Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162
163         /* Load parameters for i particles */
164         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_ps();
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm_invsqrt_ps(rsq00);
199
200             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
204                                                               charge+jnrC+0,charge+jnrD+0);
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             r00              = _mm_mul_ps(rsq00,rinv00);
215
216             /* Compute parameters for interactions between i and j atoms */
217             qq00             = _mm_mul_ps(iq0,jq0);
218             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
219                                          vdwparam+vdwioffset0+vdwjidx0B,
220                                          vdwparam+vdwioffset0+vdwjidx0C,
221                                          vdwparam+vdwioffset0+vdwjidx0D,
222                                          &c6_00,&c12_00);
223
224             /* Calculate table index by multiplying r with table scale and truncate to integer */
225             rt               = _mm_mul_ps(r00,vftabscale);
226             vfitab           = _mm_cvttps_epi32(rt);
227 #ifdef __XOP__
228             vfeps            = _mm_frcz_ps(rt);
229 #else
230             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
231 #endif
232             twovfeps         = _mm_add_ps(vfeps,vfeps);
233             vfitab           = _mm_slli_epi32(vfitab,3);
234
235             /* REACTION-FIELD ELECTROSTATICS */
236             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
237             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
238
239             /* CUBIC SPLINE TABLE DISPERSION */
240             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
241             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
242             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
243             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
244             _MM_TRANSPOSE4_PS(Y,F,G,H);
245             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
246             VV               = _mm_macc_ps(vfeps,Fp,Y);
247             vvdw6            = _mm_mul_ps(c6_00,VV);
248             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
249             fvdw6            = _mm_mul_ps(c6_00,FF);
250
251             /* CUBIC SPLINE TABLE REPULSION */
252             vfitab           = _mm_add_epi32(vfitab,ifour);
253             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
254             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
255             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
256             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
257             _MM_TRANSPOSE4_PS(Y,F,G,H);
258             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
259             VV               = _mm_macc_ps(vfeps,Fp,Y);
260             vvdw12           = _mm_mul_ps(c12_00,VV);
261             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
262             fvdw12           = _mm_mul_ps(c12_00,FF);
263             vvdw             = _mm_add_ps(vvdw12,vvdw6);
264             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm_add_ps(velecsum,velec);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272              /* Update vectorial force */
273             fix0             = _mm_macc_ps(dx00,fscal,fix0);
274             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
275             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
276
277             fjptrA             = f+j_coord_offsetA;
278             fjptrB             = f+j_coord_offsetB;
279             fjptrC             = f+j_coord_offsetC;
280             fjptrD             = f+j_coord_offsetD;
281             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
282                                                    _mm_mul_ps(dx00,fscal),
283                                                    _mm_mul_ps(dy00,fscal),
284                                                    _mm_mul_ps(dz00,fscal));
285
286             /* Inner loop uses 70 flops */
287         }
288
289         if(jidx<j_index_end)
290         {
291
292             /* Get j neighbor index, and coordinate index */
293             jnrlistA         = jjnr[jidx];
294             jnrlistB         = jjnr[jidx+1];
295             jnrlistC         = jjnr[jidx+2];
296             jnrlistD         = jjnr[jidx+3];
297             /* Sign of each element will be negative for non-real atoms.
