Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_ps(fr->ic->k_rf);
124     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176         fix1             = _mm_setzero_ps();
177         fiy1             = _mm_setzero_ps();
178         fiz1             = _mm_setzero_ps();
179         fix2             = _mm_setzero_ps();
180         fiy2             = _mm_setzero_ps();
181         fiz2             = _mm_setzero_ps();
182
183         /* Reset potential sums */
184         velecsum         = _mm_setzero_ps();
185         vvdwsum          = _mm_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
203                                               x+j_coord_offsetC,x+j_coord_offsetD,
204                                               &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm_sub_ps(ix0,jx0);
208             dy00             = _mm_sub_ps(iy0,jy0);
209             dz00             = _mm_sub_ps(iz0,jz0);
210             dx10             = _mm_sub_ps(ix1,jx0);
211             dy10             = _mm_sub_ps(iy1,jy0);
212             dz10             = _mm_sub_ps(iz1,jz0);
213             dx20             = _mm_sub_ps(ix2,jx0);
214             dy20             = _mm_sub_ps(iy2,jy0);
215             dz20             = _mm_sub_ps(iz2,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221
222             rinv00           = gmx_mm_invsqrt_ps(rsq00);
223             rinv10           = gmx_mm_invsqrt_ps(rsq10);
224             rinv20           = gmx_mm_invsqrt_ps(rsq20);
225
226             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
227             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
228             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
232                                                               charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm_setzero_ps();
239             fjy0             = _mm_setzero_ps();
240             fjz0             = _mm_setzero_ps();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             r00              = _mm_mul_ps(rsq00,rinv00);
247
248             /* Compute parameters for interactions between i and j atoms */
249             qq00             = _mm_mul_ps(iq0,jq0);
250             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
251                                          vdwparam+vdwioffset0+vdwjidx0B,
252                                          vdwparam+vdwioffset0+vdwjidx0C,
253                                          vdwparam+vdwioffset0+vdwjidx0D,
254                                          &c6_00,&c12_00);
255
256             /* Calculate table index by multiplying r with table scale and truncate to integer */
257             rt               = _mm_mul_ps(r00,vftabscale);
258             vfitab           = _mm_cvttps_epi32(rt);
259 #ifdef __XOP__
260             vfeps            = _mm_frcz_ps(rt);
261 #else
262             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
263 #endif
264             twovfeps         = _mm_add_ps(vfeps,vfeps);
265             vfitab           = _mm_slli_epi32(vfitab,3);
266
267             /* REACTION-FIELD ELECTROSTATICS */
268             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
269             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
270
271             /* CUBIC SPLINE TABLE DISPERSION */
272             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
273             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
274             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
275             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
276             _MM_TRANSPOSE4_PS(Y,F,G,H);
277             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
278             VV               = _mm_macc_ps(vfeps,Fp,Y);
279             vvdw6            = _mm_mul_ps(c6_00,VV);
280             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
281             fvdw6            = _mm_mul_ps(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
289             _MM_TRANSPOSE4_PS(Y,F,G,H);
290             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
291             VV               = _mm_macc_ps(vfeps,Fp,Y);
292             vvdw12           = _mm_mul_ps(c12_00,VV);
293             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
294             fvdw12           = _mm_mul_ps(c12_00,FF);
295             vvdw             = _mm_add_ps(vvdw12,vvdw6);
296             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velecsum         = _mm_add_ps(velecsum,velec);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = _mm_add_ps(felec,fvdw);
303
304              /* Update vectorial force */
305             fix0             = _mm_macc_ps(dx00,fscal,fix0);
306             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
307             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
308
309             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
310             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
311             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
312
313             /**************************
314              * CALCULATE INTERACTIONS *
315              **************************/
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm_mul_ps(iq1,jq0);
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
322             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm_add_ps(velecsum,velec);
326
327             fscal            = felec;
328
329              /* Update vectorial force */
330             fix1             = _mm_macc_ps(dx10,fscal,fix1);
331             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
332             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
333
334             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
335             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
336             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             /* Compute parameters for interactions between i and j atoms */
343             qq20             = _mm_mul_ps(iq2,jq0);
344
345             /* REACTION-FIELD ELECTROSTATICS */
346             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
347             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velecsum         = _mm_add_ps(velecsum,velec);
351
352             fscal            = felec;
353
354              /* Update vectorial force */
355             fix2             = _mm_macc_ps(dx20,fscal,fix2);
356             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
357             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
358
359             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
360             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
361             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
362
363             fjptrA             = f+j_coord_offsetA;
364             fjptrB             = f+j_coord_offsetB;
365             fjptrC             = f+j_coord_offsetC;
366             fjptrD             = f+j_coord_offsetD;
367
368             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 140 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             /* Get j neighbor index, and coordinate index */
377             jnrlistA         = jjnr[jidx];
378             jnrlistB         = jjnr[jidx+1];
379             jnrlistC         = jjnr[jidx+2];
380             jnrlistD         = jjnr[jidx+3];
381             /* Sign of each element will be negative for non-real atoms.
