                                          vdwparam+vdwioffset0+vdwjidx0D,
266                                          &c6_00,&c12_00);
267
268             /* Calculate table index by multiplying r with table scale and truncate to integer */
269             rt               = _mm_mul_ps(r00,vftabscale);
270             vfitab           = _mm_cvttps_epi32(rt);
271 #ifdef __XOP__
272             vfeps            = _mm_frcz_ps(rt);
273 #else
274             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
275 #endif
276             twovfeps         = _mm_add_ps(vfeps,vfeps);
277             vfitab           = _mm_slli_epi32(vfitab,3);
278
279             /* CUBIC SPLINE TABLE DISPERSION */
280             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
286             VV               = _mm_macc_ps(vfeps,Fp,Y);
287             vvdw6            = _mm_mul_ps(c6_00,VV);
288             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
289             fvdw6            = _mm_mul_ps(c6_00,FF);
290
291             /* CUBIC SPLINE TABLE REPULSION */
292             vfitab           = _mm_add_epi32(vfitab,ifour);
293             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
294             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
295             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
296             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
297             _MM_TRANSPOSE4_PS(Y,F,G,H);
298             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
299             VV               = _mm_macc_ps(vfeps,Fp,Y);
300             vvdw12           = _mm_mul_ps(c12_00,VV);
301             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
302             fvdw12           = _mm_mul_ps(c12_00,FF);
303             vvdw             = _mm_add_ps(vvdw12,vvdw6);
304             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
305
306             /* Update potential sum for this i atom from the interaction with this j atom. */
307             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
308
309             fscal            = fvdw;
310
311              /* Update vectorial force */
312             fix0             = _mm_macc_ps(dx00,fscal,fix0);
313             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
314             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
315
316             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
317             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
318             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm_mul_ps(iq1,jq0);
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
329             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velecsum         = _mm_add_ps(velecsum,velec);
333
334             fscal            = felec;
335
336              /* Update vectorial force */
337             fix1             = _mm_macc_ps(dx10,fscal,fix1);
338             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
339             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
340
341             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
342             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
343             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
344
345             /**************************
346              * CALCULATE INTERACTIONS *
347              **************************/
348
349             /* Compute parameters for interactions between i and j atoms */
350             qq20             = _mm_mul_ps(iq2,jq0);
351
352             /* REACTION-FIELD ELECTROSTATICS */
353             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
354             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361              /* Update vectorial force */
362             fix2             = _mm_macc_ps(dx20,fscal,fix2);
363             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
364             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
365
366             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
367             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
368             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             /* Compute parameters for interactions between i and j atoms */
375             qq30             = _mm_mul_ps(iq3,jq0);
376
377             /* REACTION-FIELD ELECTROSTATICS */
378             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
379             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
380
381             /* Update potential sum for this i atom from the interaction with this j atom. */
382             velecsum         = _mm_add_ps(velecsum,velec);
383
384             fscal            = felec;
385
386              /* Update vectorial force */
387             fix3             = _mm_macc_ps(dx30,fscal,fix3);
388             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
389             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
390
391             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
392             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
393             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
394
395             fjptrA             = f+j_coord_offsetA;
396             fjptrB             = f+j_coord_offsetB;
397             fjptrC             = f+j_coord_offsetC;
398             fjptrD             = f+j_coord_offsetD;
399
400             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
401
402             /* Inner loop uses 164 flops */
403         }
404
405         if(jidx<j_index_end)
406         {
407
408             /* Get j neighbor index, and coordinate index */
409             jnrlistA         = jjnr[jidx];
410             jnrlistB         = jjnr[jidx+1];
411             jnrlistC         = jjnr[jidx+2];
412             jnrlistD         = jjnr[jidx+3];
413             /* Sign of each element will be negative for non-real atoms.
