Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105     real             rswitch_scalar,d_scalar;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_ps(fr->ic->k_rf);
124     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138     rcutoff_scalar   = fr->rcoulomb;
139     rcutoff          = _mm_set1_ps(rcutoff_scalar);
140     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
141
142     rswitch_scalar   = fr->rvdw_switch;
143     rswitch          = _mm_set1_ps(rswitch_scalar);
144     /* Setup switch parameters */
145     d_scalar         = rcutoff_scalar-rswitch_scalar;
146     d                = _mm_set1_ps(d_scalar);
147     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
148     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
151     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154     /* Avoid stupid compiler warnings */
155     jnrA = jnrB = jnrC = jnrD = 0;
156     j_coord_offsetA = 0;
157     j_coord_offsetB = 0;
158     j_coord_offsetC = 0;
159     j_coord_offsetD = 0;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     for(iidx=0;iidx<4*DIM;iidx++)
165     {
166         scratch[iidx] = 0.0;
167     }
168
169     /* Start outer loop over neighborlists */
170     for(iidx=0; iidx<nri; iidx++)
171     {
172         /* Load shift vector for this list */
173         i_shift_offset   = DIM*shiftidx[iidx];
174
175         /* Load limits for loop over neighbors */
176         j_index_start    = jindex[iidx];
177         j_index_end      = jindex[iidx+1];
178
179         /* Get outer coordinate index */
180         inr              = iinr[iidx];
181         i_coord_offset   = DIM*inr;
182
183         /* Load i particle coords and add shift vector */
184         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
185                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
186
187         fix0             = _mm_setzero_ps();
188         fiy0             = _mm_setzero_ps();
189         fiz0             = _mm_setzero_ps();
190         fix1             = _mm_setzero_ps();
191         fiy1             = _mm_setzero_ps();
192         fiz1             = _mm_setzero_ps();
193         fix2             = _mm_setzero_ps();
194         fiy2             = _mm_setzero_ps();
195         fiz2             = _mm_setzero_ps();
196
197         /* Reset potential sums */
198         velecsum         = _mm_setzero_ps();
199         vvdwsum          = _mm_setzero_ps();
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203         {
204
205             /* Get j neighbor index, and coordinate index */
206             jnrA             = jjnr[jidx];
207             jnrB             = jjnr[jidx+1];
208             jnrC             = jjnr[jidx+2];
209             jnrD             = jjnr[jidx+3];
210             j_coord_offsetA  = DIM*jnrA;
211             j_coord_offsetB  = DIM*jnrB;
212             j_coord_offsetC  = DIM*jnrC;
213             j_coord_offsetD  = DIM*jnrD;
214
215             /* load j atom coordinates */
216             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
217                                               x+j_coord_offsetC,x+j_coord_offsetD,
218                                               &jx0,&jy0,&jz0);
219
220             /* Calculate displacement vector */
221             dx00             = _mm_sub_ps(ix0,jx0);
222             dy00             = _mm_sub_ps(iy0,jy0);
223             dz00             = _mm_sub_ps(iz0,jz0);
224             dx10             = _mm_sub_ps(ix1,jx0);
225             dy10             = _mm_sub_ps(iy1,jy0);
226             dz10             = _mm_sub_ps(iz1,jz0);
227             dx20             = _mm_sub_ps(ix2,jx0);
228             dy20             = _mm_sub_ps(iy2,jy0);
229             dz20             = _mm_sub_ps(iz2,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
235
236             rinv00           = gmx_mm_invsqrt_ps(rsq00);
237             rinv10           = gmx_mm_invsqrt_ps(rsq10);
238             rinv20           = gmx_mm_invsqrt_ps(rsq20);
239
240             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
241             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
242             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
243
244             /* Load parameters for j particles */
245             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246                                                               charge+jnrC+0,charge+jnrD+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251
252             fjx0             = _mm_setzero_ps();
253             fjy0             = _mm_setzero_ps();
254             fjz0             = _mm_setzero_ps();
255
256             /**************************
257              * CALCULATE INTERACTIONS *
258              **************************/
259
260             if (gmx_mm_any_lt(rsq00,rcutoff2))
261             {
262
263             r00              = _mm_mul_ps(rsq00,rinv00);
264
265             /* Compute parameters for interactions between i and j atoms */
266             qq00             = _mm_mul_ps(iq0,jq0);
267             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
268                                          vdwparam+vdwioffset0+vdwjidx0B,
269                                          vdwparam+vdwioffset0+vdwjidx0C,