382              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
383              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
384              */
385             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
386             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
387             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
388             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
389             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
390             j_coord_offsetA  = DIM*jnrA;
391             j_coord_offsetB  = DIM*jnrB;
392             j_coord_offsetC  = DIM*jnrC;
393             j_coord_offsetD  = DIM*jnrD;
394
395             /* load j atom coordinates */
396             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
397                                               x+j_coord_offsetC,x+j_coord_offsetD,
398                                               &jx0,&jy0,&jz0);
399
400             /* Calculate displacement vector */
401             dx00             = _mm_sub_ps(ix0,jx0);
402             dy00             = _mm_sub_ps(iy0,jy0);
403             dz00             = _mm_sub_ps(iz0,jz0);
404             dx10             = _mm_sub_ps(ix1,jx0);
405             dy10             = _mm_sub_ps(iy1,jy0);
406             dz10             = _mm_sub_ps(iz1,jz0);
407             dx20             = _mm_sub_ps(ix2,jx0);
408             dy20             = _mm_sub_ps(iy2,jy0);
409             dz20             = _mm_sub_ps(iz2,jz0);
410
411             /* Calculate squared distance and things based on it */
412             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
413             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
414             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
415
416             rinv00           = gmx_mm_invsqrt_ps(rsq00);
417             rinv10           = gmx_mm_invsqrt_ps(rsq10);
418             rinv20           = gmx_mm_invsqrt_ps(rsq20);
419
420             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
421             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
422             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
423
424             /* Load parameters for j particles */
425             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
426                                                               charge+jnrC+0,charge+jnrD+0);
427             vdwjidx0A        = 2*vdwtype[jnrA+0];
428             vdwjidx0B        = 2*vdwtype[jnrB+0];
429             vdwjidx0C        = 2*vdwtype[jnrC+0];
430             vdwjidx0D        = 2*vdwtype[jnrD+0];
431
432             fjx0             = _mm_setzero_ps();
433             fjy0             = _mm_setzero_ps();
434             fjz0             = _mm_setzero_ps();
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             r00              = _mm_mul_ps(rsq00,rinv00);
441             r00              = _mm_andnot_ps(dummy_mask,r00);
442
443             /* Compute parameters for interactions between i and j atoms */
444             qq00             = _mm_mul_ps(iq0,jq0);
445             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
446                                          vdwparam+vdwioffset0+vdwjidx0B,
447                                          vdwparam+vdwioffset0+vdwjidx0C,
448                                          vdwparam+vdwioffset0+vdwjidx0D,
449                                          &c6_00,&c12_00);
450
451             /* Calculate table index by multiplying r with table scale and truncate to integer */
452             rt               = _mm_mul_ps(r00,vftabscale);
453             vfitab           = _mm_cvttps_epi32(rt);
454 #ifdef __XOP__
455             vfeps            = _mm_frcz_ps(rt);
456 #else
457             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
458 #endif
459             twovfeps         = _mm_add_ps(vfeps,vfeps);
460             vfitab           = _mm_slli_epi32(vfitab,3);
461
462             /* REACTION-FIELD ELECTROSTATICS */
463             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
464             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
465
466             /* CUBIC SPLINE TABLE DISPERSION */
467             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
468             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
469             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
470             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
471             _MM_TRANSPOSE4_PS(Y,F,G,H);
472             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
473             VV               = _mm_macc_ps(vfeps,Fp,Y);
474             vvdw6            = _mm_mul_ps(c6_00,VV);
475             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
476             fvdw6            = _mm_mul_ps(c6_00,FF);
477
478             /* CUBIC SPLINE TABLE REPULSION */
479             vfitab           = _mm_add_epi32(vfitab,ifour);
480             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
481             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
482             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
483             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
484             _MM_TRANSPOSE4_PS(Y,F,G,H);
485             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
486             VV               = _mm_macc_ps(vfeps,Fp,Y);
487             vvdw12           = _mm_mul_ps(c12_00,VV);
