61285be3d56c821062848f27738d3b6ca913f4ef
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
76     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
77     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
78     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
79     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
80     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
81     real             *charge;
82     int              nvdwtype;
83     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
84     int              *vdwtype;
85     real             *vdwparam;
86     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
87     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
88     __m128i          vfitab;
89     __m128i          ifour       = _mm_set1_epi32(4);
90     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
91     real             *vftab;
92     __m128           dummy_mask,cutoff_mask;
93     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94     __m128           one     = _mm_set1_ps(1.0);
95     __m128           two     = _mm_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm_set1_ps(fr->ic->k_rf);
110     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
111     crf              = _mm_set1_ps(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
122     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
123     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* Avoid stupid compiler warnings */
127     jnrA = jnrB = jnrC = jnrD = 0;
128     j_coord_offsetA = 0;
129     j_coord_offsetB = 0;
130     j_coord_offsetC = 0;
131     j_coord_offsetD = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162         fix1             = _mm_setzero_ps();
163         fiy1             = _mm_setzero_ps();
164         fiz1             = _mm_setzero_ps();
165         fix2             = _mm_setzero_ps();
166         fiy2             = _mm_setzero_ps();
167         fiz2             = _mm_setzero_ps();
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196             dx10             = _mm_sub_ps(ix1,jx0);
197             dy10             = _mm_sub_ps(iy1,jy0);
198             dz10             = _mm_sub_ps(iz1,jz0);
199             dx20             = _mm_sub_ps(ix2,jx0);
200             dy20             = _mm_sub_ps(iy2,jy0);
201             dz20             = _mm_sub_ps(iz2,jz0);
202
203             /* Calculate squared distance and things based on it */
204             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
205             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
206             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
207
208             rinv00           = gmx_mm_invsqrt_ps(rsq00);
209             rinv10           = gmx_mm_invsqrt_ps(rsq10);
210             rinv20           = gmx_mm_invsqrt_ps(rsq20);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
214             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             fjx0             = _mm_setzero_ps();
225             fjy0             = _mm_setzero_ps();
226             fjz0             = _mm_setzero_ps();
227
228             /**************************
229              * CALCULATE INTERACTIONS *
230              **************************/
231
232             r00              = _mm_mul_ps(rsq00,rinv00);
233
234             /* Compute parameters for interactions between i and j atoms */
235             qq00             = _mm_mul_ps(iq0,jq0);
236             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
237                                          vdwparam+vdwioffset0+vdwjidx0B,
238                                          vdwparam+vdwioffset0+vdwjidx0C,
239                                          vdwparam+vdwioffset0+vdwjidx0D,
240                                          &c6_00,&c12_00);
241
242             /* Calculate table index by multiplying r with table scale and truncate to integer */
243             rt               = _mm_mul_ps(r00,vftabscale);
244             vfitab           = _mm_cvttps_epi32(rt);
245 #ifdef __XOP__
246             vfeps            = _mm_frcz_ps(rt);
247 #else
248             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
249 #endif
250             twovfeps         = _mm_add_ps(vfeps,vfeps);
251             vfitab           = _mm_slli_epi32(vfitab,3);
252
253             /* REACTION-FIELD ELECTROSTATICS */
254             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
255             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
256
257             /* CUBIC SPLINE TABLE DISPERSION */
258             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
259             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
260             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
261             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
262             _MM_TRANSPOSE4_PS(Y,F,G,H);
263             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
264             VV               = _mm_macc_ps(vfeps,Fp,Y);
265             vvdw6            = _mm_mul_ps(c6_00,VV);
266             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
267             fvdw6            = _mm_mul_ps(c6_00,FF);
268
269             /* CUBIC SPLINE TABLE REPULSION */
270             vfitab           = _mm_add_epi32(vfitab,ifour);
271             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
275             _MM_TRANSPOSE4_PS(Y,F,G,H);
276             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
277             VV               = _mm_macc_ps(vfeps,Fp,Y);
278             vvdw12           = _mm_mul_ps(c12_00,VV);
279             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
280             fvdw12           = _mm_mul_ps(c12_00,FF);
281             vvdw             = _mm_add_ps(vvdw12,vvdw6);
282             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velecsum         = _mm_add_ps(velecsum,velec);
286             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
287
288             fscal            = _mm_add_ps(felec,fvdw);
289
290              /* Update vectorial force */
291             fix0             = _mm_macc_ps(dx00,fscal,fix0);
292             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
293             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
294
295             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
296             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
297             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_ps(iq1,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