270                                          vdwparam+vdwioffset0+vdwjidx0D,
271                                          &c6_00,&c12_00);
272
273             /* REACTION-FIELD ELECTROSTATICS */
274             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
275             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
276
277             /* LENNARD-JONES DISPERSION/REPULSION */
278
279             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
280             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
281             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
282             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
283             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
284
285             d                = _mm_sub_ps(r00,rswitch);
286             d                = _mm_max_ps(d,_mm_setzero_ps());
287             d2               = _mm_mul_ps(d,d);
288             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
289
290             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
291
292             /* Evaluate switch function */
293             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
294             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
295             vvdw             = _mm_mul_ps(vvdw,sw);
296             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
297
298             /* Update potential sum for this i atom from the interaction with this j atom. */
299             velec            = _mm_and_ps(velec,cutoff_mask);
300             velecsum         = _mm_add_ps(velecsum,velec);
301             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
302             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm_add_ps(felec,fvdw);
305
306             fscal            = _mm_and_ps(fscal,cutoff_mask);
307
308              /* Update vectorial force */
309             fix0             = _mm_macc_ps(dx00,fscal,fix0);
310             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
311             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
312
313             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
314             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
315             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
316
317             }
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq10,rcutoff2))
324             {
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm_mul_ps(iq1,jq0);
328
329             /* REACTION-FIELD ELECTROSTATICS */
330             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
331             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
332
333             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm_and_ps(velec,cutoff_mask);
337             velecsum         = _mm_add_ps(velecsum,velec);
338
339             fscal            = felec;
340
341             fscal            = _mm_and_ps(fscal,cutoff_mask);
342
343              /* Update vectorial force */
344             fix1             = _mm_macc_ps(dx10,fscal,fix1);
345             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
346             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
347
348             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
349             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
350             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_mm_any_lt(rsq20,rcutoff2))
359             {
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq20             = _mm_mul_ps(iq2,jq0);
363
364             /* REACTION-FIELD ELECTROSTATICS */
365             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
366             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
367
368             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm_and_ps(velec,cutoff_mask);
372             velecsum         = _mm_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm_and_ps(fscal,cutoff_mask);
377
378              /* Update vectorial force */
379             fix2             = _mm_macc_ps(dx20,fscal,fix2);
380             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
381             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
382
383             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
384             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
385             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
386
387             }
388
389             fjptrA             = f+j_coord_offsetA;
390             fjptrB             = f+j_coord_offsetB;
391             fjptrC             = f+j_coord_offsetC;
392             fjptrD             = f+j_coord_offsetD;
393
394             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
395
396             /* Inner loop uses 151 flops */
397         }
398
399         if(jidx<j_index_end)
400         {
401
402             /* Get j neighbor index, and coordinate index */
403             jnrlistA         = jjnr[jidx];
404             jnrlistB         = jjnr[jidx+1];
405             jnrlistC         = jjnr[jidx+2];
406             jnrlistD         = jjnr[jidx+3];
407             /* Sign of each element will be negative for non-real atoms.