488             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
489             fvdw12           = _mm_mul_ps(c12_00,FF);
490             vvdw             = _mm_add_ps(vvdw12,vvdw6);
491             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             velec            = _mm_andnot_ps(dummy_mask,velec);
495             velecsum         = _mm_add_ps(velecsum,velec);
496             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
497             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
498
499             fscal            = _mm_add_ps(felec,fvdw);
500
501             fscal            = _mm_andnot_ps(dummy_mask,fscal);
502
503              /* Update vectorial force */
504             fix0             = _mm_macc_ps(dx00,fscal,fix0);
505             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
506             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
507
508             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
509             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
510             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             /* Compute parameters for interactions between i and j atoms */
517             qq10             = _mm_mul_ps(iq1,jq0);
518
519             /* REACTION-FIELD ELECTROSTATICS */
520             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
521             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
522
523             /* Update potential sum for this i atom from the interaction with this j atom. */
524             velec            = _mm_andnot_ps(dummy_mask,velec);
525             velecsum         = _mm_add_ps(velecsum,velec);
526
527             fscal            = felec;
528
529             fscal            = _mm_andnot_ps(dummy_mask,fscal);
530
531              /* Update vectorial force */
532             fix1             = _mm_macc_ps(dx10,fscal,fix1);
533             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
534             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
535
536             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
537             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
538             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             /* Compute parameters for interactions between i and j atoms */
545             qq20             = _mm_mul_ps(iq2,jq0);
546
547             /* REACTION-FIELD ELECTROSTATICS */
548             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
549             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm_andnot_ps(dummy_mask,velec);
553             velecsum         = _mm_add_ps(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559              /* Update vectorial force */
560             fix2             = _mm_macc_ps(dx20,fscal,fix2);
561             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
562             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
563
564             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
565             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
566             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
567
568             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
569             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
570             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
571             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
572
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
574
575             /* Inner loop uses 141 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
581                                               f+i_coord_offset,fshift+i_shift_offset);
582
583         ggid                        = gid[iidx];
584         /* Update potential energies */
585         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
586         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
587
588         /* Increment number of inner iterations */
589         inneriter                  += j_index_end - j_index_start;
590
591         /* Outer loop uses 20 flops */
592     }
593
594     /* Increment number of outer iterations */
595     outeriter        += nri;
596
597     /* Update outer/inner flops */
598
599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
600 }
601 /*
602  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
603  * Electrostatics interaction: ReactionField
604  * VdW interaction:            CubicSplineTable
605  * Geometry:                   Water3-Particle
606  * Calculate force/pot:        Force
607  */
608 void
609 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
610                     (t_nblist                    * gmx_restrict       nlist,
611                      rvec                        * gmx_restrict          xx,
612                      rvec                        * gmx_restrict          ff,
613                      t_forcerec                  * gmx_restrict          fr,
614                      t_mdatoms                   * gmx_restrict     mdatoms,
615                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
616                      t_nrnb                      * gmx_restrict        nrnb)
617 {
618     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
619      * just 0 for non-waters.
620      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
621      * jnr indices corresponding to data put in the four positions in the SIMD register.