308             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm_add_ps(velecsum,velec);
312
313             fscal            = felec;
314
315              /* Update vectorial force */
316             fix1             = _mm_macc_ps(dx10,fscal,fix1);
317             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
318             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
319
320             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
321             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
322             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq20             = _mm_mul_ps(iq2,jq0);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
333             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340              /* Update vectorial force */
341             fix2             = _mm_macc_ps(dx20,fscal,fix2);
342             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
343             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
344
345             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
346             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
347             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
348
349             fjptrA             = f+j_coord_offsetA;
350             fjptrB             = f+j_coord_offsetB;
351             fjptrC             = f+j_coord_offsetC;
352             fjptrD             = f+j_coord_offsetD;
353
354             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
355
356             /* Inner loop uses 140 flops */
357         }
358
359         if(jidx<j_index_end)
360         {
361
362             /* Get j neighbor index, and coordinate index */
363             jnrlistA         = jjnr[jidx];
364             jnrlistB         = jjnr[jidx+1];
365             jnrlistC         = jjnr[jidx+2];
366             jnrlistD         = jjnr[jidx+3];
367             /* Sign of each element will be negative for non-real atoms.
368              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
369              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
370              */
371             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
372             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
373             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
374             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
375             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
376             j_coord_offsetA  = DIM*jnrA;
377             j_coord_offsetB  = DIM*jnrB;
378             j_coord_offsetC  = DIM*jnrC;
379             j_coord_offsetD  = DIM*jnrD;
380
381             /* load j atom coordinates */
382             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
383                                               x+j_coord_offsetC,x+j_coord_offsetD,
384                                               &jx0,&jy0,&jz0);
385
386             /* Calculate displacement vector */
387             dx00             = _mm_sub_ps(ix0,jx0);
388             dy00             = _mm_sub_ps(iy0,jy0);
389             dz00             = _mm_sub_ps(iz0,jz0);
390             dx10             = _mm_sub_ps(ix1,jx0);
391             dy10             = _mm_sub_ps(iy1,jy0);
392             dz10             = _mm_sub_ps(iz1,jz0);
393             dx20             = _mm_sub_ps(ix2,jx0);
394             dy20             = _mm_sub_ps(iy2,jy0);
395             dz20             = _mm_sub_ps(iz2,jz0);
396
397             /* Calculate squared distance and things based on it */
398             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
399             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
400             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
401
402             rinv00           = gmx_mm_invsqrt_ps(rsq00);
403             rinv10           = gmx_mm_invsqrt_ps(rsq10);
404             rinv20           = gmx_mm_invsqrt_ps(rsq20);
405
406             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
407             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
408             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
409
410             /* Load parameters for j particles */
411             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
412                                                               charge+jnrC+0,charge+jnrD+0);
413             vdwjidx0A        = 2*vdwtype[jnrA+0];
414             vdwjidx0B        = 2*vdwtype[jnrB+0];
415             vdwjidx0C        = 2*vdwtype[jnrC+0];
416             vdwjidx0D        = 2*vdwtype[jnrD+0];
417
418             fjx0             = _mm_setzero_ps();
419             fjy0             = _mm_setzero_ps();
420             fjz0             = _mm_setzero_ps();
421
422             /**************************
423              * CALCULATE INTERACTIONS *
424              **************************/
425
426             r00              = _mm_mul_ps(rsq00,rinv00);
427             r00              = _mm_andnot_ps(dummy_mask,r00);
428
429             /* Compute parameters for interactions between i and j atoms */
430             qq00             = _mm_mul_ps(iq0,jq0);
431             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
432                                          vdwparam+vdwioffset0+vdwjidx0B,
433                                          vdwparam+vdwioffset0+vdwjidx0C,
434                                          vdwparam+vdwioffset0+vdwjidx0D,
435                                          &c6_00,&c12_00);
436
437             /* Calculate table index by multiplying r with table scale and truncate to integer */
438             rt               = _mm_mul_ps(r00,vftabscale);
439             vfitab           = _mm_cvttps_epi32(rt);
440 #ifdef __XOP__
441             vfeps            = _mm_frcz_ps(rt);
442 #else
443             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
444 #endif
445             twovfeps         = _mm_add_ps(vfeps,vfeps);
446             vfitab           = _mm_slli_epi32(vfitab,3);
447
448             /* REACTION-FIELD ELECTROSTATICS */
449             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
450             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
451
452             /* CUBIC SPLINE TABLE DISPERSION */
453             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
454             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
455             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
456             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
457             _MM_TRANSPOSE4_PS(Y,F,G,H);
