Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
174
175         fix0             = _mm_setzero_ps();
176         fiy0             = _mm_setzero_ps();
177         fiz0             = _mm_setzero_ps();
178         fix1             = _mm_setzero_ps();
179         fiy1             = _mm_setzero_ps();
180         fiz1             = _mm_setzero_ps();
181         fix2             = _mm_setzero_ps();
182         fiy2             = _mm_setzero_ps();
183         fiz2             = _mm_setzero_ps();
184
185         /* Reset potential sums */
186         velecsum         = _mm_setzero_ps();
187         vvdwsum          = _mm_setzero_ps();
188
189         /* Start inner kernel loop */
190         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
191         {
192
193             /* Get j neighbor index, and coordinate index */
194             jnrA             = jjnr[jidx];
195             jnrB             = jjnr[jidx+1];
196             jnrC             = jjnr[jidx+2];
197             jnrD             = jjnr[jidx+3];
198             j_coord_offsetA  = DIM*jnrA;
199             j_coord_offsetB  = DIM*jnrB;
200             j_coord_offsetC  = DIM*jnrC;
201             j_coord_offsetD  = DIM*jnrD;
202
203             /* load j atom coordinates */
204             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
205                                               x+j_coord_offsetC,x+j_coord_offsetD,
206                                               &jx0,&jy0,&jz0);
207
208             /* Calculate displacement vector */
209             dx00             = _mm_sub_ps(ix0,jx0);
210             dy00             = _mm_sub_ps(iy0,jy0);
211             dz00             = _mm_sub_ps(iz0,jz0);
212             dx10             = _mm_sub_ps(ix1,jx0);
213             dy10             = _mm_sub_ps(iy1,jy0);
214             dz10             = _mm_sub_ps(iz1,jz0);
215             dx20             = _mm_sub_ps(ix2,jx0);
216             dy20             = _mm_sub_ps(iy2,jy0);
217             dz20             = _mm_sub_ps(iz2,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
221             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
222             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
223
224             rinv00           = gmx_mm_invsqrt_ps(rsq00);
225             rinv10           = gmx_mm_invsqrt_ps(rsq10);
226             rinv20           = gmx_mm_invsqrt_ps(rsq20);
227
228             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
229             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
230             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* Calculate table index by multiplying r with table scale and truncate to integer */
259             rt               = _mm_mul_ps(r00,vftabscale);
260             vfitab           = _mm_cvttps_epi32(rt);
261 #ifdef __XOP__
262             vfeps            = _mm_frcz_ps(rt);
263 #else
264             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
265 #endif
266             twovfeps         = _mm_add_ps(vfeps,vfeps);
267             vfitab           = _mm_slli_epi32(vfitab,3);
268
269             /* REACTION-FIELD ELECTROSTATICS */
270             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
271             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
272
273             /* CUBIC SPLINE TABLE DISPERSION */
274             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
275             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
276             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
277             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
278             _MM_TRANSPOSE4_PS(Y,F,G,H);
279             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
280             VV               = _mm_macc_ps(vfeps,Fp,Y);
281             vvdw6            = _mm_mul_ps(c6_00,VV);
282             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
283             fvdw6            = _mm_mul_ps(c6_00,FF);
284
285             /* CUBIC SPLINE TABLE REPULSION */
286             vfitab           = _mm_add_epi32(vfitab,ifour);
287             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
288             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
289             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
290             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
291             _MM_TRANSPOSE4_PS(Y,F,G,H);
292             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
293             VV               = _mm_macc_ps(vfeps,Fp,Y);
294             vvdw12           = _mm_mul_ps(c12_00,VV);
295             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
296             fvdw12           = _mm_mul_ps(c12_00,FF);
297             vvdw             = _mm_add_ps(vvdw12,vvdw6);
298             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm_add_ps(velecsum,velec);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq10             = _mm_mul_ps(iq1,jq0);
321
322             /* REACTION-FIELD ELECTROSTATICS */
323             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
324             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331              /* Update vectorial force */
332             fix1             = _mm_macc_ps(dx10,fscal,fix1);
333             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
334             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
335
336             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
337             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
338             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq20             = _mm_mul_ps(iq2,jq0);
346
347             /* REACTION-FIELD ELECTROSTATICS */
348             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
349             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
350
351             /* Update potential sum for this i atom from the interaction with this j atom. */
352             velecsum         = _mm_add_ps(velecsum,velec);
353
354             fscal            = felec;
355
356              /* Update vectorial force */
357             fix2             = _mm_macc_ps(dx20,fscal,fix2);
358             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
359             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
360
361             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
362             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
363             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
364
365             fjptrA             = f+j_coord_offsetA;
366             fjptrB             = f+j_coord_offsetB;
367             fjptrC             = f+j_coord_offsetC;
368             fjptrD             = f+j_coord_offsetD;
369
370             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
371
372             /* Inner loop uses 140 flops */
373         }
374
375         if(jidx<j_index_end)
376         {
377
378             /* Get j neighbor index, and coordinate index */
379             jnrlistA         = jjnr[jidx];
380             jnrlistB         = jjnr[jidx+1];
381             jnrlistC         = jjnr[jidx+2];
382             jnrlistD         = jjnr[jidx+3];
383             /* Sign of each element will be negative for non-real atoms.