414              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
415              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
416              */
417             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
418             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
419             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
420             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
421             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
422             j_coord_offsetA  = DIM*jnrA;
423             j_coord_offsetB  = DIM*jnrB;
424             j_coord_offsetC  = DIM*jnrC;
425             j_coord_offsetD  = DIM*jnrD;
426
427             /* load j atom coordinates */
428             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
429                                               x+j_coord_offsetC,x+j_coord_offsetD,
430                                               &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm_sub_ps(ix0,jx0);
434             dy00             = _mm_sub_ps(iy0,jy0);
435             dz00             = _mm_sub_ps(iz0,jz0);
436             dx10             = _mm_sub_ps(ix1,jx0);
437             dy10             = _mm_sub_ps(iy1,jy0);
438             dz10             = _mm_sub_ps(iz1,jz0);
439             dx20             = _mm_sub_ps(ix2,jx0);
440             dy20             = _mm_sub_ps(iy2,jy0);
441             dz20             = _mm_sub_ps(iz2,jz0);
442             dx30             = _mm_sub_ps(ix3,jx0);
443             dy30             = _mm_sub_ps(iy3,jy0);
444             dz30             = _mm_sub_ps(iz3,jz0);
445
446             /* Calculate squared distance and things based on it */
447             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
448             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
449             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
450             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
451
452             rinv00           = gmx_mm_invsqrt_ps(rsq00);
453             rinv10           = gmx_mm_invsqrt_ps(rsq10);
454             rinv20           = gmx_mm_invsqrt_ps(rsq20);
455             rinv30           = gmx_mm_invsqrt_ps(rsq30);
456
457             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
458             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
459             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
460
461             /* Load parameters for j particles */
462             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
463                                                               charge+jnrC+0,charge+jnrD+0);
464             vdwjidx0A        = 2*vdwtype[jnrA+0];
465             vdwjidx0B        = 2*vdwtype[jnrB+0];
466             vdwjidx0C        = 2*vdwtype[jnrC+0];
467             vdwjidx0D        = 2*vdwtype[jnrD+0];
468
469             fjx0             = _mm_setzero_ps();
470             fjy0             = _mm_setzero_ps();
471             fjz0             = _mm_setzero_ps();
472
473             /**************************
474              * CALCULATE INTERACTIONS *
475              **************************/
476
477             r00              = _mm_mul_ps(rsq00,rinv00);
478             r00              = _mm_andnot_ps(dummy_mask,r00);
479
480             /* Compute parameters for interactions between i and j atoms */
481             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
482                                          vdwparam+vdwioffset0+vdwjidx0B,
483                                          vdwparam+vdwioffset0+vdwjidx0C,
484                                          vdwparam+vdwioffset0+vdwjidx0D,
485                                          &c6_00,&c12_00);
486
487             /* Calculate table index by multiplying r with table scale and truncate to integer */
488             rt               = _mm_mul_ps(r00,vftabscale);
489             vfitab           = _mm_cvttps_epi32(rt);
490 #ifdef __XOP__
491             vfeps            = _mm_frcz_ps(rt);
492 #else
493             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
494 #endif
495             twovfeps         = _mm_add_ps(vfeps,vfeps);
496             vfitab           = _mm_slli_epi32(vfitab,3);
497
498             /* CUBIC SPLINE TABLE DISPERSION */
499             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
500             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
501             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
502             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
503             _MM_TRANSPOSE4_PS(Y,F,G,H);
504             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
505             VV               = _mm_macc_ps(vfeps,Fp,Y);
506             vvdw6            = _mm_mul_ps(c6_00,VV);
507             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
508             fvdw6            = _mm_mul_ps(c6_00,FF);
509
510             /* CUBIC SPLINE TABLE REPULSION */
511             vfitab           = _mm_add_epi32(vfitab,ifour);
512             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
513             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
514             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
515             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
516             _MM_TRANSPOSE4_PS(Y,F,G,H);
517             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
518             VV               = _mm_macc_ps(vfeps,Fp,Y);
519             vvdw12           = _mm_mul_ps(c12_00,VV);
520             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
521             fvdw12           = _mm_mul_ps(c12_00,FF);
522             vvdw             = _mm_add_ps(vvdw12,vvdw6);
523             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
527             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
528
529             fscal            = fvdw;
530
531             fscal            = _mm_andnot_ps(dummy_mask,fscal);
532
533              /* Update vectorial force */
534             fix0             = _mm_macc_ps(dx00,fscal,fix0);
535             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
536             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
537
538             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
539             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
