Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* Avoid stupid compiler warnings */
130     jnrA = jnrB = jnrC = jnrD = 0;
131     j_coord_offsetA = 0;
132     j_coord_offsetB = 0;
133     j_coord_offsetC = 0;
134     j_coord_offsetD = 0;
135
136     outeriter        = 0;
137     inneriter        = 0;
138
139     for(iidx=0;iidx<4*DIM;iidx++)
140     {
141         scratch[iidx] = 0.0;
142     }
143
144     /* Start outer loop over neighborlists */
145     for(iidx=0; iidx<nri; iidx++)
146     {
147         /* Load shift vector for this list */
148         i_shift_offset   = DIM*shiftidx[iidx];
149
150         /* Load limits for loop over neighbors */
151         j_index_start    = jindex[iidx];
152         j_index_end      = jindex[iidx+1];
153
154         /* Get outer coordinate index */
155         inr              = iinr[iidx];
156         i_coord_offset   = DIM*inr;
157
158         /* Load i particle coords and add shift vector */
159         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
160
161         fix0             = _mm_setzero_ps();
162         fiy0             = _mm_setzero_ps();
163         fiz0             = _mm_setzero_ps();
164
165         /* Load parameters for i particles */
166         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
167         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
168
169         /* Reset potential sums */
170         velecsum         = _mm_setzero_ps();
171         vvdwsum          = _mm_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             j_coord_offsetA  = DIM*jnrA;
183             j_coord_offsetB  = DIM*jnrB;
184             j_coord_offsetC  = DIM*jnrC;
185             j_coord_offsetD  = DIM*jnrD;
186
187             /* load j atom coordinates */
188             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
189                                               x+j_coord_offsetC,x+j_coord_offsetD,
190                                               &jx0,&jy0,&jz0);
191
192             /* Calculate displacement vector */
193             dx00             = _mm_sub_ps(ix0,jx0);
194             dy00             = _mm_sub_ps(iy0,jy0);
195             dz00             = _mm_sub_ps(iz0,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
199
200             rinv00           = gmx_mm_invsqrt_ps(rsq00);
201
202             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
203
204             /* Load parameters for j particles */
205             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
206                                                               charge+jnrC+0,charge+jnrD+0);
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             r00              = _mm_mul_ps(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm_mul_ps(iq0,jq0);
220             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
221                                          vdwparam+vdwioffset0+vdwjidx0B,
222                                          vdwparam+vdwioffset0+vdwjidx0C,
223                                          vdwparam+vdwioffset0+vdwjidx0D,
224                                          &c6_00,&c12_00);
225
226             /* Calculate table index by multiplying r with table scale and truncate to integer */
227             rt               = _mm_mul_ps(r00,vftabscale);
228             vfitab           = _mm_cvttps_epi32(rt);
229 #ifdef __XOP__
230             vfeps            = _mm_frcz_ps(rt);
231 #else
232             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
233 #endif
234             twovfeps         = _mm_add_ps(vfeps,vfeps);
235             vfitab           = _mm_slli_epi32(vfitab,3);
236
237             /* REACTION-FIELD ELECTROSTATICS */
238             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
239             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
240
241             /* CUBIC SPLINE TABLE DISPERSION */
242             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
243             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
244             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
245             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
246             _MM_TRANSPOSE4_PS(Y,F,G,H);
247             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
248             VV               = _mm_macc_ps(vfeps,Fp,Y);
249             vvdw6            = _mm_mul_ps(c6_00,VV);
250             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
251             fvdw6            = _mm_mul_ps(c6_00,FF);
252
253             /* CUBIC SPLINE TABLE REPULSION */
254             vfitab           = _mm_add_epi32(vfitab,ifour);
255             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
256             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
257             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
258             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
259             _MM_TRANSPOSE4_PS(Y,F,G,H);
260             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
261             VV               = _mm_macc_ps(vfeps,Fp,Y);
262             vvdw12           = _mm_mul_ps(c12_00,VV);
263             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
264             fvdw12           = _mm_mul_ps(c12_00,FF);
265             vvdw             = _mm_add_ps(vvdw12,vvdw6);
266             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velecsum         = _mm_add_ps(velecsum,velec);
270             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
271
272             fscal            = _mm_add_ps(felec,fvdw);
273
274              /* Update vectorial force */
275             fix0             = _mm_macc_ps(dx00,fscal,fix0);
276             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
277             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
284                                                    _mm_mul_ps(dx00,fscal),
285                                                    _mm_mul_ps(dy00,fscal),
286                                                    _mm_mul_ps(dz00,fscal));
287
288             /* Inner loop uses 70 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             /* Sign of each element will be negative for non-real atoms.