622      */
623     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
624     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
625     int              jnrA,jnrB,jnrC,jnrD;
626     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
627     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
628     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
629     real             rcutoff_scalar;
630     real             *shiftvec,*fshift,*x,*f;
631     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
632     real             scratch[4*DIM];
633     __m128           fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
641     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
646     real             *charge;
647     int              nvdwtype;
648     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649     int              *vdwtype;
650     real             *vdwparam;
651     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
652     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
653     __m128i          vfitab;
654     __m128i          ifour       = _mm_set1_epi32(4);
655     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
656     real             *vftab;
657     __m128           dummy_mask,cutoff_mask;
658     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
659     __m128           one     = _mm_set1_ps(1.0);
660     __m128           two     = _mm_set1_ps(2.0);
661     x                = xx[0];
662     f                = ff[0];
663
664     nri              = nlist->nri;
665     iinr             = nlist->iinr;
666     jindex           = nlist->jindex;
667     jjnr             = nlist->jjnr;
668     shiftidx         = nlist->shift;
669     gid              = nlist->gid;
670     shiftvec         = fr->shift_vec[0];
671     fshift           = fr->fshift[0];
672     facel            = _mm_set1_ps(fr->epsfac);
673     charge           = mdatoms->chargeA;
674     krf              = _mm_set1_ps(fr->ic->k_rf);
675     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
676     crf              = _mm_set1_ps(fr->ic->c_rf);
677     nvdwtype         = fr->ntype;
678     vdwparam         = fr->nbfp;
679     vdwtype          = mdatoms->typeA;
680
681     vftab            = kernel_data->table_vdw->data;
682     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
683
684     /* Setup water-specific parameters */
685     inr              = nlist->iinr[0];
686     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
687     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
688     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
689     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
690
691     /* Avoid stupid compiler warnings */
692     jnrA = jnrB = jnrC = jnrD = 0;
693     j_coord_offsetA = 0;
694     j_coord_offsetB = 0;
695     j_coord_offsetC = 0;
696     j_coord_offsetD = 0;
697
698     outeriter        = 0;
699     inneriter        = 0;
700
701     for(iidx=0;iidx<4*DIM;iidx++)
702     {
703         scratch[iidx] = 0.0;
704     }
705
706     /* Start outer loop over neighborlists */
707     for(iidx=0; iidx<nri; iidx++)
708     {
709         /* Load shift vector for this list */
710         i_shift_offset   = DIM*shiftidx[iidx];
711
712         /* Load limits for loop over neighbors */
713         j_index_start    = jindex[iidx];
714         j_index_end      = jindex[iidx+1];
715
716         /* Get outer coordinate index */
717         inr              = iinr[iidx];
718         i_coord_offset   = DIM*inr;
719
720         /* Load i particle coords and add shift vector */
721         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
722                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
723
724         fix0             = _mm_setzero_ps();
725         fiy0             = _mm_setzero_ps();
726         fiz0             = _mm_setzero_ps();
727         fix1             = _mm_setzero_ps();
728         fiy1             = _mm_setzero_ps();
729         fiz1             = _mm_setzero_ps();
730         fix2             = _mm_setzero_ps();
731         fiy2             = _mm_setzero_ps();
732         fiz2             = _mm_setzero_ps();
733
734         /* Start inner kernel loop */
735         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
736         {
737
738             /* Get j neighbor index, and coordinate index */
739             jnrA             = jjnr[jidx];
740             jnrB             = jjnr[jidx+1];
741             jnrC             = jjnr[jidx+2];
742             jnrD             = jjnr[jidx+3];
743             j_coord_offsetA  = DIM*jnrA;
744             j_coord_offsetB  = DIM*jnrB;
745             j_coord_offsetC  = DIM*jnrC;
746             j_coord_offsetD  = DIM*jnrD;
747
748             /* load j atom coordinates */
749             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
750                                               x+j_coord_offsetC,x+j_coord_offsetD,
751                                               &jx0,&jy0,&jz0);
752
753             /* Calculate displacement vector */
754             dx00             = _mm_sub_ps(ix0,jx0);
755             dy00             = _mm_sub_ps(iy0,jy0);
756             dz00             = _mm_sub_ps(iz0,jz0);
757             dx10             = _mm_sub_ps(ix1,jx0);
758             dy10             = _mm_sub_ps(iy1,jy0);
759             dz10             = _mm_sub_ps(iz1,jz0);
760             dx20             = _mm_sub_ps(ix2,jx0);
761             dy20             = _mm_sub_ps(iy2,jy0);
762             dz20             = _mm_sub_ps(iz2,jz0);
763
764             /* Calculate squared distance and things based on it */
765             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
766             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
767             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
768
769             rinv00           = gmx_mm_invsqrt_ps(rsq00);
770             rinv10           = gmx_mm_invsqrt_ps(rsq10);
771             rinv20           = gmx_mm_invsqrt_ps(rsq20);
772
773             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
774             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
775             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
776
777             /* Load parameters for j particles */