298              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
299              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
300              */
301             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
302             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
303             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
304             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
305             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
306             j_coord_offsetA  = DIM*jnrA;
307             j_coord_offsetB  = DIM*jnrB;
308             j_coord_offsetC  = DIM*jnrC;
309             j_coord_offsetD  = DIM*jnrD;
310
311             /* load j atom coordinates */
312             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
313                                               x+j_coord_offsetC,x+j_coord_offsetD,
314                                               &jx0,&jy0,&jz0);
315
316             /* Calculate displacement vector */
317             dx00             = _mm_sub_ps(ix0,jx0);
318             dy00             = _mm_sub_ps(iy0,jy0);
319             dz00             = _mm_sub_ps(iz0,jz0);
320
321             /* Calculate squared distance and things based on it */
322             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
323
324             rinv00           = gmx_mm_invsqrt_ps(rsq00);
325
326             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
327
328             /* Load parameters for j particles */
329             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
330                                                               charge+jnrC+0,charge+jnrD+0);
331             vdwjidx0A        = 2*vdwtype[jnrA+0];
332             vdwjidx0B        = 2*vdwtype[jnrB+0];
333             vdwjidx0C        = 2*vdwtype[jnrC+0];
334             vdwjidx0D        = 2*vdwtype[jnrD+0];
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             r00              = _mm_mul_ps(rsq00,rinv00);
341             r00              = _mm_andnot_ps(dummy_mask,r00);
342
343             /* Compute parameters for interactions between i and j atoms */
344             qq00             = _mm_mul_ps(iq0,jq0);
345             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
346                                          vdwparam+vdwioffset0+vdwjidx0B,
347                                          vdwparam+vdwioffset0+vdwjidx0C,
348                                          vdwparam+vdwioffset0+vdwjidx0D,
349                                          &c6_00,&c12_00);
350
351             /* Calculate table index by multiplying r with table scale and truncate to integer */
352             rt               = _mm_mul_ps(r00,vftabscale);
353             vfitab           = _mm_cvttps_epi32(rt);
354 #ifdef __XOP__
355             vfeps            = _mm_frcz_ps(rt);
356 #else
357             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
358 #endif
359             twovfeps         = _mm_add_ps(vfeps,vfeps);
360             vfitab           = _mm_slli_epi32(vfitab,3);
361
362             /* REACTION-FIELD ELECTROSTATICS */
363             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
364             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
365
366             /* CUBIC SPLINE TABLE DISPERSION */
367             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
368             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
369             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
370             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
371             _MM_TRANSPOSE4_PS(Y,F,G,H);
372             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
373             VV               = _mm_macc_ps(vfeps,Fp,Y);
374             vvdw6            = _mm_mul_ps(c6_00,VV);
375             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
376             fvdw6            = _mm_mul_ps(c6_00,FF);
377
378             /* CUBIC SPLINE TABLE REPULSION */
379             vfitab           = _mm_add_epi32(vfitab,ifour);
380             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
381             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
382             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
383             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
384             _MM_TRANSPOSE4_PS(Y,F,G,H);
385             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
386             VV               = _mm_macc_ps(vfeps,Fp,Y);
387             vvdw12           = _mm_mul_ps(c12_00,VV);
388             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
389             fvdw12           = _mm_mul_ps(c12_00,FF);
390             vvdw             = _mm_add_ps(vvdw12,vvdw6);
391             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
392
393             /* Update potential sum for this i atom from the interaction with this j atom. */
394             velec            = _mm_andnot_ps(dummy_mask,velec);
395             velecsum         = _mm_add_ps(velecsum,velec);
396             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
397             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
398
399             fscal            = _mm_add_ps(felec,fvdw);
400
401             fscal            = _mm_andnot_ps(dummy_mask,fscal);
402
403              /* Update vectorial force */
404             fix0             = _mm_macc_ps(dx00,fscal,fix0);
405             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
406             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
407
408             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
409             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
410             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
411             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
412             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
413                                                    _mm_mul_ps(dx00,fscal),
414                                                    _mm_mul_ps(dy00,fscal),
415                                                    _mm_mul_ps(dz00,fscal));
416
417             /* Inner loop uses 71 flops */
418         }
419
420         /* End of innermost loop */
421
422         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
423                                               f+i_coord_offset,fshift+i_shift_offset);
424
425         ggid                        = gid[iidx];
426         /* Update potential energies */
427         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
428         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
429
430         /* Increment number of inner iterations */
431         inneriter                  += j_index_end - j_index_start;
432
433         /* Outer loop uses 9 flops */
434     }
435
436     /* Increment number of outer iterations */
437     outeriter        += nri;
438
439     /* Update outer/inner flops */
440
441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
442 }
443 /*
444  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
445  * Electrostatics interaction: ReactionField
446  * VdW interaction:            CubicSplineTable
447  * Geometry:                   Particle-Particle
448  * Calculate force/pot:        Force
449  */
450 void
451 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
452                     (t_nblist                    * gmx_restrict       nlist,
453                      rvec                        * gmx_restrict          xx,
454                      rvec                        * gmx_restrict          ff,
455                      t_forcerec                  * gmx_restrict          fr,
456                      t_mdatoms                   * gmx_restrict     mdatoms,
457                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
458                      t_nrnb                      * gmx_restrict        nrnb)
459 {
460     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
461      * just 0 for non-waters.