408              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
409              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
410              */
411             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
412             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
413             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
414             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
415             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
416             j_coord_offsetA  = DIM*jnrA;
417             j_coord_offsetB  = DIM*jnrB;
418             j_coord_offsetC  = DIM*jnrC;
419             j_coord_offsetD  = DIM*jnrD;
420
421             /* load j atom coordinates */
422             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
423                                               x+j_coord_offsetC,x+j_coord_offsetD,
424                                               &jx0,&jy0,&jz0);
425
426             /* Calculate displacement vector */
427             dx00             = _mm_sub_ps(ix0,jx0);
428             dy00             = _mm_sub_ps(iy0,jy0);
429             dz00             = _mm_sub_ps(iz0,jz0);
430             dx10             = _mm_sub_ps(ix1,jx0);
431             dy10             = _mm_sub_ps(iy1,jy0);
432             dz10             = _mm_sub_ps(iz1,jz0);
433             dx20             = _mm_sub_ps(ix2,jx0);
434             dy20             = _mm_sub_ps(iy2,jy0);
435             dz20             = _mm_sub_ps(iz2,jz0);
436
437             /* Calculate squared distance and things based on it */
438             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
439             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
440             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
441
442             rinv00           = gmx_mm_invsqrt_ps(rsq00);
443             rinv10           = gmx_mm_invsqrt_ps(rsq10);
444             rinv20           = gmx_mm_invsqrt_ps(rsq20);
445
446             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
447             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
448             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
449
450             /* Load parameters for j particles */
451             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
452                                                               charge+jnrC+0,charge+jnrD+0);
453             vdwjidx0A        = 2*vdwtype[jnrA+0];
454             vdwjidx0B        = 2*vdwtype[jnrB+0];
455             vdwjidx0C        = 2*vdwtype[jnrC+0];
456             vdwjidx0D        = 2*vdwtype[jnrD+0];
457
458             fjx0             = _mm_setzero_ps();
459             fjy0             = _mm_setzero_ps();
460             fjz0             = _mm_setzero_ps();
461
462             /**************************
463              * CALCULATE INTERACTIONS *
464              **************************/
465
466             if (gmx_mm_any_lt(rsq00,rcutoff2))
467             {
468
469             r00              = _mm_mul_ps(rsq00,rinv00);
470             r00              = _mm_andnot_ps(dummy_mask,r00);
471
472             /* Compute parameters for interactions between i and j atoms */
473             qq00             = _mm_mul_ps(iq0,jq0);
474             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
475                                          vdwparam+vdwioffset0+vdwjidx0B,
476                                          vdwparam+vdwioffset0+vdwjidx0C,
477                                          vdwparam+vdwioffset0+vdwjidx0D,
478                                          &c6_00,&c12_00);
479
480             /* REACTION-FIELD ELECTROSTATICS */
481             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
482             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
483
484             /* LENNARD-JONES DISPERSION/REPULSION */
485
486             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
487             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
488             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
489             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
490             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
491
492             d                = _mm_sub_ps(r00,rswitch);
493             d                = _mm_max_ps(d,_mm_setzero_ps());
494             d2               = _mm_mul_ps(d,d);
495             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
496
497             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
498
499             /* Evaluate switch function */
500             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
501             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
502             vvdw             = _mm_mul_ps(vvdw,sw);
503             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
504
505             /* Update potential sum for this i atom from the interaction with this j atom. */
506             velec            = _mm_and_ps(velec,cutoff_mask);
507             velec            = _mm_andnot_ps(dummy_mask,velec);
508             velecsum         = _mm_add_ps(velecsum,velec);
509             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
510             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
511             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
512
513             fscal            = _mm_add_ps(felec,fvdw);
514
515             fscal            = _mm_and_ps(fscal,cutoff_mask);
516
517             fscal            = _mm_andnot_ps(dummy_mask,fscal);
518
519              /* Update vectorial force */
520             fix0             = _mm_macc_ps(dx00,fscal,fix0);
521             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
522             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
523
524             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
525             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
526             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
527
528             }
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq10,rcutoff2))