300              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
301              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
302              */
303             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
304             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
305             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
306             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
307             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
308             j_coord_offsetA  = DIM*jnrA;
309             j_coord_offsetB  = DIM*jnrB;
310             j_coord_offsetC  = DIM*jnrC;
311             j_coord_offsetD  = DIM*jnrD;
312
313             /* load j atom coordinates */
314             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
315                                               x+j_coord_offsetC,x+j_coord_offsetD,
316                                               &jx0,&jy0,&jz0);
317
318             /* Calculate displacement vector */
319             dx00             = _mm_sub_ps(ix0,jx0);
320             dy00             = _mm_sub_ps(iy0,jy0);
321             dz00             = _mm_sub_ps(iz0,jz0);
322
323             /* Calculate squared distance and things based on it */
324             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
325
326             rinv00           = gmx_mm_invsqrt_ps(rsq00);
327
328             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
329
330             /* Load parameters for j particles */
331             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
332                                                               charge+jnrC+0,charge+jnrD+0);
333             vdwjidx0A        = 2*vdwtype[jnrA+0];
334             vdwjidx0B        = 2*vdwtype[jnrB+0];
335             vdwjidx0C        = 2*vdwtype[jnrC+0];
336             vdwjidx0D        = 2*vdwtype[jnrD+0];
337
338             /**************************
339              * CALCULATE INTERACTIONS *
340              **************************/
341
342             r00              = _mm_mul_ps(rsq00,rinv00);
343             r00              = _mm_andnot_ps(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm_mul_ps(iq0,jq0);
347             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
348                                          vdwparam+vdwioffset0+vdwjidx0B,
349                                          vdwparam+vdwioffset0+vdwjidx0C,
350                                          vdwparam+vdwioffset0+vdwjidx0D,
351                                          &c6_00,&c12_00);
352
353             /* Calculate table index by multiplying r with table scale and truncate to integer */
354             rt               = _mm_mul_ps(r00,vftabscale);
355             vfitab           = _mm_cvttps_epi32(rt);
356 #ifdef __XOP__
357             vfeps            = _mm_frcz_ps(rt);
358 #else
359             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
360 #endif
361             twovfeps         = _mm_add_ps(vfeps,vfeps);
362             vfitab           = _mm_slli_epi32(vfitab,3);
363
364             /* REACTION-FIELD ELECTROSTATICS */
365             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
366             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
367
368             /* CUBIC SPLINE TABLE DISPERSION */
369             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
370             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
371             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
372             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
373             _MM_TRANSPOSE4_PS(Y,F,G,H);
374             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
375             VV               = _mm_macc_ps(vfeps,Fp,Y);
376             vvdw6            = _mm_mul_ps(c6_00,VV);
377             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
378             fvdw6            = _mm_mul_ps(c6_00,FF);
379
380             /* CUBIC SPLINE TABLE REPULSION */
381             vfitab           = _mm_add_epi32(vfitab,ifour);
382             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
383             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
384             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
385             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
386             _MM_TRANSPOSE4_PS(Y,F,G,H);
387             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
388             VV               = _mm_macc_ps(vfeps,Fp,Y);
389             vvdw12           = _mm_mul_ps(c12_00,VV);
390             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
391             fvdw12           = _mm_mul_ps(c12_00,FF);
392             vvdw             = _mm_add_ps(vvdw12,vvdw6);
393             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velec            = _mm_andnot_ps(dummy_mask,velec);
397             velecsum         = _mm_add_ps(velecsum,velec);
398             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
399             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
400
401             fscal            = _mm_add_ps(felec,fvdw);
402
403             fscal            = _mm_andnot_ps(dummy_mask,fscal);
404
405              /* Update vectorial force */
406             fix0             = _mm_macc_ps(dx00,fscal,fix0);
407             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
408             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
409
410             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
411             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
412             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
413             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
414             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
