Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128i          vfitab;
102     __m128i          ifour       = _mm_set1_epi32(4);
103     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
104     real             *vftab;
105     __m128           dummy_mask,cutoff_mask;
106     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
107     __m128           one     = _mm_set1_ps(1.0);
108     __m128           two     = _mm_set1_ps(2.0);
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = _mm_set1_ps(fr->ic->epsfac);
121     charge           = mdatoms->chargeA;
122     krf              = _mm_set1_ps(fr->ic->k_rf);
123     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
124     crf              = _mm_set1_ps(fr->ic->c_rf);
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
131
132     /* Setup water-specific parameters */
133     inr              = nlist->iinr[0];
134     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
135     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
136     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
137     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm_setzero_ps();
173         fiy0             = _mm_setzero_ps();
174         fiz0             = _mm_setzero_ps();
175         fix1             = _mm_setzero_ps();
176         fiy1             = _mm_setzero_ps();
177         fiz1             = _mm_setzero_ps();
178         fix2             = _mm_setzero_ps();
179         fiy2             = _mm_setzero_ps();
180         fiz2             = _mm_setzero_ps();
181
182         /* Reset potential sums */
183         velecsum         = _mm_setzero_ps();
184         vvdwsum          = _mm_setzero_ps();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                               x+j_coord_offsetC,x+j_coord_offsetD,
203                                               &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm_sub_ps(ix0,jx0);
207             dy00             = _mm_sub_ps(iy0,jy0);
208             dz00             = _mm_sub_ps(iz0,jz0);
209             dx10             = _mm_sub_ps(ix1,jx0);
210             dy10             = _mm_sub_ps(iy1,jy0);
211             dz10             = _mm_sub_ps(iz1,jz0);
212             dx20             = _mm_sub_ps(ix2,jx0);
213             dy20             = _mm_sub_ps(iy2,jy0);
214             dz20             = _mm_sub_ps(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
218             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
219             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
220
221             rinv00           = avx128fma_invsqrt_f(rsq00);
222             rinv10           = avx128fma_invsqrt_f(rsq10);
223             rinv20           = avx128fma_invsqrt_f(rsq20);
224
225             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
226             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
227             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                               charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm_setzero_ps();
238             fjy0             = _mm_setzero_ps();
239             fjz0             = _mm_setzero_ps();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             r00              = _mm_mul_ps(rsq00,rinv00);
246
247             /* Compute parameters for interactions between i and j atoms */
248             qq00             = _mm_mul_ps(iq0,jq0);
249             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
250                                          vdwparam+vdwioffset0+vdwjidx0B,
251                                          vdwparam+vdwioffset0+vdwjidx0C,
252                                          vdwparam+vdwioffset0+vdwjidx0D,
253                                          &c6_00,&c12_00);
254
255             /* Calculate table index by multiplying r with table scale and truncate to integer */
256             rt               = _mm_mul_ps(r00,vftabscale);
257             vfitab           = _mm_cvttps_epi32(rt);
258 #ifdef __XOP__
259             vfeps            = _mm_frcz_ps(rt);
260 #else
261             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
262 #endif
263             twovfeps         = _mm_add_ps(vfeps,vfeps);
264             vfitab           = _mm_slli_epi32(vfitab,3);
265
266             /* REACTION-FIELD ELECTROSTATICS */
267             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
268             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
277             VV               = _mm_macc_ps(vfeps,Fp,Y);
278             vvdw6            = _mm_mul_ps(c6_00,VV);
279             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
280             fvdw6            = _mm_mul_ps(c6_00,FF);
281
282             /* CUBIC SPLINE TABLE REPULSION */
283             vfitab           = _mm_add_epi32(vfitab,ifour);
284             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
285             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
286             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
287             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
288             _MM_TRANSPOSE4_PS(Y,F,G,H);
289             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
290             VV               = _mm_macc_ps(vfeps,Fp,Y);
291             vvdw12           = _mm_mul_ps(c12_00,VV);
292             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
293             fvdw12           = _mm_mul_ps(c12_00,FF);
294             vvdw             = _mm_add_ps(vvdw12,vvdw6);
295             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
296
297             /* Update potential sum for this i atom from the interaction with this j atom. */
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303              /* Update vectorial force */
304             fix0             = _mm_macc_ps(dx00,fscal,fix0);
305             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
306             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