384              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
385              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
386              */
387             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
388             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
389             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
390             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
391             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
392             j_coord_offsetA  = DIM*jnrA;
393             j_coord_offsetB  = DIM*jnrB;
394             j_coord_offsetC  = DIM*jnrC;
395             j_coord_offsetD  = DIM*jnrD;
396
397             /* load j atom coordinates */
398             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
399                                               x+j_coord_offsetC,x+j_coord_offsetD,
400                                               &jx0,&jy0,&jz0);
401
402             /* Calculate displacement vector */
403             dx00             = _mm_sub_ps(ix0,jx0);
404             dy00             = _mm_sub_ps(iy0,jy0);
405             dz00             = _mm_sub_ps(iz0,jz0);
406             dx10             = _mm_sub_ps(ix1,jx0);
407             dy10             = _mm_sub_ps(iy1,jy0);
408             dz10             = _mm_sub_ps(iz1,jz0);
409             dx20             = _mm_sub_ps(ix2,jx0);
410             dy20             = _mm_sub_ps(iy2,jy0);
411             dz20             = _mm_sub_ps(iz2,jz0);
412
413             /* Calculate squared distance and things based on it */
414             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
415             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
416             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
417
418             rinv00           = gmx_mm_invsqrt_ps(rsq00);
419             rinv10           = gmx_mm_invsqrt_ps(rsq10);
420             rinv20           = gmx_mm_invsqrt_ps(rsq20);
421
422             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
423             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
424             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
425
426             /* Load parameters for j particles */
427             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
428                                                               charge+jnrC+0,charge+jnrD+0);
429             vdwjidx0A        = 2*vdwtype[jnrA+0];
430             vdwjidx0B        = 2*vdwtype[jnrB+0];
431             vdwjidx0C        = 2*vdwtype[jnrC+0];
432             vdwjidx0D        = 2*vdwtype[jnrD+0];
433
434             fjx0             = _mm_setzero_ps();
435             fjy0             = _mm_setzero_ps();
436             fjz0             = _mm_setzero_ps();
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm_mul_ps(rsq00,rinv00);
443             r00              = _mm_andnot_ps(dummy_mask,r00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm_mul_ps(iq0,jq0);
447             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
448                                          vdwparam+vdwioffset0+vdwjidx0B,
449                                          vdwparam+vdwioffset0+vdwjidx0C,
450                                          vdwparam+vdwioffset0+vdwjidx0D,
451                                          &c6_00,&c12_00);
452
453             /* Calculate table index by multiplying r with table scale and truncate to integer */
454             rt               = _mm_mul_ps(r00,vftabscale);
455             vfitab           = _mm_cvttps_epi32(rt);
456 #ifdef __XOP__
457             vfeps            = _mm_frcz_ps(rt);
458 #else
459             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
460 #endif
461             twovfeps         = _mm_add_ps(vfeps,vfeps);
462             vfitab           = _mm_slli_epi32(vfitab,3);
463
464             /* REACTION-FIELD ELECTROSTATICS */
465             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
466             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
467
468             /* CUBIC SPLINE TABLE DISPERSION */
469             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
470             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
471             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
472             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
473             _MM_TRANSPOSE4_PS(Y,F,G,H);
474             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
475             VV               = _mm_macc_ps(vfeps,Fp,Y);
476             vvdw6            = _mm_mul_ps(c6_00,VV);
477             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
478             fvdw6            = _mm_mul_ps(c6_00,FF);
479
480             /* CUBIC SPLINE TABLE REPULSION */
481             vfitab           = _mm_add_epi32(vfitab,ifour);
482             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
483             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
484             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
485             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
486             _MM_TRANSPOSE4_PS(Y,F,G,H);
487             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
488             VV               = _mm_macc_ps(vfeps,Fp,Y);
489             vvdw12           = _mm_mul_ps(c12_00,VV);
490             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
491             fvdw12           = _mm_mul_ps(c12_00,FF);
492             vvdw             = _mm_add_ps(vvdw12,vvdw6);
493             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
494
495             /* Update potential sum for this i atom from the interaction with this j atom. */
496             velec            = _mm_andnot_ps(dummy_mask,velec);