458             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
459             VV               = _mm_macc_ps(vfeps,Fp,Y);
460             vvdw6            = _mm_mul_ps(c6_00,VV);
461             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
462             fvdw6            = _mm_mul_ps(c6_00,FF);
463
464             /* CUBIC SPLINE TABLE REPULSION */
465             vfitab           = _mm_add_epi32(vfitab,ifour);
466             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
467             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
468             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
469             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
470             _MM_TRANSPOSE4_PS(Y,F,G,H);
471             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
472             VV               = _mm_macc_ps(vfeps,Fp,Y);
473             vvdw12           = _mm_mul_ps(c12_00,VV);
474             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
475             fvdw12           = _mm_mul_ps(c12_00,FF);
476             vvdw             = _mm_add_ps(vvdw12,vvdw6);
477             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
478
479             /* Update potential sum for this i atom from the interaction with this j atom. */
480             velec            = _mm_andnot_ps(dummy_mask,velec);
481             velecsum         = _mm_add_ps(velecsum,velec);
482             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
483             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
484
485             fscal            = _mm_add_ps(felec,fvdw);
486
487             fscal            = _mm_andnot_ps(dummy_mask,fscal);
488
489              /* Update vectorial force */
490             fix0             = _mm_macc_ps(dx00,fscal,fix0);
491             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
492             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
493
494             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
495             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
496             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
497
498             /**************************
499              * CALCULATE INTERACTIONS *
500              **************************/
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq10             = _mm_mul_ps(iq1,jq0);
504
505             /* REACTION-FIELD ELECTROSTATICS */
506             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
507             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
508
509             /* Update potential sum for this i atom from the interaction with this j atom. */
510             velec            = _mm_andnot_ps(dummy_mask,velec);
511             velecsum         = _mm_add_ps(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_andnot_ps(dummy_mask,fscal);
516
517              /* Update vectorial force */
518             fix1             = _mm_macc_ps(dx10,fscal,fix1);
519             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
520             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
521
522             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
523             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
524             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             /* Compute parameters for interactions between i and j atoms */
531             qq20             = _mm_mul_ps(iq2,jq0);
532
533             /* REACTION-FIELD ELECTROSTATICS */
534             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
535             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
536
537             /* Update potential sum for this i atom from the interaction with this j atom. */
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540
541             fscal            = felec;
542
543             fscal            = _mm_andnot_ps(dummy_mask,fscal);
544
545              /* Update vectorial force */
546             fix2             = _mm_macc_ps(dx20,fscal,fix2);
547             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
548             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
549
550             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
551             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
552             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
553
554             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
555             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
556             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
557             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
558
559             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
560
561             /* Inner loop uses 141 flops */
562         }
563
564         /* End of innermost loop */
565
566         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
567                                               f+i_coord_offset,fshift+i_shift_offset);
568
569         ggid                        = gid[iidx];
570         /* Update potential energies */
571         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
572         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
573
574         /* Increment number of inner iterations */
575         inneriter                  += j_index_end - j_index_start;
576
577         /* Outer loop uses 20 flops */
578     }
579
580     /* Increment number of outer iterations */
581     outeriter        += nri;
582
583     /* Update outer/inner flops */
584
585     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*141);
586 }
587 /*
588  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
589  * Electrostatics interaction: ReactionField
590  * VdW interaction:            CubicSplineTable
591  * Geometry:                   Water3-Particle
592  * Calculate force/pot:        Force
593  */
594 void
595 nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_avx_128_fma_single
596                     (t_nblist * gmx_restrict                nlist,
597                      rvec * gmx_restrict                    xx,
598                      rvec * gmx_restrict                    ff,
599                      t_forcerec * gmx_restrict              fr,
600                      t_mdatoms * gmx_restrict               mdatoms,
601                      nb_kernel_data_t * gmx_restrict        kernel_data,
602                      t_nrnb * gmx_restrict                  nrnb)
603 {
604     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
605      * just 0 for non-waters.