540             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq10             = _mm_mul_ps(iq1,jq0);
548
549             /* REACTION-FIELD ELECTROSTATICS */
550             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
551             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561              /* Update vectorial force */
562             fix1             = _mm_macc_ps(dx10,fscal,fix1);
563             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
564             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
565
566             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
567             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
568             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
569
570             /**************************
571              * CALCULATE INTERACTIONS *
572              **************************/
573
574             /* Compute parameters for interactions between i and j atoms */
575             qq20             = _mm_mul_ps(iq2,jq0);
576
577             /* REACTION-FIELD ELECTROSTATICS */
578             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
579             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_andnot_ps(dummy_mask,velec);
583             velecsum         = _mm_add_ps(velecsum,velec);
584
585             fscal            = felec;
586
587             fscal            = _mm_andnot_ps(dummy_mask,fscal);
588
589              /* Update vectorial force */
590             fix2             = _mm_macc_ps(dx20,fscal,fix2);
591             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
592             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
593
594             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
595             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
596             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
597
598             /**************************
599              * CALCULATE INTERACTIONS *
600              **************************/
601
602             /* Compute parameters for interactions between i and j atoms */
603             qq30             = _mm_mul_ps(iq3,jq0);
604
605             /* REACTION-FIELD ELECTROSTATICS */
606             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
607             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
608
609             /* Update potential sum for this i atom from the interaction with this j atom. */
610             velec            = _mm_andnot_ps(dummy_mask,velec);
611             velecsum         = _mm_add_ps(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm_andnot_ps(dummy_mask,fscal);
616
617              /* Update vectorial force */
618             fix3             = _mm_macc_ps(dx30,fscal,fix3);
619             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
620             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
621
622             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
623             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
624             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
625
626             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
627             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
628             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
629             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
630
631             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
632
633             /* Inner loop uses 165 flops */
634         }
635
636         /* End of innermost loop */
637
638         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
639                                               f+i_coord_offset,fshift+i_shift_offset);
640
641         ggid                        = gid[iidx];
642         /* Update potential energies */
643         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
644         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
645
646         /* Increment number of inner iterations */
647         inneriter                  += j_index_end - j_index_start;
648
649         /* Outer loop uses 26 flops */
650     }
651
652     /* Increment number of outer iterations */
653     outeriter        += nri;
654
655     /* Update outer/inner flops */
656
657     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*165);
658 }
659 /*
660  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
661  * Electrostatics interaction: ReactionField
662  * VdW interaction:            CubicSplineTable
663  * Geometry:                   Water4-Particle
664  * Calculate force/pot:        Force
665  */
666 void
667 nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_avx_128_fma_single
668                     (t_nblist                    * gmx_restrict       nlist,
669                      rvec                        * gmx_restrict          xx,
670                      rvec                        * gmx_restrict          ff,
671                      t_forcerec                  * gmx_restrict          fr,
672                      t_mdatoms                   * gmx_restrict     mdatoms,
673                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
674                      t_nrnb                      * gmx_restrict        nrnb)
675 {
676     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
677      * just 0 for non-waters.
678      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
679      * jnr indices corresponding to data put in the four positions in the SIMD register.
680      */
681     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
682     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
683     int              jnrA,jnrB,jnrC,jnrD;
684     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
685     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
686     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
687     real             rcutoff_scalar;
688     real             *shiftvec,*fshift,*x,*f;
689     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
690     real             scratch[4*DIM];
691     __m128           fscal,rcutoff,rcutoff2,jidxall;
692     int              vdwioffset0;
693     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694     int              vdwioffset1;
695     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696     int              vdwioffset2;
697     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698     int              vdwioffset3;