307
308             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
309             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
310             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _mm_mul_ps(iq1,jq0);
318
319             /* REACTION-FIELD ELECTROSTATICS */
320             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
321             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
322
323             /* Update potential sum for this i atom from the interaction with this j atom. */
324             velecsum         = _mm_add_ps(velecsum,velec);
325
326             fscal            = felec;
327
328              /* Update vectorial force */
329             fix1             = _mm_macc_ps(dx10,fscal,fix1);
330             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
331             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
332
333             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
334             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
335             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
336
337             /**************************
338              * CALCULATE INTERACTIONS *
339              **************************/
340
341             /* Compute parameters for interactions between i and j atoms */
342             qq20             = _mm_mul_ps(iq2,jq0);
343
344             /* REACTION-FIELD ELECTROSTATICS */
345             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
346             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
347
348             /* Update potential sum for this i atom from the interaction with this j atom. */
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353              /* Update vectorial force */
354             fix2             = _mm_macc_ps(dx20,fscal,fix2);
355             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
356             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
357
358             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
359             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
360             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
361
362             fjptrA             = f+j_coord_offsetA;
363             fjptrB             = f+j_coord_offsetB;
364             fjptrC             = f+j_coord_offsetC;
365             fjptrD             = f+j_coord_offsetD;
366
367             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
368
369             /* Inner loop uses 140 flops */
370         }
371
372         if(jidx<j_index_end)
373         {
374
375             /* Get j neighbor index, and coordinate index */
376             jnrlistA         = jjnr[jidx];
377             jnrlistB         = jjnr[jidx+1];
378             jnrlistC         = jjnr[jidx+2];
379             jnrlistD         = jjnr[jidx+3];
380             /* Sign of each element will be negative for non-real atoms.
381              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
382              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
383              */
384             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
385             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
386             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
387             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
388             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
389             j_coord_offsetA  = DIM*jnrA;
390             j_coord_offsetB  = DIM*jnrB;
391             j_coord_offsetC  = DIM*jnrC;
392             j_coord_offsetD  = DIM*jnrD;
393
394             /* load j atom coordinates */
395             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
396                                               x+j_coord_offsetC,x+j_coord_offsetD,
397                                               &jx0,&jy0,&jz0);
398
399             /* Calculate displacement vector */
400             dx00             = _mm_sub_ps(ix0,jx0);
401             dy00             = _mm_sub_ps(iy0,jy0);
402             dz00             = _mm_sub_ps(iz0,jz0);
403             dx10             = _mm_sub_ps(ix1,jx0);
404             dy10             = _mm_sub_ps(iy1,jy0);
405             dz10             = _mm_sub_ps(iz1,jz0);
406             dx20             = _mm_sub_ps(ix2,jx0);
407             dy20             = _mm_sub_ps(iy2,jy0);
408             dz20             = _mm_sub_ps(iz2,jz0);
409
410             /* Calculate squared distance and things based on it */
411             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
412             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
413             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
414
415             rinv00           = avx128fma_invsqrt_f(rsq00);
416             rinv10           = avx128fma_invsqrt_f(rsq10);
417             rinv20           = avx128fma_invsqrt_f(rsq20);
418
419             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
420             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
421             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
422
423             /* Load parameters for j particles */
424             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
425                                                               charge+jnrC+0,charge+jnrD+0);
426             vdwjidx0A        = 2*vdwtype[jnrA+0];
427             vdwjidx0B        = 2*vdwtype[jnrB+0];
428             vdwjidx0C        = 2*vdwtype[jnrC+0];
429             vdwjidx0D        = 2*vdwtype[jnrD+0];
430
431             fjx0             = _mm_setzero_ps();
432             fjy0             = _mm_setzero_ps();
433             fjz0             = _mm_setzero_ps();
434
435             /**************************
436              * CALCULATE INTERACTIONS *
437              **************************/
438
439             r00              = _mm_mul_ps(rsq00,rinv00);
440             r00              = _mm_andnot_ps(dummy_mask,r00);