462      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
463      * jnr indices corresponding to data put in the four positions in the SIMD register.
464      */
465     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
466     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
467     int              jnrA,jnrB,jnrC,jnrD;
468     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
469     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
470     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
471     real             rcutoff_scalar;
472     real             *shiftvec,*fshift,*x,*f;
473     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
474     real             scratch[4*DIM];
475     __m128           fscal,rcutoff,rcutoff2,jidxall;
476     int              vdwioffset0;
477     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
478     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
479     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
481     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
482     real             *charge;
483     int              nvdwtype;
484     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
485     int              *vdwtype;
486     real             *vdwparam;
487     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
488     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
489     __m128i          vfitab;
490     __m128i          ifour       = _mm_set1_epi32(4);
491     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
492     real             *vftab;
493     __m128           dummy_mask,cutoff_mask;
494     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
495     __m128           one     = _mm_set1_ps(1.0);
496     __m128           two     = _mm_set1_ps(2.0);
497     x                = xx[0];
498     f                = ff[0];
499
500     nri              = nlist->nri;
501     iinr             = nlist->iinr;
502     jindex           = nlist->jindex;
503     jjnr             = nlist->jjnr;
504     shiftidx         = nlist->shift;
505     gid              = nlist->gid;
506     shiftvec         = fr->shift_vec[0];
507     fshift           = fr->fshift[0];
508     facel            = _mm_set1_ps(fr->epsfac);
509     charge           = mdatoms->chargeA;
510     krf              = _mm_set1_ps(fr->ic->k_rf);
511     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
512     crf              = _mm_set1_ps(fr->ic->c_rf);
513     nvdwtype         = fr->ntype;
514     vdwparam         = fr->nbfp;
515     vdwtype          = mdatoms->typeA;
516
517     vftab            = kernel_data->table_vdw->data;
518     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
519
520     /* Avoid stupid compiler warnings */
521     jnrA = jnrB = jnrC = jnrD = 0;
522     j_coord_offsetA = 0;
523     j_coord_offsetB = 0;
524     j_coord_offsetC = 0;
525     j_coord_offsetD = 0;
526
527     outeriter        = 0;
528     inneriter        = 0;
529
530     for(iidx=0;iidx<4*DIM;iidx++)
531     {
532         scratch[iidx] = 0.0;
533     }
534
535     /* Start outer loop over neighborlists */
536     for(iidx=0; iidx<nri; iidx++)
537     {
538         /* Load shift vector for this list */
539         i_shift_offset   = DIM*shiftidx[iidx];
540
541         /* Load limits for loop over neighbors */
542         j_index_start    = jindex[iidx];
543         j_index_end      = jindex[iidx+1];
544
545         /* Get outer coordinate index */
546         inr              = iinr[iidx];
547         i_coord_offset   = DIM*inr;
548
549         /* Load i particle coords and add shift vector */
550         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
551
552         fix0             = _mm_setzero_ps();
553         fiy0             = _mm_setzero_ps();
554         fiz0             = _mm_setzero_ps();
555
556         /* Load parameters for i particles */
557         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
558         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
559
560         /* Start inner kernel loop */
561         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
562         {
563
564             /* Get j neighbor index, and coordinate index */
565             jnrA             = jjnr[jidx];
566             jnrB             = jjnr[jidx+1];
567             jnrC             = jjnr[jidx+2];
568             jnrD             = jjnr[jidx+3];
569             j_coord_offsetA  = DIM*jnrA;
570             j_coord_offsetB  = DIM*jnrB;
571             j_coord_offsetC  = DIM*jnrC;
572             j_coord_offsetD  = DIM*jnrD;
573
574             /* load j atom coordinates */
575             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
576                                               x+j_coord_offsetC,x+j_coord_offsetD,