497             velecsum         = _mm_add_ps(velecsum,velec);
498             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
499             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
500
501             fscal            = _mm_add_ps(felec,fvdw);
502
503             fscal            = _mm_andnot_ps(dummy_mask,fscal);
504
505              /* Update vectorial force */
506             fix0             = _mm_macc_ps(dx00,fscal,fix0);
507             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
508             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
509
510             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
511             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
512             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
513
514             /**************************
515              * CALCULATE INTERACTIONS *
516              **************************/
517
518             /* Compute parameters for interactions between i and j atoms */
519             qq10             = _mm_mul_ps(iq1,jq0);
520
521             /* REACTION-FIELD ELECTROSTATICS */
522             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
523             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
524
525             /* Update potential sum for this i atom from the interaction with this j atom. */
526             velec            = _mm_andnot_ps(dummy_mask,velec);
527             velecsum         = _mm_add_ps(velecsum,velec);
528
529             fscal            = felec;
530
531             fscal            = _mm_andnot_ps(dummy_mask,fscal);
532
533              /* Update vectorial force */
534             fix1             = _mm_macc_ps(dx10,fscal,fix1);
535             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
536             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
537
538             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
539             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
540             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
541
542             /**************************
543              * CALCULATE INTERACTIONS *
544              **************************/
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq20             = _mm_mul_ps(iq2,jq0);
548
549             /* REACTION-FIELD ELECTROSTATICS */
550             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
551             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
552
553             /* Update potential sum for this i atom from the interaction with this j atom. */
554             velec            = _mm_andnot_ps(dummy_mask,velec);
555             velecsum         = _mm_add_ps(velecsum,velec);
556
557             fscal            = felec;
558
559             fscal            = _mm_andnot_ps(dummy_mask,fscal);
560
561              /* Update vectorial force */
562             fix2             = _mm_macc_ps(dx20,fscal,fix2);
563             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
564             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
565
566             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
567             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
568             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
569
570             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
571             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
572             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
573             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
574
575             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
576
577             /* Inner loop uses 141 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
583                                               f+i_coord_offset,fshift+i_shift_offset);
584
585         ggid                        = gid[iidx];
586         /* Update potential energies */
587         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
588         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 20 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
605  * Electrostatics interaction: ReactionField
606  * VdW interaction:            CubicSplineTable
607  * Geometry:                   Water3-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
612                     (t_nblist                    * gmx_restrict       nlist,
613                      rvec                        * gmx_restrict          xx,
614                      rvec                        * gmx_restrict          ff,
615                      t_forcerec                  * gmx_restrict          fr,
616                      t_mdatoms                   * gmx_restrict     mdatoms,
617                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
618                      t_nrnb                      * gmx_restrict        nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB,jnrC,jnrD;
628     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
629     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
634     real             scratch[4*DIM];
635     __m128           fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset0;
637     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
638     int              vdwioffset1;
639     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
640     int              vdwioffset2;
641     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
642     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
643     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
645     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
646     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