441
442             /* Compute parameters for interactions between i and j atoms */
443             qq00             = _mm_mul_ps(iq0,jq0);
444             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
445                                          vdwparam+vdwioffset0+vdwjidx0B,
446                                          vdwparam+vdwioffset0+vdwjidx0C,
447                                          vdwparam+vdwioffset0+vdwjidx0D,
448                                          &c6_00,&c12_00);
449
450             /* Calculate table index by multiplying r with table scale and truncate to integer */
451             rt               = _mm_mul_ps(r00,vftabscale);
452             vfitab           = _mm_cvttps_epi32(rt);
453 #ifdef __XOP__
454             vfeps            = _mm_frcz_ps(rt);
455 #else
456             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
457 #endif
458             twovfeps         = _mm_add_ps(vfeps,vfeps);
459             vfitab           = _mm_slli_epi32(vfitab,3);
460
461             /* REACTION-FIELD ELECTROSTATICS */
462             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
463             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
464
465             /* CUBIC SPLINE TABLE DISPERSION */
466             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
467             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
468             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
469             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
470             _MM_TRANSPOSE4_PS(Y,F,G,H);
471             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
472             VV               = _mm_macc_ps(vfeps,Fp,Y);
473             vvdw6            = _mm_mul_ps(c6_00,VV);
474             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
475             fvdw6            = _mm_mul_ps(c6_00,FF);
476
477             /* CUBIC SPLINE TABLE REPULSION */
478             vfitab           = _mm_add_epi32(vfitab,ifour);
479             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
480             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
481             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
482             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
483             _MM_TRANSPOSE4_PS(Y,F,G,H);
484             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
485             VV               = _mm_macc_ps(vfeps,Fp,Y);
486             vvdw12           = _mm_mul_ps(c12_00,VV);
487             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
488             fvdw12           = _mm_mul_ps(c12_00,FF);
489             vvdw             = _mm_add_ps(vvdw12,vvdw6);
490             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _mm_andnot_ps(dummy_mask,velec);
494             velecsum         = _mm_add_ps(velecsum,velec);
495             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
496             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
497
498             fscal            = _mm_add_ps(felec,fvdw);
499
500             fscal            = _mm_andnot_ps(dummy_mask,fscal);
501
502              /* Update vectorial force */
503             fix0             = _mm_macc_ps(dx00,fscal,fix0);
504             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
505             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
506
507             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
508             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
509             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             /* Compute parameters for interactions between i and j atoms */
516             qq10             = _mm_mul_ps(iq1,jq0);
517
518             /* REACTION-FIELD ELECTROSTATICS */
519             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
520             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
521
522             /* Update potential sum for this i atom from the interaction with this j atom. */
523             velec            = _mm_andnot_ps(dummy_mask,velec);
524             velecsum         = _mm_add_ps(velecsum,velec);
525
526             fscal            = felec;
527
528             fscal            = _mm_andnot_ps(dummy_mask,fscal);
529
530              /* Update vectorial force */
531             fix1             = _mm_macc_ps(dx10,fscal,fix1);
532             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
533             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
534
535             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
536             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
537             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             /* Compute parameters for interactions between i and j atoms */
544             qq20             = _mm_mul_ps(iq2,jq0);
545
546             /* REACTION-FIELD ELECTROSTATICS */
547             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
548             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
549
550             /* Update potential sum for this i atom from the interaction with this j atom. */
551             velec            = _mm_andnot_ps(dummy_mask,velec);
552             velecsum         = _mm_add_ps(velecsum,velec);
553
554             fscal            = felec;
555
556             fscal            = _mm_andnot_ps(dummy_mask,fscal);
557
558              /* Update vectorial force */
559             fix2             = _mm_macc_ps(dx20,fscal,fix2);
560             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
561             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
562
563             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
564             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
565             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
566
567             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