699     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
700     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
701     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
702     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
703     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
704     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
705     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
706     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
707     real             *charge;
708     int              nvdwtype;
709     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
710     int              *vdwtype;
711     real             *vdwparam;
712     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
713     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
714     __m128i          vfitab;
715     __m128i          ifour       = _mm_set1_epi32(4);
716     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
717     real             *vftab;
718     __m128           dummy_mask,cutoff_mask;
719     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
720     __m128           one     = _mm_set1_ps(1.0);
721     __m128           two     = _mm_set1_ps(2.0);
722     x                = xx[0];
723     f                = ff[0];
724
725     nri              = nlist->nri;
726     iinr             = nlist->iinr;
727     jindex           = nlist->jindex;
728     jjnr             = nlist->jjnr;
729     shiftidx         = nlist->shift;
730     gid              = nlist->gid;
731     shiftvec         = fr->shift_vec[0];
732     fshift           = fr->fshift[0];
733     facel            = _mm_set1_ps(fr->epsfac);
734     charge           = mdatoms->chargeA;
735     krf              = _mm_set1_ps(fr->ic->k_rf);
736     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
737     crf              = _mm_set1_ps(fr->ic->c_rf);
738     nvdwtype         = fr->ntype;
739     vdwparam         = fr->nbfp;
740     vdwtype          = mdatoms->typeA;
741
742     vftab            = kernel_data->table_vdw->data;
743     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
744
745     /* Setup water-specific parameters */
746     inr              = nlist->iinr[0];
747     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
748     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
749     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
750     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
751
752     /* Avoid stupid compiler warnings */
753     jnrA = jnrB = jnrC = jnrD = 0;
754     j_coord_offsetA = 0;
755     j_coord_offsetB = 0;
756     j_coord_offsetC = 0;
757     j_coord_offsetD = 0;
758
759     outeriter        = 0;
760     inneriter        = 0;
761
762     for(iidx=0;iidx<4*DIM;iidx++)
763     {
764         scratch[iidx] = 0.0;
765     }
766
767     /* Start outer loop over neighborlists */
768     for(iidx=0; iidx<nri; iidx++)
769     {
770         /* Load shift vector for this list */
771         i_shift_offset   = DIM*shiftidx[iidx];
772
773         /* Load limits for loop over neighbors */
774         j_index_start    = jindex[iidx];
775         j_index_end      = jindex[iidx+1];
776
777         /* Get outer coordinate index */
778         inr              = iinr[iidx];
779         i_coord_offset   = DIM*inr;
780
781         /* Load i particle coords and add shift vector */
782         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
783                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
784
785         fix0             = _mm_setzero_ps();
786         fiy0             = _mm_setzero_ps();
787         fiz0             = _mm_setzero_ps();
788         fix1             = _mm_setzero_ps();
789         fiy1             = _mm_setzero_ps();
790         fiz1             = _mm_setzero_ps();
791         fix2             = _mm_setzero_ps();
792         fiy2             = _mm_setzero_ps();
793         fiz2             = _mm_setzero_ps();
794         fix3             = _mm_setzero_ps();
795         fiy3             = _mm_setzero_ps();
796         fiz3             = _mm_setzero_ps();
797
798         /* Start inner kernel loop */
799         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
800         {
801
802             /* Get j neighbor index, and coordinate index */
803             jnrA             = jjnr[jidx];
804             jnrB             = jjnr[jidx+1];
805             jnrC             = jjnr[jidx+2];
806             jnrD             = jjnr[jidx+3];
807             j_coord_offsetA  = DIM*jnrA;
808             j_coord_offsetB  = DIM*jnrB;
809             j_coord_offsetC  = DIM*jnrC;
810             j_coord_offsetD  = DIM*jnrD;
811
812             /* load j atom coordinates */
813             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
814                                               x+j_coord_offsetC,x+j_coord_offsetD,
815                                               &jx0,&jy0,&jz0);
816
817             /* Calculate displacement vector */
818             dx00             = _mm_sub_ps(ix0,jx0);
819             dy00             = _mm_sub_ps(iy0,jy0);
820             dz00             = _mm_sub_ps(iz0,jz0);
821             dx10             = _mm_sub_ps(ix1,jx0);
822             dy10             = _mm_sub_ps(iy1,jy0);
823             dz10             = _mm_sub_ps(iz1,jz0);
824             dx20             = _mm_sub_ps(ix2,jx0);
825             dy20             = _mm_sub_ps(iy2,jy0);
826             dz20             = _mm_sub_ps(iz2,jz0);
827             dx30             = _mm_sub_ps(ix3,jx0);
828             dy30             = _mm_sub_ps(iy3,jy0);
829             dz30             = _mm_sub_ps(iz3,jz0);
830
831             /* Calculate squared distance and things based on it */
832             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
833             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
834             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
835             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
836
837             rinv00           = gmx_mm_invsqrt_ps(rsq00);
838             rinv10           = gmx_mm_invsqrt_ps(rsq10);
839             rinv20           = gmx_mm_invsqrt_ps(rsq20);
840             rinv30           = gmx_mm_invsqrt_ps(rsq30);
841
842             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
843             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
844             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