606      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
607      * jnr indices corresponding to data put in the four positions in the SIMD register.
608      */
609     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
610     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
611     int              jnrA,jnrB,jnrC,jnrD;
612     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
613     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
614     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
615     real             rcutoff_scalar;
616     real             *shiftvec,*fshift,*x,*f;
617     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
618     real             scratch[4*DIM];
619     __m128           fscal,rcutoff,rcutoff2,jidxall;
620     int              vdwioffset0;
621     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
622     int              vdwioffset1;
623     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
624     int              vdwioffset2;
625     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
626     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
627     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
628     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
629     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
630     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
631     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
632     real             *charge;
633     int              nvdwtype;
634     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
635     int              *vdwtype;
636     real             *vdwparam;
637     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
638     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
639     __m128i          vfitab;
640     __m128i          ifour       = _mm_set1_epi32(4);
641     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
642     real             *vftab;
643     __m128           dummy_mask,cutoff_mask;
644     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
645     __m128           one     = _mm_set1_ps(1.0);
646     __m128           two     = _mm_set1_ps(2.0);
647     x                = xx[0];
648     f                = ff[0];
649
650     nri              = nlist->nri;
651     iinr             = nlist->iinr;
652     jindex           = nlist->jindex;
653     jjnr             = nlist->jjnr;
654     shiftidx         = nlist->shift;
655     gid              = nlist->gid;
656     shiftvec         = fr->shift_vec[0];
657     fshift           = fr->fshift[0];
658     facel            = _mm_set1_ps(fr->epsfac);
659     charge           = mdatoms->chargeA;
660     krf              = _mm_set1_ps(fr->ic->k_rf);
661     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
662     crf              = _mm_set1_ps(fr->ic->c_rf);
663     nvdwtype         = fr->ntype;
664     vdwparam         = fr->nbfp;
665     vdwtype          = mdatoms->typeA;
666
667     vftab            = kernel_data->table_vdw->data;
668     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
669
670     /* Setup water-specific parameters */
671     inr              = nlist->iinr[0];
672     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
673     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
674     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
675     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
676
677     /* Avoid stupid compiler warnings */
678     jnrA = jnrB = jnrC = jnrD = 0;
679     j_coord_offsetA = 0;
680     j_coord_offsetB = 0;
681     j_coord_offsetC = 0;
682     j_coord_offsetD = 0;
683
684     outeriter        = 0;
685     inneriter        = 0;
686
687     for(iidx=0;iidx<4*DIM;iidx++)
688     {
689         scratch[iidx] = 0.0;
690     }
691
692     /* Start outer loop over neighborlists */
693     for(iidx=0; iidx<nri; iidx++)
694     {
695         /* Load shift vector for this list */
696         i_shift_offset   = DIM*shiftidx[iidx];
697
698         /* Load limits for loop over neighbors */
699         j_index_start    = jindex[iidx];
700         j_index_end      = jindex[iidx+1];
701
702         /* Get outer coordinate index */
703         inr              = iinr[iidx];
704         i_coord_offset   = DIM*inr;
705
706         /* Load i particle coords and add shift vector */
707         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
708                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
709
710         fix0             = _mm_setzero_ps();
711         fiy0             = _mm_setzero_ps();
712         fiz0             = _mm_setzero_ps();
713         fix1             = _mm_setzero_ps();
714         fiy1             = _mm_setzero_ps();
715         fiz1             = _mm_setzero_ps();
716         fix2             = _mm_setzero_ps();
717         fiy2             = _mm_setzero_ps();
718         fiz2             = _mm_setzero_ps();
719
720         /* Start inner kernel loop */
721         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
722         {
723
724             /* Get j neighbor index, and coordinate index */
725             jnrA             = jjnr[jidx];
726             jnrB             = jjnr[jidx+1];
727             jnrC             = jjnr[jidx+2];
728             jnrD             = jjnr[jidx+3];
729             j_coord_offsetA  = DIM*jnrA;
730             j_coord_offsetB  = DIM*jnrB;
731             j_coord_offsetC  = DIM*jnrC;
732             j_coord_offsetD  = DIM*jnrD;
733
734             /* load j atom coordinates */