535             {
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq10             = _mm_mul_ps(iq1,jq0);
539
540             /* REACTION-FIELD ELECTROSTATICS */
541             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
542             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
543
544             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm_and_ps(velec,cutoff_mask);
548             velec            = _mm_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm_add_ps(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm_and_ps(fscal,cutoff_mask);
554
555             fscal            = _mm_andnot_ps(dummy_mask,fscal);
556
557              /* Update vectorial force */
558             fix1             = _mm_macc_ps(dx10,fscal,fix1);
559             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
560             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
561
562             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
563             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
564             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq20,rcutoff2))
573             {
574
575             /* Compute parameters for interactions between i and j atoms */
576             qq20             = _mm_mul_ps(iq2,jq0);
577
578             /* REACTION-FIELD ELECTROSTATICS */
579             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
580             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
581
582             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
583
584             /* Update potential sum for this i atom from the interaction with this j atom. */
585             velec            = _mm_and_ps(velec,cutoff_mask);
586             velec            = _mm_andnot_ps(dummy_mask,velec);
587             velecsum         = _mm_add_ps(velecsum,velec);
588
589             fscal            = felec;
590
591             fscal            = _mm_and_ps(fscal,cutoff_mask);
592
593             fscal            = _mm_andnot_ps(dummy_mask,fscal);
594
595              /* Update vectorial force */
596             fix2             = _mm_macc_ps(dx20,fscal,fix2);
597             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
598             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
599
600             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
601             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
602             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
603
604             }
605
606             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
607             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
608             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
609             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
610
611             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
612
613             /* Inner loop uses 152 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
619                                               f+i_coord_offset,fshift+i_shift_offset);
620
621         ggid                        = gid[iidx];
622         /* Update potential energies */
623         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
624         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
625
626         /* Increment number of inner iterations */
627         inneriter                  += j_index_end - j_index_start;
628
629         /* Outer loop uses 20 flops */
630     }
631
632     /* Increment number of outer iterations */
633     outeriter        += nri;
634
635     /* Update outer/inner flops */
636
637     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*152);
638 }
639 /*
640  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
641  * Electrostatics interaction: ReactionField
642  * VdW interaction:            LennardJones
643  * Geometry:                   Water3-Particle
644  * Calculate force/pot:        Force
645  */
646 void
647 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
648                     (t_nblist                    * gmx_restrict       nlist,
649                      rvec                        * gmx_restrict          xx,
650                      rvec                        * gmx_restrict          ff,
651                      t_forcerec                  * gmx_restrict          fr,
652                      t_mdatoms                   * gmx_restrict     mdatoms,
653                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
654                      t_nrnb                      * gmx_restrict        nrnb)
655 {
656     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
657      * just 0 for non-waters.
658      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
659      * jnr indices corresponding to data put in the four positions in the SIMD register.
660      */
661     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
662     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
663     int              jnrA,jnrB,jnrC,jnrD;
664     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
665     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
666     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
667     real             rcutoff_scalar;
668     real             *shiftvec,*fshift,*x,*f;
669     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
670     real             scratch[4*DIM];
671     __m128           fscal,rcutoff,rcutoff2,jidxall;
672     int              vdwioffset0;
673     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
674     int              vdwioffset1;
675     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
676     int              vdwioffset2;
677     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
678     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
679     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
680     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
681     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
682     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