577                                               &jx0,&jy0,&jz0);
578
579             /* Calculate displacement vector */
580             dx00             = _mm_sub_ps(ix0,jx0);
581             dy00             = _mm_sub_ps(iy0,jy0);
582             dz00             = _mm_sub_ps(iz0,jz0);
583
584             /* Calculate squared distance and things based on it */
585             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
586
587             rinv00           = gmx_mm_invsqrt_ps(rsq00);
588
589             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
590
591             /* Load parameters for j particles */
592             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
593                                                               charge+jnrC+0,charge+jnrD+0);
594             vdwjidx0A        = 2*vdwtype[jnrA+0];
595             vdwjidx0B        = 2*vdwtype[jnrB+0];
596             vdwjidx0C        = 2*vdwtype[jnrC+0];
597             vdwjidx0D        = 2*vdwtype[jnrD+0];
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             r00              = _mm_mul_ps(rsq00,rinv00);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq00             = _mm_mul_ps(iq0,jq0);
607             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
608                                          vdwparam+vdwioffset0+vdwjidx0B,
609                                          vdwparam+vdwioffset0+vdwjidx0C,
610                                          vdwparam+vdwioffset0+vdwjidx0D,
611                                          &c6_00,&c12_00);
612
613             /* Calculate table index by multiplying r with table scale and truncate to integer */
614             rt               = _mm_mul_ps(r00,vftabscale);
615             vfitab           = _mm_cvttps_epi32(rt);
616 #ifdef __XOP__
617             vfeps            = _mm_frcz_ps(rt);
618 #else
619             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
620 #endif
621             twovfeps         = _mm_add_ps(vfeps,vfeps);
622             vfitab           = _mm_slli_epi32(vfitab,3);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
626
627             /* CUBIC SPLINE TABLE DISPERSION */
628             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
629             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
630             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
631             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
632             _MM_TRANSPOSE4_PS(Y,F,G,H);
633             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
634             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
635             fvdw6            = _mm_mul_ps(c6_00,FF);
636
637             /* CUBIC SPLINE TABLE REPULSION */
638             vfitab           = _mm_add_epi32(vfitab,ifour);
639             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
640             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
641             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
642             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
643             _MM_TRANSPOSE4_PS(Y,F,G,H);
644             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
645             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
646             fvdw12           = _mm_mul_ps(c12_00,FF);
647             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
648
649             fscal            = _mm_add_ps(felec,fvdw);
650
651              /* Update vectorial force */
652             fix0             = _mm_macc_ps(dx00,fscal,fix0);
653             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
654             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
655
656             fjptrA             = f+j_coord_offsetA;
657             fjptrB             = f+j_coord_offsetB;
658             fjptrC             = f+j_coord_offsetC;
659             fjptrD             = f+j_coord_offsetD;
660             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
661                                                    _mm_mul_ps(dx00,fscal),
662                                                    _mm_mul_ps(dy00,fscal),
663                                                    _mm_mul_ps(dz00,fscal));
664
665             /* Inner loop uses 57 flops */
666         }
667
668         if(jidx<j_index_end)
669         {
670
671             /* Get j neighbor index, and coordinate index */
672             jnrlistA         = jjnr[jidx];
673             jnrlistB         = jjnr[jidx+1];
674             jnrlistC         = jjnr[jidx+2];
675             jnrlistD         = jjnr[jidx+3];
676             /* Sign of each element will be negative for non-real atoms.