568             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
569             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
570             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
571
572             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
573
574             /* Inner loop uses 141 flops */
575         }
576
577         /* End of innermost loop */
578
579         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
580                                               f+i_coord_offset,fshift+i_shift_offset);
581
582         ggid                        = gid[iidx];
583         /* Update potential energies */
584         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
585         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
586
587         /* Increment number of inner iterations */
588         inneriter                  += j_index_end - j_index_start;
589
590         /* Outer loop uses 20 flops */
591     }
592
593     /* Increment number of outer iterations */
594     outeriter        += nri;
595
596     /* Update outer/inner flops */
597
598     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
599 }
600 /*
601  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
602  * Electrostatics interaction: ReactionField
603  * VdW interaction:            CubicSplineTable
604  * Geometry:                   Water3-Particle
605  * Calculate force/pot:        Force
606  */
607 void
608 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
609                     (t_nblist                    * gmx_restrict       nlist,
610                      rvec                        * gmx_restrict          xx,
611                      rvec                        * gmx_restrict          ff,
612                      struct t_forcerec           * gmx_restrict          fr,
613                      t_mdatoms                   * gmx_restrict     mdatoms,
614                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
615                      t_nrnb                      * gmx_restrict        nrnb)
616 {
617     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
618      * just 0 for non-waters.
619      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
620      * jnr indices corresponding to data put in the four positions in the SIMD register.
621      */
622     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
623     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
624     int              jnrA,jnrB,jnrC,jnrD;
625     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
626     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
627     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
628     real             rcutoff_scalar;
629     real             *shiftvec,*fshift,*x,*f;
630     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
631     real             scratch[4*DIM];
632     __m128           fscal,rcutoff,rcutoff2,jidxall;
633     int              vdwioffset0;
634     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
635     int              vdwioffset1;
636     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
637     int              vdwioffset2;
638     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
639     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
640     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
641     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
642     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
643     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
644     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
645     real             *charge;
646     int              nvdwtype;
647     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
648     int              *vdwtype;
649     real             *vdwparam;
650     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
651     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
652     __m128i          vfitab;
653     __m128i          ifour       = _mm_set1_epi32(4);
654     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
655     real             *vftab;
656     __m128           dummy_mask,cutoff_mask;
657     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
658     __m128           one     = _mm_set1_ps(1.0);
659     __m128           two     = _mm_set1_ps(2.0);
660     x                = xx[0];
661     f                = ff[0];
662
663     nri              = nlist->nri;
664     iinr             = nlist->iinr;
665     jindex           = nlist->jindex;
666     jjnr             = nlist->jjnr;
667     shiftidx         = nlist->shift;
668     gid              = nlist->gid;
669     shiftvec         = fr->shift_vec[0];
670     fshift           = fr->fshift[0];
671     facel            = _mm_set1_ps(fr->ic->epsfac);
672     charge           = mdatoms->chargeA;
673     krf              = _mm_set1_ps(fr->ic->k_rf);
674     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
675     crf              = _mm_set1_ps(fr->ic->c_rf);
676     nvdwtype         = fr->ntype;
677     vdwparam         = fr->nbfp;
678     vdwtype          = mdatoms->typeA;
679
680     vftab            = kernel_data->table_vdw->data;
681     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
682
683     /* Setup water-specific parameters */
684     inr              = nlist->iinr[0];
685     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
686     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
687     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
688     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
689
690     /* Avoid stupid compiler warnings */
691     jnrA = jnrB = jnrC = jnrD = 0;
692     j_coord_offsetA = 0;
693     j_coord_offsetB = 0;
694     j_coord_offsetC = 0;
695     j_coord_offsetD = 0;
696
697     outeriter        = 0;
698     inneriter        = 0;
699
700     for(iidx=0;iidx<4*DIM;iidx++)
701     {
702         scratch[iidx] = 0.0;
703     }
704
705     /* Start outer loop over neighborlists */
706     for(iidx=0; iidx<nri; iidx++)