778             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
779                                                               charge+jnrC+0,charge+jnrD+0);
780             vdwjidx0A        = 2*vdwtype[jnrA+0];
781             vdwjidx0B        = 2*vdwtype[jnrB+0];
782             vdwjidx0C        = 2*vdwtype[jnrC+0];
783             vdwjidx0D        = 2*vdwtype[jnrD+0];
784
785             fjx0             = _mm_setzero_ps();
786             fjy0             = _mm_setzero_ps();
787             fjz0             = _mm_setzero_ps();
788
789             /**************************
790              * CALCULATE INTERACTIONS *
791              **************************/
792
793             r00              = _mm_mul_ps(rsq00,rinv00);
794
795             /* Compute parameters for interactions between i and j atoms */
796             qq00             = _mm_mul_ps(iq0,jq0);
797             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
798                                          vdwparam+vdwioffset0+vdwjidx0B,
799                                          vdwparam+vdwioffset0+vdwjidx0C,
800                                          vdwparam+vdwioffset0+vdwjidx0D,
801                                          &c6_00,&c12_00);
802
803             /* Calculate table index by multiplying r with table scale and truncate to integer */
804             rt               = _mm_mul_ps(r00,vftabscale);
805             vfitab           = _mm_cvttps_epi32(rt);
806 #ifdef __XOP__
807             vfeps            = _mm_frcz_ps(rt);
808 #else
809             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
810 #endif
811             twovfeps         = _mm_add_ps(vfeps,vfeps);
812             vfitab           = _mm_slli_epi32(vfitab,3);
813
814             /* REACTION-FIELD ELECTROSTATICS */
815             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
816
817             /* CUBIC SPLINE TABLE DISPERSION */
818             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
819             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
820             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
821             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
822             _MM_TRANSPOSE4_PS(Y,F,G,H);
823             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
824             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
825             fvdw6            = _mm_mul_ps(c6_00,FF);
826
827             /* CUBIC SPLINE TABLE REPULSION */
828             vfitab           = _mm_add_epi32(vfitab,ifour);
829             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
830             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
831             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
832             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
833             _MM_TRANSPOSE4_PS(Y,F,G,H);
834             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
835             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
836             fvdw12           = _mm_mul_ps(c12_00,FF);
837             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
838
839             fscal            = _mm_add_ps(felec,fvdw);
840
841              /* Update vectorial force */
842             fix0             = _mm_macc_ps(dx00,fscal,fix0);
843             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
844             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
845
846             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
847             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
848             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
849
850             /**************************
851              * CALCULATE INTERACTIONS *
852              **************************/
853
854             /* Compute parameters for interactions between i and j atoms */
855             qq10             = _mm_mul_ps(iq1,jq0);
856
857             /* REACTION-FIELD ELECTROSTATICS */
858             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
859
860             fscal            = felec;
861
862              /* Update vectorial force */
863             fix1             = _mm_macc_ps(dx10,fscal,fix1);
864             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
865             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
866
867             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
868             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
869             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
870
871             /**************************
872              * CALCULATE INTERACTIONS *
873              **************************/
874
875             /* Compute parameters for interactions between i and j atoms */
876             qq20             = _mm_mul_ps(iq2,jq0);
877
878             /* REACTION-FIELD ELECTROSTATICS */
879             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
880
881             fscal            = felec;
882
883              /* Update vectorial force */
884             fix2             = _mm_macc_ps(dx20,fscal,fix2);
885             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
886             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
887
888             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
889             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
890             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
891
892             fjptrA             = f+j_coord_offsetA;
893             fjptrB             = f+j_coord_offsetB;
894             fjptrC             = f+j_coord_offsetC;
895             fjptrD             = f+j_coord_offsetD;
896
897             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
898
899             /* Inner loop uses 117 flops */
900         }
901
902         if(jidx<j_index_end)
903         {
904
905             /* Get j neighbor index, and coordinate index */
906             jnrlistA         = jjnr[jidx];
907             jnrlistB         = jjnr[jidx+1];
908             jnrlistC         = jjnr[jidx+2];
909             jnrlistD         = jjnr[jidx+3];
910             /* Sign of each element will be negative for non-real atoms.