683     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
684     real             *charge;
685     int              nvdwtype;
686     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
687     int              *vdwtype;
688     real             *vdwparam;
689     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
690     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
691     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
692     real             rswitch_scalar,d_scalar;
693     __m128           dummy_mask,cutoff_mask;
694     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
695     __m128           one     = _mm_set1_ps(1.0);
696     __m128           two     = _mm_set1_ps(2.0);
697     x                = xx[0];
698     f                = ff[0];
699
700     nri              = nlist->nri;
701     iinr             = nlist->iinr;
702     jindex           = nlist->jindex;
703     jjnr             = nlist->jjnr;
704     shiftidx         = nlist->shift;
705     gid              = nlist->gid;
706     shiftvec         = fr->shift_vec[0];
707     fshift           = fr->fshift[0];
708     facel            = _mm_set1_ps(fr->epsfac);
709     charge           = mdatoms->chargeA;
710     krf              = _mm_set1_ps(fr->ic->k_rf);
711     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
712     crf              = _mm_set1_ps(fr->ic->c_rf);
713     nvdwtype         = fr->ntype;
714     vdwparam         = fr->nbfp;
715     vdwtype          = mdatoms->typeA;
716
717     /* Setup water-specific parameters */
718     inr              = nlist->iinr[0];
719     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
720     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
721     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
722     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
723
724     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
725     rcutoff_scalar   = fr->rcoulomb;
726     rcutoff          = _mm_set1_ps(rcutoff_scalar);
727     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
728
729     rswitch_scalar   = fr->rvdw_switch;
730     rswitch          = _mm_set1_ps(rswitch_scalar);
731     /* Setup switch parameters */
732     d_scalar         = rcutoff_scalar-rswitch_scalar;
733     d                = _mm_set1_ps(d_scalar);
734     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
735     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
736     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
737     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
738     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
739     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
740
741     /* Avoid stupid compiler warnings */
742     jnrA = jnrB = jnrC = jnrD = 0;
743     j_coord_offsetA = 0;
744     j_coord_offsetB = 0;
745     j_coord_offsetC = 0;
746     j_coord_offsetD = 0;
747
748     outeriter        = 0;
749     inneriter        = 0;
750
751     for(iidx=0;iidx<4*DIM;iidx++)
752     {
753         scratch[iidx] = 0.0;
754     }
755
756     /* Start outer loop over neighborlists */
757     for(iidx=0; iidx<nri; iidx++)
758     {
759         /* Load shift vector for this list */
760         i_shift_offset   = DIM*shiftidx[iidx];
761
762         /* Load limits for loop over neighbors */
763         j_index_start    = jindex[iidx];
764         j_index_end      = jindex[iidx+1];
765
766         /* Get outer coordinate index */
767         inr              = iinr[iidx];
768         i_coord_offset   = DIM*inr;
769
770         /* Load i particle coords and add shift vector */
771         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
772                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
773
774         fix0             = _mm_setzero_ps();
775         fiy0             = _mm_setzero_ps();
776         fiz0             = _mm_setzero_ps();
777         fix1             = _mm_setzero_ps();
778         fiy1             = _mm_setzero_ps();
779         fiz1             = _mm_setzero_ps();
780         fix2             = _mm_setzero_ps();
781         fiy2             = _mm_setzero_ps();
782         fiz2             = _mm_setzero_ps();
783
784         /* Start inner kernel loop */
785         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
786         {
787
788             /* Get j neighbor index, and coordinate index */
789             jnrA             = jjnr[jidx];
790             jnrB             = jjnr[jidx+1];
791             jnrC             = jjnr[jidx+2];
792             jnrD             = jjnr[jidx+3];
793             j_coord_offsetA  = DIM*jnrA;
794             j_coord_offsetB  = DIM*jnrB;
795             j_coord_offsetC  = DIM*jnrC;
796             j_coord_offsetD  = DIM*jnrD;
797
798             /* load j atom coordinates */
799             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
800                                               x+j_coord_offsetC,x+j_coord_offsetD,
801                                               &jx0,&jy0,&jz0);
802
803             /* Calculate displacement vector */
804             dx00             = _mm_sub_ps(ix0,jx0);
805             dy00             = _mm_sub_ps(iy0,jy0);
806             dz00             = _mm_sub_ps(iz0,jz0);
807             dx10             = _mm_sub_ps(ix1,jx0);
808             dy10             = _mm_sub_ps(iy1,jy0);
809             dz10             = _mm_sub_ps(iz1,jz0);
810             dx20             = _mm_sub_ps(ix2,jx0);
811             dy20             = _mm_sub_ps(iy2,jy0);
812             dz20             = _mm_sub_ps(iz2,jz0);
813
814             /* Calculate squared distance and things based on it */
815             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
816             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
817             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
818
819             rinv00           = gmx_mm_invsqrt_ps(rsq00);
820             rinv10           = gmx_mm_invsqrt_ps(rsq10);
821             rinv20           = gmx_mm_invsqrt_ps(rsq20);
822
823             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
824             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