415                                                    _mm_mul_ps(dx00,fscal),
416                                                    _mm_mul_ps(dy00,fscal),
417                                                    _mm_mul_ps(dz00,fscal));
418
419             /* Inner loop uses 71 flops */
420         }
421
422         /* End of innermost loop */
423
424         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
425                                               f+i_coord_offset,fshift+i_shift_offset);
426
427         ggid                        = gid[iidx];
428         /* Update potential energies */
429         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
430         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
431
432         /* Increment number of inner iterations */
433         inneriter                  += j_index_end - j_index_start;
434
435         /* Outer loop uses 9 flops */
436     }
437
438     /* Increment number of outer iterations */
439     outeriter        += nri;
440
441     /* Update outer/inner flops */
442
443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
444 }
445 /*
446  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
447  * Electrostatics interaction: ReactionField
448  * VdW interaction:            CubicSplineTable
449  * Geometry:                   Particle-Particle
450  * Calculate force/pot:        Force
451  */
452 void
453 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_128_fma_single
454                     (t_nblist                    * gmx_restrict       nlist,
455                      rvec                        * gmx_restrict          xx,
456                      rvec                        * gmx_restrict          ff,
457                      t_forcerec                  * gmx_restrict          fr,
458                      t_mdatoms                   * gmx_restrict     mdatoms,
459                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
460                      t_nrnb                      * gmx_restrict        nrnb)
461 {
462     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
463      * just 0 for non-waters.
464      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
465      * jnr indices corresponding to data put in the four positions in the SIMD register.
466      */
467     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
468     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
469     int              jnrA,jnrB,jnrC,jnrD;
470     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
471     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
472     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
473     real             rcutoff_scalar;
474     real             *shiftvec,*fshift,*x,*f;
475     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
476     real             scratch[4*DIM];
477     __m128           fscal,rcutoff,rcutoff2,jidxall;
478     int              vdwioffset0;
479     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
480     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
481     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
482     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
483     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
484     real             *charge;
485     int              nvdwtype;
486     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
487     int              *vdwtype;
488     real             *vdwparam;
489     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
490     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
491     __m128i          vfitab;
492     __m128i          ifour       = _mm_set1_epi32(4);
493     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
494     real             *vftab;
495     __m128           dummy_mask,cutoff_mask;
496     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
497     __m128           one     = _mm_set1_ps(1.0);
498     __m128           two     = _mm_set1_ps(2.0);
499     x                = xx[0];
500     f                = ff[0];
501
502     nri              = nlist->nri;
503     iinr             = nlist->iinr;
504     jindex           = nlist->jindex;
505     jjnr             = nlist->jjnr;
506     shiftidx         = nlist->shift;
507     gid              = nlist->gid;
508     shiftvec         = fr->shift_vec[0];
509     fshift           = fr->fshift[0];
510     facel            = _mm_set1_ps(fr->epsfac);
511     charge           = mdatoms->chargeA;
512     krf              = _mm_set1_ps(fr->ic->k_rf);
513     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
514     crf              = _mm_set1_ps(fr->ic->c_rf);
515     nvdwtype         = fr->ntype;
516     vdwparam         = fr->nbfp;
517     vdwtype          = mdatoms->typeA;
518
519     vftab            = kernel_data->table_vdw->data;
520     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
521
522     /* Avoid stupid compiler warnings */
523     jnrA = jnrB = jnrC = jnrD = 0;
524     j_coord_offsetA = 0;
525     j_coord_offsetB = 0;
526     j_coord_offsetC = 0;
527     j_coord_offsetD = 0;
528
529     outeriter        = 0;
530     inneriter        = 0;
531
532     for(iidx=0;iidx<4*DIM;iidx++)
533     {
534         scratch[iidx] = 0.0;
535     }
536
537     /* Start outer loop over neighborlists */
538     for(iidx=0; iidx<nri; iidx++)
539     {
540         /* Load shift vector for this list */
541         i_shift_offset   = DIM*shiftidx[iidx];
542
543         /* Load limits for loop over neighbors */
544         j_index_start    = jindex[iidx];
545         j_index_end      = jindex[iidx+1];
546
547         /* Get outer coordinate index */
548         inr              = iinr[iidx];
549         i_coord_offset   = DIM*inr;
550
551         /* Load i particle coords and add shift vector */
552         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
553