647     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     int              nvdwtype;
650     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
651     int              *vdwtype;
652     real             *vdwparam;
653     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
654     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
655     __m128i          vfitab;
656     __m128i          ifour       = _mm_set1_epi32(4);
657     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
658     real             *vftab;
659     __m128           dummy_mask,cutoff_mask;
660     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
661     __m128           one     = _mm_set1_ps(1.0);
662     __m128           two     = _mm_set1_ps(2.0);
663     x                = xx[0];
664     f                = ff[0];
665
666     nri              = nlist->nri;
667     iinr             = nlist->iinr;
668     jindex           = nlist->jindex;
669     jjnr             = nlist->jjnr;
670     shiftidx         = nlist->shift;
671     gid              = nlist->gid;
672     shiftvec         = fr->shift_vec[0];
673     fshift           = fr->fshift[0];
674     facel            = _mm_set1_ps(fr->epsfac);
675     charge           = mdatoms->chargeA;
676     krf              = _mm_set1_ps(fr->ic->k_rf);
677     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
678     crf              = _mm_set1_ps(fr->ic->c_rf);
679     nvdwtype         = fr->ntype;
680     vdwparam         = fr->nbfp;
681     vdwtype          = mdatoms->typeA;
682
683     vftab            = kernel_data->table_vdw->data;
684     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
685
686     /* Setup water-specific parameters */
687     inr              = nlist->iinr[0];
688     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
689     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
690     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
691     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
692
693     /* Avoid stupid compiler warnings */
694     jnrA = jnrB = jnrC = jnrD = 0;
695     j_coord_offsetA = 0;
696     j_coord_offsetB = 0;
697     j_coord_offsetC = 0;
698     j_coord_offsetD = 0;
699
700     outeriter        = 0;
701     inneriter        = 0;
702
703     for(iidx=0;iidx<4*DIM;iidx++)
704     {
705         scratch[iidx] = 0.0;
706     }
707
708     /* Start outer loop over neighborlists */
709     for(iidx=0; iidx<nri; iidx++)
710     {
711         /* Load shift vector for this list */
712         i_shift_offset   = DIM*shiftidx[iidx];
713
714         /* Load limits for loop over neighbors */
715         j_index_start    = jindex[iidx];
716         j_index_end      = jindex[iidx+1];
717
718         /* Get outer coordinate index */
719         inr              = iinr[iidx];
720         i_coord_offset   = DIM*inr;
721
722         /* Load i particle coords and add shift vector */
723         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
724                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
725
726         fix0             = _mm_setzero_ps();
727         fiy0             = _mm_setzero_ps();
728         fiz0             = _mm_setzero_ps();
729         fix1             = _mm_setzero_ps();
730         fiy1             = _mm_setzero_ps();
731         fiz1             = _mm_setzero_ps();
732         fix2             = _mm_setzero_ps();
733         fiy2             = _mm_setzero_ps();
734         fiz2             = _mm_setzero_ps();
735
736         /* Start inner kernel loop */
737         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
738         {
739
740             /* Get j neighbor index, and coordinate index */
741             jnrA             = jjnr[jidx];
742             jnrB             = jjnr[jidx+1];
743             jnrC             = jjnr[jidx+2];
744             jnrD             = jjnr[jidx+3];
745             j_coord_offsetA  = DIM*jnrA;
746             j_coord_offsetB  = DIM*jnrB;
747             j_coord_offsetC  = DIM*jnrC;
748             j_coord_offsetD  = DIM*jnrD;
749
750             /* load j atom coordinates */
751             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
752                                               x+j_coord_offsetC,x+j_coord_offsetD,
753                                               &jx0,&jy0,&jz0);
754
755             /* Calculate displacement vector */
756             dx00             = _mm_sub_ps(ix0,jx0);
757             dy00             = _mm_sub_ps(iy0,jy0);
758             dz00             = _mm_sub_ps(iz0,jz0);
759             dx10             = _mm_sub_ps(ix1,jx0);
760             dy10             = _mm_sub_ps(iy1,jy0);
761             dz10             = _mm_sub_ps(iz1,jz0);
762             dx20             = _mm_sub_ps(ix2,jx0);
763             dy20             = _mm_sub_ps(iy2,jy0);
764             dz20             = _mm_sub_ps(iz2,jz0);
765
766             /* Calculate squared distance and things based on it */
767             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
768             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
769             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
770
771             rinv00           = gmx_mm_invsqrt_ps(rsq00);
772             rinv10           = gmx_mm_invsqrt_ps(rsq10);
773             rinv20           = gmx_mm_invsqrt_ps(rsq20);
774
775             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
776             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
777             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
778
779             /* Load parameters for j particles */
780             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
781                                                               charge+jnrC+0,charge+jnrD+0);
782             vdwjidx0A        = 2*vdwtype[jnrA+0];