707     {
708         /* Load shift vector for this list */
709         i_shift_offset   = DIM*shiftidx[iidx];
710
711         /* Load limits for loop over neighbors */
712         j_index_start    = jindex[iidx];
713         j_index_end      = jindex[iidx+1];
714
715         /* Get outer coordinate index */
716         inr              = iinr[iidx];
717         i_coord_offset   = DIM*inr;
718
719         /* Load i particle coords and add shift vector */
720         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
721                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
722
723         fix0             = _mm_setzero_ps();
724         fiy0             = _mm_setzero_ps();
725         fiz0             = _mm_setzero_ps();
726         fix1             = _mm_setzero_ps();
727         fiy1             = _mm_setzero_ps();
728         fiz1             = _mm_setzero_ps();
729         fix2             = _mm_setzero_ps();
730         fiy2             = _mm_setzero_ps();
731         fiz2             = _mm_setzero_ps();
732
733         /* Start inner kernel loop */
734         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
735         {
736
737             /* Get j neighbor index, and coordinate index */
738             jnrA             = jjnr[jidx];
739             jnrB             = jjnr[jidx+1];
740             jnrC             = jjnr[jidx+2];
741             jnrD             = jjnr[jidx+3];
742             j_coord_offsetA  = DIM*jnrA;
743             j_coord_offsetB  = DIM*jnrB;
744             j_coord_offsetC  = DIM*jnrC;
745             j_coord_offsetD  = DIM*jnrD;
746
747             /* load j atom coordinates */
748             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
749                                               x+j_coord_offsetC,x+j_coord_offsetD,
750                                               &jx0,&jy0,&jz0);
751
752             /* Calculate displacement vector */
753             dx00             = _mm_sub_ps(ix0,jx0);
754             dy00             = _mm_sub_ps(iy0,jy0);
755             dz00             = _mm_sub_ps(iz0,jz0);
756             dx10             = _mm_sub_ps(ix1,jx0);
757             dy10             = _mm_sub_ps(iy1,jy0);
758             dz10             = _mm_sub_ps(iz1,jz0);
759             dx20             = _mm_sub_ps(ix2,jx0);
760             dy20             = _mm_sub_ps(iy2,jy0);
761             dz20             = _mm_sub_ps(iz2,jz0);
762
763             /* Calculate squared distance and things based on it */
764             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
765             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
766             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
767
768             rinv00           = avx128fma_invsqrt_f(rsq00);
769             rinv10           = avx128fma_invsqrt_f(rsq10);
770             rinv20           = avx128fma_invsqrt_f(rsq20);
771
772             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
773             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
774             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
775
776             /* Load parameters for j particles */
777             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
778                                                               charge+jnrC+0,charge+jnrD+0);
779             vdwjidx0A        = 2*vdwtype[jnrA+0];
780             vdwjidx0B        = 2*vdwtype[jnrB+0];
781             vdwjidx0C        = 2*vdwtype[jnrC+0];
782             vdwjidx0D        = 2*vdwtype[jnrD+0];
783
784             fjx0             = _mm_setzero_ps();
785             fjy0             = _mm_setzero_ps();
786             fjz0             = _mm_setzero_ps();
787
788             /**************************
789              * CALCULATE INTERACTIONS *
790              **************************/
791
792             r00              = _mm_mul_ps(rsq00,rinv00);
793
794             /* Compute parameters for interactions between i and j atoms */
795             qq00             = _mm_mul_ps(iq0,jq0);
796             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
797                                          vdwparam+vdwioffset0+vdwjidx0B,
798                                          vdwparam+vdwioffset0+vdwjidx0C,
799                                          vdwparam+vdwioffset0+vdwjidx0D,
800                                          &c6_00,&c12_00);
801
802             /* Calculate table index by multiplying r with table scale and truncate to integer */
803             rt               = _mm_mul_ps(r00,vftabscale);
804             vfitab           = _mm_cvttps_epi32(rt);
805 #ifdef __XOP__
806             vfeps            = _mm_frcz_ps(rt);
807 #else
808             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
809 #endif
810             twovfeps         = _mm_add_ps(vfeps,vfeps);
811             vfitab           = _mm_slli_epi32(vfitab,3);
812
813             /* REACTION-FIELD ELECTROSTATICS */
814             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
815
816             /* CUBIC SPLINE TABLE DISPERSION */
817             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
818             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
819             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
820             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
821             _MM_TRANSPOSE4_PS(Y,F,G,H);
822             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
823             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
824             fvdw6            = _mm_mul_ps(c6_00,FF);
825
826             /* CUBIC SPLINE TABLE REPULSION */
827             vfitab           = _mm_add_epi32(vfitab,ifour);
828             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
829             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
830             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
831             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