554         fix0             = _mm_setzero_ps();
555         fiy0             = _mm_setzero_ps();
556         fiz0             = _mm_setzero_ps();
557
558         /* Load parameters for i particles */
559         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
560         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
561
562         /* Start inner kernel loop */
563         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
564         {
565
566             /* Get j neighbor index, and coordinate index */
567             jnrA             = jjnr[jidx];
568             jnrB             = jjnr[jidx+1];
569             jnrC             = jjnr[jidx+2];
570             jnrD             = jjnr[jidx+3];
571             j_coord_offsetA  = DIM*jnrA;
572             j_coord_offsetB  = DIM*jnrB;
573             j_coord_offsetC  = DIM*jnrC;
574             j_coord_offsetD  = DIM*jnrD;
575
576             /* load j atom coordinates */
577             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
578                                               x+j_coord_offsetC,x+j_coord_offsetD,
579                                               &jx0,&jy0,&jz0);
580
581             /* Calculate displacement vector */
582             dx00             = _mm_sub_ps(ix0,jx0);
583             dy00             = _mm_sub_ps(iy0,jy0);
584             dz00             = _mm_sub_ps(iz0,jz0);
585
586             /* Calculate squared distance and things based on it */
587             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
588
589             rinv00           = gmx_mm_invsqrt_ps(rsq00);
590
591             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
592
593             /* Load parameters for j particles */
594             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
595                                                               charge+jnrC+0,charge+jnrD+0);
596             vdwjidx0A        = 2*vdwtype[jnrA+0];
597             vdwjidx0B        = 2*vdwtype[jnrB+0];
598             vdwjidx0C        = 2*vdwtype[jnrC+0];
599             vdwjidx0D        = 2*vdwtype[jnrD+0];
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             r00              = _mm_mul_ps(rsq00,rinv00);
606
607             /* Compute parameters for interactions between i and j atoms */
608             qq00             = _mm_mul_ps(iq0,jq0);
609             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
610                                          vdwparam+vdwioffset0+vdwjidx0B,
611                                          vdwparam+vdwioffset0+vdwjidx0C,
612                                          vdwparam+vdwioffset0+vdwjidx0D,
613                                          &c6_00,&c12_00);
614
615             /* Calculate table index by multiplying r with table scale and truncate to integer */
616             rt               = _mm_mul_ps(r00,vftabscale);
617             vfitab           = _mm_cvttps_epi32(rt);
618 #ifdef __XOP__
619             vfeps            = _mm_frcz_ps(rt);
620 #else
621             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
622 #endif
623             twovfeps         = _mm_add_ps(vfeps,vfeps);
624             vfitab           = _mm_slli_epi32(vfitab,3);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
628
629             /* CUBIC SPLINE TABLE DISPERSION */
630             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
631             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
632             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
633             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
634             _MM_TRANSPOSE4_PS(Y,F,G,H);
635             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
636             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
637             fvdw6            = _mm_mul_ps(c6_00,FF);
638
639             /* CUBIC SPLINE TABLE REPULSION */
640             vfitab           = _mm_add_epi32(vfitab,ifour);
641             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
642             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
643             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
644             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
645             _MM_TRANSPOSE4_PS(Y,F,G,H);
646             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
647             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
648             fvdw12           = _mm_mul_ps(c12_00,FF);
649             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
650
651             fscal            = _mm_add_ps(felec,fvdw);
652
653              /* Update vectorial force */
654             fix0             = _mm_macc_ps(dx00,fscal,fix0);
655             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
656             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
657
658             fjptrA             = f+j_coord_offsetA;
659             fjptrB             = f+j_coord_offsetB;
660             fjptrC             = f+j_coord_offsetC;
661             fjptrD             = f+j_coord_offsetD;
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
663                                                    _mm_mul_ps(dx00,fscal),
664                                                    _mm_mul_ps(dy00,fscal),
665                                                    _mm_mul_ps(dz00,fscal));
666
667             /* Inner loop uses 57 flops */
668         }
669
670         if(jidx<j_index_end)
671         {
672
673             /* Get j neighbor index, and coordinate index */
674             jnrlistA         = jjnr[jidx];
675             jnrlistB         = jjnr[jidx+1];
676             jnrlistC         = jjnr[jidx+2];
677             jnrlistD         = jjnr[jidx+3];
678             /* Sign of each element will be negative for non-real atoms.