825             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
826
827             /* Load parameters for j particles */
828             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
829                                                               charge+jnrC+0,charge+jnrD+0);
830             vdwjidx0A        = 2*vdwtype[jnrA+0];
831             vdwjidx0B        = 2*vdwtype[jnrB+0];
832             vdwjidx0C        = 2*vdwtype[jnrC+0];
833             vdwjidx0D        = 2*vdwtype[jnrD+0];
834
835             fjx0             = _mm_setzero_ps();
836             fjy0             = _mm_setzero_ps();
837             fjz0             = _mm_setzero_ps();
838
839             /**************************
840              * CALCULATE INTERACTIONS *
841              **************************/
842
843             if (gmx_mm_any_lt(rsq00,rcutoff2))
844             {
845
846             r00              = _mm_mul_ps(rsq00,rinv00);
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq00             = _mm_mul_ps(iq0,jq0);
850             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
851                                          vdwparam+vdwioffset0+vdwjidx0B,
852                                          vdwparam+vdwioffset0+vdwjidx0C,
853                                          vdwparam+vdwioffset0+vdwjidx0D,
854                                          &c6_00,&c12_00);
855
856             /* REACTION-FIELD ELECTROSTATICS */
857             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
858
859             /* LENNARD-JONES DISPERSION/REPULSION */
860
861             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
862             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
863             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
864             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
865             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
866
867             d                = _mm_sub_ps(r00,rswitch);
868             d                = _mm_max_ps(d,_mm_setzero_ps());
869             d2               = _mm_mul_ps(d,d);
870             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
871
872             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
873
874             /* Evaluate switch function */
875             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
876             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
877             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
878
879             fscal            = _mm_add_ps(felec,fvdw);
880
881             fscal            = _mm_and_ps(fscal,cutoff_mask);
882
883              /* Update vectorial force */
884             fix0             = _mm_macc_ps(dx00,fscal,fix0);
885             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
886             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
887
888             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
889             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
890             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
891
892             }
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             if (gmx_mm_any_lt(rsq10,rcutoff2))
899             {
900
901             /* Compute parameters for interactions between i and j atoms */
902             qq10             = _mm_mul_ps(iq1,jq0);
903
904             /* REACTION-FIELD ELECTROSTATICS */
905             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
906
907             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
908
909             fscal            = felec;
910
911             fscal            = _mm_and_ps(fscal,cutoff_mask);
912
913              /* Update vectorial force */
914             fix1             = _mm_macc_ps(dx10,fscal,fix1);
915             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
916             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
917
918             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
919             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
920             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
921
922             }
923
924             /**************************
925              * CALCULATE INTERACTIONS *
926              **************************/
927
928             if (gmx_mm_any_lt(rsq20,rcutoff2))
929             {
930
931             /* Compute parameters for interactions between i and j atoms */
932             qq20             = _mm_mul_ps(iq2,jq0);
933
934             /* REACTION-FIELD ELECTROSTATICS */
935             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
936
937             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
938
939             fscal            = felec;
940
941             fscal            = _mm_and_ps(fscal,cutoff_mask);
942
943              /* Update vectorial force */
944             fix2             = _mm_macc_ps(dx20,fscal,fix2);
945             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
946             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
947
948             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
949             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
950             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
951
952             }
953
954             fjptrA             = f+j_coord_offsetA;
955             fjptrB             = f+j_coord_offsetB;
956             fjptrC             = f+j_coord_offsetC;
957             fjptrD             = f+j_coord_offsetD;
958
959             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
960
961             /* Inner loop uses 130 flops */
962         }
963
964         if(jidx<j_index_end)
965         {
966
967             /* Get j neighbor index, and coordinate index */
968             jnrlistA         = jjnr[jidx];
969             jnrlistB         = jjnr[jidx+1];
970             jnrlistC         = jjnr[jidx+2];
971             jnrlistD         = jjnr[jidx+3];
972             /* Sign of each element will be negative for non-real atoms.