735             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
736                                               x+j_coord_offsetC,x+j_coord_offsetD,
737                                               &jx0,&jy0,&jz0);
738
739             /* Calculate displacement vector */
740             dx00             = _mm_sub_ps(ix0,jx0);
741             dy00             = _mm_sub_ps(iy0,jy0);
742             dz00             = _mm_sub_ps(iz0,jz0);
743             dx10             = _mm_sub_ps(ix1,jx0);
744             dy10             = _mm_sub_ps(iy1,jy0);
745             dz10             = _mm_sub_ps(iz1,jz0);
746             dx20             = _mm_sub_ps(ix2,jx0);
747             dy20             = _mm_sub_ps(iy2,jy0);
748             dz20             = _mm_sub_ps(iz2,jz0);
749
750             /* Calculate squared distance and things based on it */
751             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
752             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
753             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
754
755             rinv00           = gmx_mm_invsqrt_ps(rsq00);
756             rinv10           = gmx_mm_invsqrt_ps(rsq10);
757             rinv20           = gmx_mm_invsqrt_ps(rsq20);
758
759             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
760             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
761             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
762
763             /* Load parameters for j particles */
764             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
765                                                               charge+jnrC+0,charge+jnrD+0);
766             vdwjidx0A        = 2*vdwtype[jnrA+0];
767             vdwjidx0B        = 2*vdwtype[jnrB+0];
768             vdwjidx0C        = 2*vdwtype[jnrC+0];
769             vdwjidx0D        = 2*vdwtype[jnrD+0];
770
771             fjx0             = _mm_setzero_ps();
772             fjy0             = _mm_setzero_ps();
773             fjz0             = _mm_setzero_ps();
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             r00              = _mm_mul_ps(rsq00,rinv00);
780
781             /* Compute parameters for interactions between i and j atoms */
782             qq00             = _mm_mul_ps(iq0,jq0);
783             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
784                                          vdwparam+vdwioffset0+vdwjidx0B,
785                                          vdwparam+vdwioffset0+vdwjidx0C,
786                                          vdwparam+vdwioffset0+vdwjidx0D,
787                                          &c6_00,&c12_00);
788
789             /* Calculate table index by multiplying r with table scale and truncate to integer */
790             rt               = _mm_mul_ps(r00,vftabscale);
791             vfitab           = _mm_cvttps_epi32(rt);
792 #ifdef __XOP__
793             vfeps            = _mm_frcz_ps(rt);
794 #else
795             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
796 #endif
797             twovfeps         = _mm_add_ps(vfeps,vfeps);
798             vfitab           = _mm_slli_epi32(vfitab,3);
799
800             /* REACTION-FIELD ELECTROSTATICS */
801             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
802
803             /* CUBIC SPLINE TABLE DISPERSION */
804             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
805             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
806             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
807             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
808             _MM_TRANSPOSE4_PS(Y,F,G,H);
809             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
810             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
811             fvdw6            = _mm_mul_ps(c6_00,FF);
812
813             /* CUBIC SPLINE TABLE REPULSION */
814             vfitab           = _mm_add_epi32(vfitab,ifour);
815             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
816             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
817             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
818             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
819             _MM_TRANSPOSE4_PS(Y,F,G,H);
820             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
821             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
822             fvdw12           = _mm_mul_ps(c12_00,FF);
823             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
824
825             fscal            = _mm_add_ps(felec,fvdw);
826
827              /* Update vectorial force */
828             fix0             = _mm_macc_ps(dx00,fscal,fix0);
829             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
830             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
831
832             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
833             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
834             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             /* Compute parameters for interactions between i and j atoms */
841             qq10             = _mm_mul_ps(iq1,jq0);
842
843             /* REACTION-FIELD ELECTROSTATICS */
844             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
845
846             fscal            = felec;
847
848              /* Update vectorial force */