677              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
678              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
679              */
680             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
681             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
682             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
683             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
684             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
685             j_coord_offsetA  = DIM*jnrA;
686             j_coord_offsetB  = DIM*jnrB;
687             j_coord_offsetC  = DIM*jnrC;
688             j_coord_offsetD  = DIM*jnrD;
689
690             /* load j atom coordinates */
691             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
692                                               x+j_coord_offsetC,x+j_coord_offsetD,
693                                               &jx0,&jy0,&jz0);
694
695             /* Calculate displacement vector */
696             dx00             = _mm_sub_ps(ix0,jx0);
697             dy00             = _mm_sub_ps(iy0,jy0);
698             dz00             = _mm_sub_ps(iz0,jz0);
699
700             /* Calculate squared distance and things based on it */
701             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
702
703             rinv00           = gmx_mm_invsqrt_ps(rsq00);
704
705             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
706
707             /* Load parameters for j particles */
708             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
709                                                               charge+jnrC+0,charge+jnrD+0);
710             vdwjidx0A        = 2*vdwtype[jnrA+0];
711             vdwjidx0B        = 2*vdwtype[jnrB+0];
712             vdwjidx0C        = 2*vdwtype[jnrC+0];
713             vdwjidx0D        = 2*vdwtype[jnrD+0];
714
715             /**************************
716              * CALCULATE INTERACTIONS *
717              **************************/
718
719             r00              = _mm_mul_ps(rsq00,rinv00);
720             r00              = _mm_andnot_ps(dummy_mask,r00);
721
722             /* Compute parameters for interactions between i and j atoms */
723             qq00             = _mm_mul_ps(iq0,jq0);
724             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
725                                          vdwparam+vdwioffset0+vdwjidx0B,
726                                          vdwparam+vdwioffset0+vdwjidx0C,
727                                          vdwparam+vdwioffset0+vdwjidx0D,
728                                          &c6_00,&c12_00);
729
730             /* Calculate table index by multiplying r with table scale and truncate to integer */
731             rt               = _mm_mul_ps(r00,vftabscale);
732             vfitab           = _mm_cvttps_epi32(rt);
733 #ifdef __XOP__
734             vfeps            = _mm_frcz_ps(rt);
735 #else
736             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
737 #endif
738             twovfeps         = _mm_add_ps(vfeps,vfeps);
739             vfitab           = _mm_slli_epi32(vfitab,3);
740
741             /* REACTION-FIELD ELECTROSTATICS */
742             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
743
744             /* CUBIC SPLINE TABLE DISPERSION */
745             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
746             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
747             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
748             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
749             _MM_TRANSPOSE4_PS(Y,F,G,H);
750             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
751             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
752             fvdw6            = _mm_mul_ps(c6_00,FF);
753
754             /* CUBIC SPLINE TABLE REPULSION */
755             vfitab           = _mm_add_epi32(vfitab,ifour);
756             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
757             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
758             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
759             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
760             _MM_TRANSPOSE4_PS(Y,F,G,H);
761             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
762             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
763             fvdw12           = _mm_mul_ps(c12_00,FF);
764             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
765
766             fscal            = _mm_add_ps(felec,fvdw);
767
768             fscal            = _mm_andnot_ps(dummy_mask,fscal);
769
770              /* Update vectorial force */
771             fix0             = _mm_macc_ps(dx00,fscal,fix0);
772             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
773             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
774
775             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
776             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
777             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
778             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
779             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
780                                                    _mm_mul_ps(dx00,fscal),
781                                                    _mm_mul_ps(dy00,fscal),
782                                                    _mm_mul_ps(dz00,fscal));
783
784             /* Inner loop uses 58 flops */
785         }
786
787         /* End of innermost loop */
788
789         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
790                                               f+i_coord_offset,fshift+i_shift_offset);
791
792         /* Increment number of inner iterations */
793         inneriter                  += j_index_end - j_index_start;
794
795         /* Outer loop uses 7 flops */
796     }
797
798     /* Increment number of outer iterations */
799     outeriter        += nri;
800
801     /* Update outer/inner flops */
802
803     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
804 }