832             _MM_TRANSPOSE4_PS(Y,F,G,H);
833             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
834             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
835             fvdw12           = _mm_mul_ps(c12_00,FF);
836             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
837
838             fscal            = _mm_add_ps(felec,fvdw);
839
840              /* Update vectorial force */
841             fix0             = _mm_macc_ps(dx00,fscal,fix0);
842             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
843             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
844
845             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
846             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
847             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             /* Compute parameters for interactions between i and j atoms */
854             qq10             = _mm_mul_ps(iq1,jq0);
855
856             /* REACTION-FIELD ELECTROSTATICS */
857             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
858
859             fscal            = felec;
860
861              /* Update vectorial force */
862             fix1             = _mm_macc_ps(dx10,fscal,fix1);
863             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
864             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
865
866             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
867             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
868             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq20             = _mm_mul_ps(iq2,jq0);
876
877             /* REACTION-FIELD ELECTROSTATICS */
878             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
879
880             fscal            = felec;
881
882              /* Update vectorial force */
883             fix2             = _mm_macc_ps(dx20,fscal,fix2);
884             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
885             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
886
887             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
888             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
889             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
890
891             fjptrA             = f+j_coord_offsetA;
892             fjptrB             = f+j_coord_offsetB;
893             fjptrC             = f+j_coord_offsetC;
894             fjptrD             = f+j_coord_offsetD;
895
896             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
897
898             /* Inner loop uses 117 flops */
899         }
900
901         if(jidx<j_index_end)
902         {
903
904             /* Get j neighbor index, and coordinate index */
905             jnrlistA         = jjnr[jidx];
906             jnrlistB         = jjnr[jidx+1];
907             jnrlistC         = jjnr[jidx+2];
908             jnrlistD         = jjnr[jidx+3];
909             /* Sign of each element will be negative for non-real atoms.
910              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
911              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
912              */
913             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
914             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
915             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
916             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
917             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
918             j_coord_offsetA  = DIM*jnrA;
919             j_coord_offsetB  = DIM*jnrB;
920             j_coord_offsetC  = DIM*jnrC;
921             j_coord_offsetD  = DIM*jnrD;
922
923             /* load j atom coordinates */
924             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
925                                               x+j_coord_offsetC,x+j_coord_offsetD,
926                                               &jx0,&jy0,&jz0);
927
928             /* Calculate displacement vector */
929             dx00             = _mm_sub_ps(ix0,jx0);
930             dy00             = _mm_sub_ps(iy0,jy0);
931             dz00             = _mm_sub_ps(iz0,jz0);
932             dx10             = _mm_sub_ps(ix1,jx0);
933             dy10             = _mm_sub_ps(iy1,jy0);
934             dz10             = _mm_sub_ps(iz1,jz0);
935             dx20             = _mm_sub_ps(ix2,jx0);
936             dy20             = _mm_sub_ps(iy2,jy0);
937             dz20             = _mm_sub_ps(iz2,jz0);
938
939             /* Calculate squared distance and things based on it */
940             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
941             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
942             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
943
944             rinv00           = avx128fma_invsqrt_f(rsq00);
945             rinv10           = avx128fma_invsqrt_f(rsq10);
946             rinv20           = avx128fma_invsqrt_f(rsq20);
947
948             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
949             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
950             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
951
952             /* Load parameters for j particles */
953             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
954                                                               charge+jnrC+0,charge+jnrD+0);
955             vdwjidx0A        = 2*vdwtype[jnrA+0];
956             vdwjidx0B        = 2*vdwtype[jnrB+0];
957             vdwjidx0C        = 2*vdwtype[jnrC+0];
958             vdwjidx0D        = 2*vdwtype[jnrD+0];
959
960             fjx0             = _mm_setzero_ps();
961             fjy0             = _mm_setzero_ps();
962             fjz0             = _mm_setzero_ps();
963
964             /**************************
965              * CALCULATE INTERACTIONS *
966              **************************/