849             fix1             = _mm_macc_ps(dx10,fscal,fix1);
850             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
851             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
852
853             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
854             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
855             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
856
857             /**************************
858              * CALCULATE INTERACTIONS *
859              **************************/
860
861             /* Compute parameters for interactions between i and j atoms */
862             qq20             = _mm_mul_ps(iq2,jq0);
863
864             /* REACTION-FIELD ELECTROSTATICS */
865             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
866
867             fscal            = felec;
868
869              /* Update vectorial force */
870             fix2             = _mm_macc_ps(dx20,fscal,fix2);
871             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
872             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
873
874             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
875             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
876             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
877
878             fjptrA             = f+j_coord_offsetA;
879             fjptrB             = f+j_coord_offsetB;
880             fjptrC             = f+j_coord_offsetC;
881             fjptrD             = f+j_coord_offsetD;
882
883             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
884
885             /* Inner loop uses 117 flops */
886         }
887
888         if(jidx<j_index_end)
889         {
890
891             /* Get j neighbor index, and coordinate index */
892             jnrlistA         = jjnr[jidx];
893             jnrlistB         = jjnr[jidx+1];
894             jnrlistC         = jjnr[jidx+2];
895             jnrlistD         = jjnr[jidx+3];
896             /* Sign of each element will be negative for non-real atoms.
897              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
898              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
899              */
900             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
901             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
902             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
903             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
904             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
905             j_coord_offsetA  = DIM*jnrA;
906             j_coord_offsetB  = DIM*jnrB;
907             j_coord_offsetC  = DIM*jnrC;
908             j_coord_offsetD  = DIM*jnrD;
909
910             /* load j atom coordinates */
911             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
912                                               x+j_coord_offsetC,x+j_coord_offsetD,
913                                               &jx0,&jy0,&jz0);
914
915             /* Calculate displacement vector */
916             dx00             = _mm_sub_ps(ix0,jx0);
917             dy00             = _mm_sub_ps(iy0,jy0);
918             dz00             = _mm_sub_ps(iz0,jz0);
919             dx10             = _mm_sub_ps(ix1,jx0);
920             dy10             = _mm_sub_ps(iy1,jy0);
921             dz10             = _mm_sub_ps(iz1,jz0);
922             dx20             = _mm_sub_ps(ix2,jx0);
923             dy20             = _mm_sub_ps(iy2,jy0);
924             dz20             = _mm_sub_ps(iz2,jz0);
925
926             /* Calculate squared distance and things based on it */
927             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
928             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
929             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
930
931             rinv00           = gmx_mm_invsqrt_ps(rsq00);
932             rinv10           = gmx_mm_invsqrt_ps(rsq10);
933             rinv20           = gmx_mm_invsqrt_ps(rsq20);
934
935             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
936             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
937             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
938
939             /* Load parameters for j particles */
940             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
941                                                               charge+jnrC+0,charge+jnrD+0);
942             vdwjidx0A        = 2*vdwtype[jnrA+0];
943             vdwjidx0B        = 2*vdwtype[jnrB+0];
944             vdwjidx0C        = 2*vdwtype[jnrC+0];
945             vdwjidx0D        = 2*vdwtype[jnrD+0];
946
947             fjx0             = _mm_setzero_ps();
948             fjy0             = _mm_setzero_ps();
949             fjz0             = _mm_setzero_ps();
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             r00              = _mm_mul_ps(rsq00,rinv00);
956             r00              = _mm_andnot_ps(dummy_mask,r00);
957
958             /* Compute parameters for interactions between i and j atoms */
959             qq00             = _mm_mul_ps(iq0,jq0);
960             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
961                                          vdwparam+vdwioffset0+vdwjidx0B,
962                                          vdwparam+vdwioffset0+vdwjidx0C,
963                                          vdwparam+vdwioffset0+vdwjidx0D,