911              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
912              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
913              */
914             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
915             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
916             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
917             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
918             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923
924             /* load j atom coordinates */
925             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
926                                               x+j_coord_offsetC,x+j_coord_offsetD,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_ps(ix0,jx0);
931             dy00             = _mm_sub_ps(iy0,jy0);
932             dz00             = _mm_sub_ps(iz0,jz0);
933             dx10             = _mm_sub_ps(ix1,jx0);
934             dy10             = _mm_sub_ps(iy1,jy0);
935             dz10             = _mm_sub_ps(iz1,jz0);
936             dx20             = _mm_sub_ps(ix2,jx0);
937             dy20             = _mm_sub_ps(iy2,jy0);
938             dz20             = _mm_sub_ps(iz2,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
942             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
944
945             rinv00           = gmx_mm_invsqrt_ps(rsq00);
946             rinv10           = gmx_mm_invsqrt_ps(rsq10);
947             rinv20           = gmx_mm_invsqrt_ps(rsq20);
948
949             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
950             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
951             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
952
953             /* Load parameters for j particles */
954             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
955                                                               charge+jnrC+0,charge+jnrD+0);
956             vdwjidx0A        = 2*vdwtype[jnrA+0];
957             vdwjidx0B        = 2*vdwtype[jnrB+0];
958             vdwjidx0C        = 2*vdwtype[jnrC+0];
959             vdwjidx0D        = 2*vdwtype[jnrD+0];
960
961             fjx0             = _mm_setzero_ps();
962             fjy0             = _mm_setzero_ps();
963             fjz0             = _mm_setzero_ps();
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             r00              = _mm_mul_ps(rsq00,rinv00);
970             r00              = _mm_andnot_ps(dummy_mask,r00);
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq00             = _mm_mul_ps(iq0,jq0);
974             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,
976                                          vdwparam+vdwioffset0+vdwjidx0C,
977                                          vdwparam+vdwioffset0+vdwjidx0D,
978                                          &c6_00,&c12_00);
979
980             /* Calculate table index by multiplying r with table scale and truncate to integer */
981             rt               = _mm_mul_ps(r00,vftabscale);
982             vfitab           = _mm_cvttps_epi32(rt);
983 #ifdef __XOP__
984             vfeps            = _mm_frcz_ps(rt);
985 #else
986             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
987 #endif
988             twovfeps         = _mm_add_ps(vfeps,vfeps);
989             vfitab           = _mm_slli_epi32(vfitab,3);
990
991             /* REACTION-FIELD ELECTROSTATICS */
992             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
993
994             /* CUBIC SPLINE TABLE DISPERSION */
995             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
996             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
997             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
998             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
999             _MM_TRANSPOSE4_PS(Y,F,G,H);
1000             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1001             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1002             fvdw6            = _mm_mul_ps(c6_00,FF);
1003
1004             /* CUBIC SPLINE TABLE REPULSION */
1005             vfitab           = _mm_add_epi32(vfitab,ifour);
1006             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1007             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1008             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1009             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1010             _MM_TRANSPOSE4_PS(Y,F,G,H);
1011             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1012             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1013             fvdw12           = _mm_mul_ps(c12_00,FF);
1014             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1015
1016             fscal            = _mm_add_ps(felec,fvdw);
1017
1018             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1019
1020              /* Update vectorial force */
1021             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1022             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1023             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1024
1025             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1026             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1027             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             /* Compute parameters for interactions between i and j atoms */
1034             qq10             = _mm_mul_ps(iq1,jq0);
1035
1036             /* REACTION-FIELD ELECTROSTATICS */
1037             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1038
1039             fscal            = felec;
1040
1041             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1042
1043              /* Update vectorial force */
1044             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1045             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1046             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1047
1048             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1049             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1050             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1051
1052             /**************************
1053              * CALCULATE INTERACTIONS *
1054              **************************/
1055
1056             /* Compute parameters for interactions between i and j atoms */
1057             qq20             = _mm_mul_ps(iq2,jq0);
1058
1059             /* REACTION-FIELD ELECTROSTATICS */
1060             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1061
1062             fscal            = felec;
1063
1064             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1065
1066              /* Update vectorial force */
1067             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1068             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1069             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1070
1071             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1072             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1073             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1074
1075             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1076             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1077             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1078             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1079
1080             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1081
1082             /* Inner loop uses 118 flops */
1083         }
1084
1085         /* End of innermost loop */
1086
1087         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1088                                               f+i_coord_offset,fshift+i_shift_offset);
1089
1090         /* Increment number of inner iterations */
1091         inneriter                  += j_index_end - j_index_start;
1092
1093         /* Outer loop uses 18 flops */
1094     }
1095
1096     /* Increment number of outer iterations */
1097     outeriter        += nri;
1098
1099     /* Update outer/inner flops */
1100
1101     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1102 }