967
968             r00              = _mm_mul_ps(rsq00,rinv00);
969             r00              = _mm_andnot_ps(dummy_mask,r00);
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq00             = _mm_mul_ps(iq0,jq0);
973             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
974                                          vdwparam+vdwioffset0+vdwjidx0B,
975                                          vdwparam+vdwioffset0+vdwjidx0C,
976                                          vdwparam+vdwioffset0+vdwjidx0D,
977                                          &c6_00,&c12_00);
978
979             /* Calculate table index by multiplying r with table scale and truncate to integer */
980             rt               = _mm_mul_ps(r00,vftabscale);
981             vfitab           = _mm_cvttps_epi32(rt);
982 #ifdef __XOP__
983             vfeps            = _mm_frcz_ps(rt);
984 #else
985             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
986 #endif
987             twovfeps         = _mm_add_ps(vfeps,vfeps);
988             vfitab           = _mm_slli_epi32(vfitab,3);
989
990             /* REACTION-FIELD ELECTROSTATICS */
991             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
992
993             /* CUBIC SPLINE TABLE DISPERSION */
994             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
995             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
996             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
997             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
998             _MM_TRANSPOSE4_PS(Y,F,G,H);
999             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1000             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1001             fvdw6            = _mm_mul_ps(c6_00,FF);
1002
1003             /* CUBIC SPLINE TABLE REPULSION */
1004             vfitab           = _mm_add_epi32(vfitab,ifour);
1005             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1006             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1007             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1008             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1009             _MM_TRANSPOSE4_PS(Y,F,G,H);
1010             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1011             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1012             fvdw12           = _mm_mul_ps(c12_00,FF);
1013             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1014
1015             fscal            = _mm_add_ps(felec,fvdw);
1016
1017             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1018
1019              /* Update vectorial force */
1020             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1021             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1022             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1023
1024             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1025             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1026             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1027
1028             /**************************
1029              * CALCULATE INTERACTIONS *
1030              **************************/
1031
1032             /* Compute parameters for interactions between i and j atoms */
1033             qq10             = _mm_mul_ps(iq1,jq0);
1034
1035             /* REACTION-FIELD ELECTROSTATICS */
1036             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1037
1038             fscal            = felec;
1039
1040             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1041
1042              /* Update vectorial force */
1043             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1044             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1045             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1046
1047             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1048             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1049             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1050
1051             /**************************
1052              * CALCULATE INTERACTIONS *
1053              **************************/
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq20             = _mm_mul_ps(iq2,jq0);
1057
1058             /* REACTION-FIELD ELECTROSTATICS */
1059             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1064
1065              /* Update vectorial force */
1066             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1067             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1068             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1069
1070             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1071             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1072             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1073
1074             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1075             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1076             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1077             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1078
1079             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1080
1081             /* Inner loop uses 118 flops */
1082         }
1083
1084         /* End of innermost loop */
1085
1086         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1087                                               f+i_coord_offset,fshift+i_shift_offset);
1088
1089         /* Increment number of inner iterations */
1090         inneriter                  += j_index_end - j_index_start;
1091
1092         /* Outer loop uses 18 flops */
1093     }
1094
1095     /* Increment number of outer iterations */
1096     outeriter        += nri;
1097
1098     /* Update outer/inner flops */
1099
1100     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1101 }