964                                          &c6_00,&c12_00);
965
966             /* Calculate table index by multiplying r with table scale and truncate to integer */
967             rt               = _mm_mul_ps(r00,vftabscale);
968             vfitab           = _mm_cvttps_epi32(rt);
969 #ifdef __XOP__
970             vfeps            = _mm_frcz_ps(rt);
971 #else
972             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
973 #endif
974             twovfeps         = _mm_add_ps(vfeps,vfeps);
975             vfitab           = _mm_slli_epi32(vfitab,3);
976
977             /* REACTION-FIELD ELECTROSTATICS */
978             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
979
980             /* CUBIC SPLINE TABLE DISPERSION */
981             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
982             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
983             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
984             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
985             _MM_TRANSPOSE4_PS(Y,F,G,H);
986             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
987             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
988             fvdw6            = _mm_mul_ps(c6_00,FF);
989
990             /* CUBIC SPLINE TABLE REPULSION */
991             vfitab           = _mm_add_epi32(vfitab,ifour);
992             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
993             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
994             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
995             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
996             _MM_TRANSPOSE4_PS(Y,F,G,H);
997             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
998             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
999             fvdw12           = _mm_mul_ps(c12_00,FF);
1000             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1001
1002             fscal            = _mm_add_ps(felec,fvdw);
1003
1004             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1005
1006              /* Update vectorial force */
1007             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1008             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1009             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1010
1011             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1012             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1013             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1014
1015             /**************************
1016              * CALCULATE INTERACTIONS *
1017              **************************/
1018
1019             /* Compute parameters for interactions between i and j atoms */
1020             qq10             = _mm_mul_ps(iq1,jq0);
1021
1022             /* REACTION-FIELD ELECTROSTATICS */
1023             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1024
1025             fscal            = felec;
1026
1027             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1028
1029              /* Update vectorial force */
1030             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1031             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1032             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1033
1034             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1035             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1036             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             /* Compute parameters for interactions between i and j atoms */
1043             qq20             = _mm_mul_ps(iq2,jq0);
1044
1045             /* REACTION-FIELD ELECTROSTATICS */
1046             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1047
1048             fscal            = felec;
1049
1050             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1051
1052              /* Update vectorial force */
1053             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1054             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1055             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1056
1057             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1058             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1059             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1060
1061             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1062             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1063             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1064             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1065
1066             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1067
1068             /* Inner loop uses 118 flops */
1069         }
1070
1071         /* End of innermost loop */
1072
1073         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1074                                               f+i_coord_offset,fshift+i_shift_offset);
1075
1076         /* Increment number of inner iterations */
1077         inneriter                  += j_index_end - j_index_start;
1078
1079         /* Outer loop uses 18 flops */
1080     }
1081
1082     /* Increment number of outer iterations */
1083     outeriter        += nri;
1084
1085     /* Update outer/inner flops */
1086
1087     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*118);
1088 }