783             vdwjidx0B        = 2*vdwtype[jnrB+0];
784             vdwjidx0C        = 2*vdwtype[jnrC+0];
785             vdwjidx0D        = 2*vdwtype[jnrD+0];
786
787             fjx0             = _mm_setzero_ps();
788             fjy0             = _mm_setzero_ps();
789             fjz0             = _mm_setzero_ps();
790
791             /**************************
792              * CALCULATE INTERACTIONS *
793              **************************/
794
795             r00              = _mm_mul_ps(rsq00,rinv00);
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq00             = _mm_mul_ps(iq0,jq0);
799             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
800                                          vdwparam+vdwioffset0+vdwjidx0B,
801                                          vdwparam+vdwioffset0+vdwjidx0C,
802                                          vdwparam+vdwioffset0+vdwjidx0D,
803                                          &c6_00,&c12_00);
804
805             /* Calculate table index by multiplying r with table scale and truncate to integer */
806             rt               = _mm_mul_ps(r00,vftabscale);
807             vfitab           = _mm_cvttps_epi32(rt);
808 #ifdef __XOP__
809             vfeps            = _mm_frcz_ps(rt);
810 #else
811             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
812 #endif
813             twovfeps         = _mm_add_ps(vfeps,vfeps);
814             vfitab           = _mm_slli_epi32(vfitab,3);
815
816             /* REACTION-FIELD ELECTROSTATICS */
817             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
818
819             /* CUBIC SPLINE TABLE DISPERSION */
820             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
821             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
822             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
823             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
824             _MM_TRANSPOSE4_PS(Y,F,G,H);
825             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
826             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
827             fvdw6            = _mm_mul_ps(c6_00,FF);
828
829             /* CUBIC SPLINE TABLE REPULSION */
830             vfitab           = _mm_add_epi32(vfitab,ifour);
831             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
832             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
833             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
834             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
835             _MM_TRANSPOSE4_PS(Y,F,G,H);
836             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
837             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
838             fvdw12           = _mm_mul_ps(c12_00,FF);
839             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
840
841             fscal            = _mm_add_ps(felec,fvdw);
842
843              /* Update vectorial force */
844             fix0             = _mm_macc_ps(dx00,fscal,fix0);
845             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
846             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
847
848             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
849             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
850             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq10             = _mm_mul_ps(iq1,jq0);
858
859             /* REACTION-FIELD ELECTROSTATICS */
860             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
861
862             fscal            = felec;
863
864              /* Update vectorial force */
865             fix1             = _mm_macc_ps(dx10,fscal,fix1);
866             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
867             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
868
869             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
870             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
871             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
872
873             /**************************
874              * CALCULATE INTERACTIONS *
875              **************************/
876
877             /* Compute parameters for interactions between i and j atoms */
878             qq20             = _mm_mul_ps(iq2,jq0);
879
880             /* REACTION-FIELD ELECTROSTATICS */
881             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
882
883             fscal            = felec;
884
885              /* Update vectorial force */
886             fix2             = _mm_macc_ps(dx20,fscal,fix2);
887             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
888             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
889
890             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
891             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
892             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
893
894             fjptrA             = f+j_coord_offsetA;
895             fjptrB             = f+j_coord_offsetB;
896             fjptrC             = f+j_coord_offsetC;
897             fjptrD             = f+j_coord_offsetD;
898
899             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
900
901             /* Inner loop uses 117 flops */
902         }
903
904         if(jidx<j_index_end)
905         {
906
907             /* Get j neighbor index, and coordinate index */
908             jnrlistA         = jjnr[jidx];
909             jnrlistB         = jjnr[jidx+1];
910             jnrlistC         = jjnr[jidx+2];
911             jnrlistD         = jjnr[jidx+3];
912             /* Sign of each element will be negative for non-real atoms.