679              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
680              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
681              */
682             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
683             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
684             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
685             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
686             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               x+j_coord_offsetC,x+j_coord_offsetD,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm_sub_ps(ix0,jx0);
699             dy00             = _mm_sub_ps(iy0,jy0);
700             dz00             = _mm_sub_ps(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
704
705             rinv00           = gmx_mm_invsqrt_ps(rsq00);
706
707             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
711                                                               charge+jnrC+0,charge+jnrD+0);
712             vdwjidx0A        = 2*vdwtype[jnrA+0];
713             vdwjidx0B        = 2*vdwtype[jnrB+0];
714             vdwjidx0C        = 2*vdwtype[jnrC+0];
715             vdwjidx0D        = 2*vdwtype[jnrD+0];
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             r00              = _mm_mul_ps(rsq00,rinv00);
722             r00              = _mm_andnot_ps(dummy_mask,r00);
723
724             /* Compute parameters for interactions between i and j atoms */
725             qq00             = _mm_mul_ps(iq0,jq0);
726             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
727                                          vdwparam+vdwioffset0+vdwjidx0B,
728                                          vdwparam+vdwioffset0+vdwjidx0C,
729                                          vdwparam+vdwioffset0+vdwjidx0D,
730                                          &c6_00,&c12_00);
731
732             /* Calculate table index by multiplying r with table scale and truncate to integer */
733             rt               = _mm_mul_ps(r00,vftabscale);
734             vfitab           = _mm_cvttps_epi32(rt);
735 #ifdef __XOP__
736             vfeps            = _mm_frcz_ps(rt);
737 #else
738             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
739 #endif
740             twovfeps         = _mm_add_ps(vfeps,vfeps);
741             vfitab           = _mm_slli_epi32(vfitab,3);
742
743             /* REACTION-FIELD ELECTROSTATICS */
744             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
745
746             /* CUBIC SPLINE TABLE DISPERSION */
747             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
748             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
749             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
750             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
751             _MM_TRANSPOSE4_PS(Y,F,G,H);
752             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
753             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
754             fvdw6            = _mm_mul_ps(c6_00,FF);
755
756             /* CUBIC SPLINE TABLE REPULSION */
757             vfitab           = _mm_add_epi32(vfitab,ifour);
758             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
759             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
760             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
761             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
762             _MM_TRANSPOSE4_PS(Y,F,G,H);
763             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
764             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
765             fvdw12           = _mm_mul_ps(c12_00,FF);
766             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
767
768             fscal            = _mm_add_ps(felec,fvdw);
769
770             fscal            = _mm_andnot_ps(dummy_mask,fscal);
771
772              /* Update vectorial force */
773             fix0             = _mm_macc_ps(dx00,fscal,fix0);
774             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
775             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
776
777             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
778             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
779             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
780             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
781             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
782                                                    _mm_mul_ps(dx00,fscal),
783                                                    _mm_mul_ps(dy00,fscal),
784                                                    _mm_mul_ps(dz00,fscal));
785
786             /* Inner loop uses 58 flops */
787         }
788
789         /* End of innermost loop */
790
791         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
792                                               f+i_coord_offset,fshift+i_shift_offset);
793
794         /* Increment number of inner iterations */
795         inneriter                  += j_index_end - j_index_start;
796
797         /* Outer loop uses 7 flops */
798     }
799
800     /* Increment number of outer iterations */
801     outeriter        += nri;
802
803     /* Update outer/inner flops */
804
805     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
806 }