845
846             /* Load parameters for j particles */
847             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
848                                                               charge+jnrC+0,charge+jnrD+0);
849             vdwjidx0A        = 2*vdwtype[jnrA+0];
850             vdwjidx0B        = 2*vdwtype[jnrB+0];
851             vdwjidx0C        = 2*vdwtype[jnrC+0];
852             vdwjidx0D        = 2*vdwtype[jnrD+0];
853
854             fjx0             = _mm_setzero_ps();
855             fjy0             = _mm_setzero_ps();
856             fjz0             = _mm_setzero_ps();
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             r00              = _mm_mul_ps(rsq00,rinv00);
863
864             /* Compute parameters for interactions between i and j atoms */
865             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
866                                          vdwparam+vdwioffset0+vdwjidx0B,
867                                          vdwparam+vdwioffset0+vdwjidx0C,
868                                          vdwparam+vdwioffset0+vdwjidx0D,
869                                          &c6_00,&c12_00);
870
871             /* Calculate table index by multiplying r with table scale and truncate to integer */
872             rt               = _mm_mul_ps(r00,vftabscale);
873             vfitab           = _mm_cvttps_epi32(rt);
874 #ifdef __XOP__
875             vfeps            = _mm_frcz_ps(rt);
876 #else
877             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
878 #endif
879             twovfeps         = _mm_add_ps(vfeps,vfeps);
880             vfitab           = _mm_slli_epi32(vfitab,3);
881
882             /* CUBIC SPLINE TABLE DISPERSION */
883             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
884             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
885             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
886             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
887             _MM_TRANSPOSE4_PS(Y,F,G,H);
888             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
889             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
890             fvdw6            = _mm_mul_ps(c6_00,FF);
891
892             /* CUBIC SPLINE TABLE REPULSION */
893             vfitab           = _mm_add_epi32(vfitab,ifour);
894             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
895             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
896             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
897             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
898             _MM_TRANSPOSE4_PS(Y,F,G,H);
899             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
900             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
901             fvdw12           = _mm_mul_ps(c12_00,FF);
902             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
903
904             fscal            = fvdw;
905
906              /* Update vectorial force */
907             fix0             = _mm_macc_ps(dx00,fscal,fix0);
908             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
909             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
910
911             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
912             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
913             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             /* Compute parameters for interactions between i and j atoms */
920             qq10             = _mm_mul_ps(iq1,jq0);
921
922             /* REACTION-FIELD ELECTROSTATICS */
923             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
924
925             fscal            = felec;
926
927              /* Update vectorial force */
928             fix1             = _mm_macc_ps(dx10,fscal,fix1);
929             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
930             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
931
932             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
933             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
934             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq20             = _mm_mul_ps(iq2,jq0);
942
943             /* REACTION-FIELD ELECTROSTATICS */
944             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
945
946             fscal            = felec;
947
948              /* Update vectorial force */
949             fix2             = _mm_macc_ps(dx20,fscal,fix2);
950             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
951             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
952
953             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
954             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
955             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             /* Compute parameters for interactions between i and j atoms */
962             qq30             = _mm_mul_ps(iq3,jq0);
963
964             /* REACTION-FIELD ELECTROSTATICS */
965             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
966
967             fscal            = felec;
968
969              /* Update vectorial force */
970             fix3             = _mm_macc_ps(dx30,fscal,fix3);
971             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
972             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
973
974             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
975             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
976             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
977
978             fjptrA             = f+j_coord_offsetA;
979             fjptrB             = f+j_coord_offsetB;
980             fjptrC             = f+j_coord_offsetC;
981             fjptrD             = f+j_coord_offsetD;
982
983             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
984
985             /* Inner loop uses 141 flops */
986         }
987
988         if(jidx<j_index_end)
989         {
990
991             /* Get j neighbor index, and coordinate index */
992             jnrlistA         = jjnr[jidx];
993             jnrlistB         = jjnr[jidx+1];
994             jnrlistC         = jjnr[jidx+2];
995             jnrlistD         = jjnr[jidx+3];
996             /* Sign of each element will be negative for non-real atoms.