913              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
914              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
915              */
916             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
917             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
918             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
919             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
920             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
921             j_coord_offsetA  = DIM*jnrA;
922             j_coord_offsetB  = DIM*jnrB;
923             j_coord_offsetC  = DIM*jnrC;
924             j_coord_offsetD  = DIM*jnrD;
925
926             /* load j atom coordinates */
927             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
928                                               x+j_coord_offsetC,x+j_coord_offsetD,
929                                               &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm_sub_ps(ix0,jx0);
933             dy00             = _mm_sub_ps(iy0,jy0);
934             dz00             = _mm_sub_ps(iz0,jz0);
935             dx10             = _mm_sub_ps(ix1,jx0);
936             dy10             = _mm_sub_ps(iy1,jy0);
937             dz10             = _mm_sub_ps(iz1,jz0);
938             dx20             = _mm_sub_ps(ix2,jx0);
939             dy20             = _mm_sub_ps(iy2,jy0);
940             dz20             = _mm_sub_ps(iz2,jz0);
941
942             /* Calculate squared distance and things based on it */
943             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
944             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
945             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
946
947             rinv00           = gmx_mm_invsqrt_ps(rsq00);
948             rinv10           = gmx_mm_invsqrt_ps(rsq10);
949             rinv20           = gmx_mm_invsqrt_ps(rsq20);
950
951             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
952             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
953             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
954
955             /* Load parameters for j particles */
956             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
957                                                               charge+jnrC+0,charge+jnrD+0);
958             vdwjidx0A        = 2*vdwtype[jnrA+0];
959             vdwjidx0B        = 2*vdwtype[jnrB+0];
960             vdwjidx0C        = 2*vdwtype[jnrC+0];
961             vdwjidx0D        = 2*vdwtype[jnrD+0];
962
963             fjx0             = _mm_setzero_ps();
964             fjy0             = _mm_setzero_ps();
965             fjz0             = _mm_setzero_ps();
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             r00              = _mm_mul_ps(rsq00,rinv00);
972             r00              = _mm_andnot_ps(dummy_mask,r00);
973
974             /* Compute parameters for interactions between i and j atoms */
975             qq00             = _mm_mul_ps(iq0,jq0);
976             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
977                                          vdwparam+vdwioffset0+vdwjidx0B,
978                                          vdwparam+vdwioffset0+vdwjidx0C,
979                                          vdwparam+vdwioffset0+vdwjidx0D,
980                                          &c6_00,&c12_00);
981
982             /* Calculate table index by multiplying r with table scale and truncate to integer */
983             rt               = _mm_mul_ps(r00,vftabscale);
984             vfitab           = _mm_cvttps_epi32(rt);
985 #ifdef __XOP__
986             vfeps            = _mm_frcz_ps(rt);
987 #else
988             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
989 #endif
990             twovfeps         = _mm_add_ps(vfeps,vfeps);
991             vfitab           = _mm_slli_epi32(vfitab,3);
992
993             /* REACTION-FIELD ELECTROSTATICS */
994             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
995
996             /* CUBIC SPLINE TABLE DISPERSION */
997             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
998             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
999             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1000             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1001             _MM_TRANSPOSE4_PS(Y,F,G,H);
1002             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1003             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1004             fvdw6            = _mm_mul_ps(c6_00,FF);
1005
1006             /* CUBIC SPLINE TABLE REPULSION */
1007             vfitab           = _mm_add_epi32(vfitab,ifour);
1008             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1009             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1010             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1011             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1012             _MM_TRANSPOSE4_PS(Y,F,G,H);
1013             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1014             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1015             fvdw12           = _mm_mul_ps(c12_00,FF);
1016             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1017
1018             fscal            = _mm_add_ps(felec,fvdw);
1019
1020             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1021
1022              /* Update vectorial force */
1023             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1024             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1025             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1026
1027             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1028             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1029             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq10             = _mm_mul_ps(iq1,jq0);
1037
1038             /* REACTION-FIELD ELECTROSTATICS */
1039             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1040
1041             fscal            = felec;
1042
1043             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1044
1045              /* Update vectorial force */
1046             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1047             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1048             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1049
1050             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1051             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1052             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             /* Compute parameters for interactions between i and j atoms */
1059             qq20             = _mm_mul_ps(iq2,jq0);
1060
1061             /* REACTION-FIELD ELECTROSTATICS */
1062             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1063
1064             fscal            = felec;
1065
1066             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1067
1068              /* Update vectorial force */
1069             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1070             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1071             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1072
1073             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1074             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1075             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1076
1077             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1078             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1079             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1080             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1081
1082             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1083
1084             /* Inner loop uses 118 flops */
1085         }
1086
1087         /* End of innermost loop */
1088
1089         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1090                                               f+i_coord_offset,fshift+i_shift_offset);
1091
1092         /* Increment number of inner iterations */
1093         inneriter                  += j_index_end - j_index_start;
1094
1095         /* Outer loop uses 18 flops */
1096     }
1097
1098     /* Increment number of outer iterations */
1099     outeriter        += nri;
1100
1101     /* Update outer/inner flops */
1102
1103     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1104 }