973              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
974              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
975              */
976             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
977             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
978             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
979             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
980             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
981             j_coord_offsetA  = DIM*jnrA;
982             j_coord_offsetB  = DIM*jnrB;
983             j_coord_offsetC  = DIM*jnrC;
984             j_coord_offsetD  = DIM*jnrD;
985
986             /* load j atom coordinates */
987             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
988                                               x+j_coord_offsetC,x+j_coord_offsetD,
989                                               &jx0,&jy0,&jz0);
990
991             /* Calculate displacement vector */
992             dx00             = _mm_sub_ps(ix0,jx0);
993             dy00             = _mm_sub_ps(iy0,jy0);
994             dz00             = _mm_sub_ps(iz0,jz0);
995             dx10             = _mm_sub_ps(ix1,jx0);
996             dy10             = _mm_sub_ps(iy1,jy0);
997             dz10             = _mm_sub_ps(iz1,jz0);
998             dx20             = _mm_sub_ps(ix2,jx0);
999             dy20             = _mm_sub_ps(iy2,jy0);
1000             dz20             = _mm_sub_ps(iz2,jz0);
1001
1002             /* Calculate squared distance and things based on it */
1003             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1004             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1005             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1006
1007             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1008             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1009             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1010
1011             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1012             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1013             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1014
1015             /* Load parameters for j particles */
1016             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1017                                                               charge+jnrC+0,charge+jnrD+0);
1018             vdwjidx0A        = 2*vdwtype[jnrA+0];
1019             vdwjidx0B        = 2*vdwtype[jnrB+0];
1020             vdwjidx0C        = 2*vdwtype[jnrC+0];
1021             vdwjidx0D        = 2*vdwtype[jnrD+0];
1022
1023             fjx0             = _mm_setzero_ps();
1024             fjy0             = _mm_setzero_ps();
1025             fjz0             = _mm_setzero_ps();
1026
1027             /**************************
1028              * CALCULATE INTERACTIONS *
1029              **************************/
1030
1031             if (gmx_mm_any_lt(rsq00,rcutoff2))
1032             {
1033
1034             r00              = _mm_mul_ps(rsq00,rinv00);
1035             r00              = _mm_andnot_ps(dummy_mask,r00);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq00             = _mm_mul_ps(iq0,jq0);
1039             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1040                                          vdwparam+vdwioffset0+vdwjidx0B,
1041                                          vdwparam+vdwioffset0+vdwjidx0C,
1042                                          vdwparam+vdwioffset0+vdwjidx0D,
1043                                          &c6_00,&c12_00);
1044
1045             /* REACTION-FIELD ELECTROSTATICS */
1046             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1047
1048             /* LENNARD-JONES DISPERSION/REPULSION */
1049
1050             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1051             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1052             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1053             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1054             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1055
1056             d                = _mm_sub_ps(r00,rswitch);
1057             d                = _mm_max_ps(d,_mm_setzero_ps());
1058             d2               = _mm_mul_ps(d,d);
1059             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1060
1061             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1062
1063             /* Evaluate switch function */
1064             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1065             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1066             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1067
1068             fscal            = _mm_add_ps(felec,fvdw);
1069
1070             fscal            = _mm_and_ps(fscal,cutoff_mask);
1071
1072             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1073
1074              /* Update vectorial force */
1075             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1076             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1077             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1078
1079             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1080             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1081             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1082
1083             }
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             if (gmx_mm_any_lt(rsq10,rcutoff2))
1090             {
1091
1092             /* Compute parameters for interactions between i and j atoms */
1093             qq10             = _mm_mul_ps(iq1,jq0);
1094
1095             /* REACTION-FIELD ELECTROSTATICS */
1096             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1097
1098             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1099
1100             fscal            = felec;
1101
1102             fscal            = _mm_and_ps(fscal,cutoff_mask);
1103
1104             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1105
1106              /* Update vectorial force */
1107             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1108             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1109             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1110
1111             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1112             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1113             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1114
1115             }
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             if (gmx_mm_any_lt(rsq20,rcutoff2))
1122             {
1123
1124             /* Compute parameters for interactions between i and j atoms */
1125             qq20             = _mm_mul_ps(iq2,jq0);
1126
1127             /* REACTION-FIELD ELECTROSTATICS */
1128             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1129
1130             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm_and_ps(fscal,cutoff_mask);
1135
1136             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1137
1138              /* Update vectorial force */
1139             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1140             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1141             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1142
1143             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1144             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1145             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1146
1147             }
1148
1149             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1150             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1151             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1152             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1153
1154             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1155
1156             /* Inner loop uses 131 flops */
1157         }
1158
1159         /* End of innermost loop */
1160
1161         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1162                                               f+i_coord_offset,fshift+i_shift_offset);
1163
1164         /* Increment number of inner iterations */
1165         inneriter                  += j_index_end - j_index_start;
1166
1167         /* Outer loop uses 18 flops */
1168     }
1169
1170     /* Increment number of outer iterations */
1171     outeriter        += nri;
1172
1173     /* Update outer/inner flops */
1174
1175     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1176 }