997              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
998              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
999              */
1000             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1001             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1002             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1003             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1004             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1005             j_coord_offsetA  = DIM*jnrA;
1006             j_coord_offsetB  = DIM*jnrB;
1007             j_coord_offsetC  = DIM*jnrC;
1008             j_coord_offsetD  = DIM*jnrD;
1009
1010             /* load j atom coordinates */
1011             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1012                                               x+j_coord_offsetC,x+j_coord_offsetD,
1013                                               &jx0,&jy0,&jz0);
1014
1015             /* Calculate displacement vector */
1016             dx00             = _mm_sub_ps(ix0,jx0);
1017             dy00             = _mm_sub_ps(iy0,jy0);
1018             dz00             = _mm_sub_ps(iz0,jz0);
1019             dx10             = _mm_sub_ps(ix1,jx0);
1020             dy10             = _mm_sub_ps(iy1,jy0);
1021             dz10             = _mm_sub_ps(iz1,jz0);
1022             dx20             = _mm_sub_ps(ix2,jx0);
1023             dy20             = _mm_sub_ps(iy2,jy0);
1024             dz20             = _mm_sub_ps(iz2,jz0);
1025             dx30             = _mm_sub_ps(ix3,jx0);
1026             dy30             = _mm_sub_ps(iy3,jy0);
1027             dz30             = _mm_sub_ps(iz3,jz0);
1028
1029             /* Calculate squared distance and things based on it */
1030             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1031             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1032             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1033             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1034
1035             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1036             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1037             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1038             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1039
1040             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1041             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1042             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1043
1044             /* Load parameters for j particles */
1045             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1046                                                               charge+jnrC+0,charge+jnrD+0);
1047             vdwjidx0A        = 2*vdwtype[jnrA+0];
1048             vdwjidx0B        = 2*vdwtype[jnrB+0];
1049             vdwjidx0C        = 2*vdwtype[jnrC+0];
1050             vdwjidx0D        = 2*vdwtype[jnrD+0];
1051
1052             fjx0             = _mm_setzero_ps();
1053             fjy0             = _mm_setzero_ps();
1054             fjz0             = _mm_setzero_ps();
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             r00              = _mm_mul_ps(rsq00,rinv00);
1061             r00              = _mm_andnot_ps(dummy_mask,r00);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1065                                          vdwparam+vdwioffset0+vdwjidx0B,
1066                                          vdwparam+vdwioffset0+vdwjidx0C,
1067                                          vdwparam+vdwioffset0+vdwjidx0D,
1068                                          &c6_00,&c12_00);
1069
1070             /* Calculate table index by multiplying r with table scale and truncate to integer */
1071             rt               = _mm_mul_ps(r00,vftabscale);
1072             vfitab           = _mm_cvttps_epi32(rt);
1073 #ifdef __XOP__
1074             vfeps            = _mm_frcz_ps(rt);
1075 #else
1076             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1077 #endif
1078             twovfeps         = _mm_add_ps(vfeps,vfeps);
1079             vfitab           = _mm_slli_epi32(vfitab,3);
1080
1081             /* CUBIC SPLINE TABLE DISPERSION */
1082             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1083             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1084             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1085             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1086             _MM_TRANSPOSE4_PS(Y,F,G,H);
1087             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1088             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1089             fvdw6            = _mm_mul_ps(c6_00,FF);
1090
1091             /* CUBIC SPLINE TABLE REPULSION */
1092             vfitab           = _mm_add_epi32(vfitab,ifour);
1093             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1094             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1095             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1096             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1097             _MM_TRANSPOSE4_PS(Y,F,G,H);
1098             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1099             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1100             fvdw12           = _mm_mul_ps(c12_00,FF);
1101             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1102
1103             fscal            = fvdw;
1104
1105             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1106
1107              /* Update vectorial force */
1108             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1109             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1110             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1111
1112             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1113             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1114             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             /* Compute parameters for interactions between i and j atoms */
1121             qq10             = _mm_mul_ps(iq1,jq0);
1122
1123             /* REACTION-FIELD ELECTROSTATICS */
1124             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1125
1126             fscal            = felec;
1127
1128             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1129
1130              /* Update vectorial force */
1131             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1132             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1133             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1134
1135             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1136             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1137             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             /* Compute parameters for interactions between i and j atoms */
1144             qq20             = _mm_mul_ps(iq2,jq0);
1145
1146             /* REACTION-FIELD ELECTROSTATICS */
1147             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1148
1149             fscal            = felec;
1150
1151             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1152
1153              /* Update vectorial force */
1154             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1155             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1156             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1157
1158             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1159             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1160             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1161
1162             /**************************
1163              * CALCULATE INTERACTIONS *
1164              **************************/
1165
1166             /* Compute parameters for interactions between i and j atoms */
1167             qq30             = _mm_mul_ps(iq3,jq0);
1168
1169             /* REACTION-FIELD ELECTROSTATICS */
1170             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1171
1172             fscal            = felec;
1173
1174             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1175
1176              /* Update vectorial force */
1177             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1178             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1179             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1180
1181             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1182             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1183             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1184
1185             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1186             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1187             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1188             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1189
1190             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1191
1192             /* Inner loop uses 142 flops */
1193         }
1194
1195         /* End of innermost loop */
1196
1197         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1198                                               f+i_coord_offset,fshift+i_shift_offset);
1199
1200         /* Increment number of inner iterations */
1201         inneriter                  += j_index_end - j_index_start;
1202
1203         /* Outer loop uses 24 flops */
1204     }
1205
1206     /* Increment number of outer iterations */
1207     outeriter        += nri;
1208
1209     /* Update outer/inner flops */
1210
1211     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*142);
1212 }