Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwioffset1;
85     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
86     int              vdwioffset2;
87     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
92     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
93     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
100     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
101     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
102     real             rswitch_scalar,d_scalar;
103     __m128           dummy_mask,cutoff_mask;
104     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
105     __m128           one     = _mm_set1_ps(1.0);
106     __m128           two     = _mm_set1_ps(2.0);
107     x                = xx[0];
108     f                = ff[0];
109
110     nri              = nlist->nri;
111     iinr             = nlist->iinr;
112     jindex           = nlist->jindex;
113     jjnr             = nlist->jjnr;
114     shiftidx         = nlist->shift;
115     gid              = nlist->gid;
116     shiftvec         = fr->shift_vec[0];
117     fshift           = fr->fshift[0];
118     facel            = _mm_set1_ps(fr->ic->epsfac);
119     charge           = mdatoms->chargeA;
120     krf              = _mm_set1_ps(fr->ic->k_rf);
121     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
122     crf              = _mm_set1_ps(fr->ic->c_rf);
123     nvdwtype         = fr->ntype;
124     vdwparam         = fr->nbfp;
125     vdwtype          = mdatoms->typeA;
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
130     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
131     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
132     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->ic->rcoulomb;
136     rcutoff          = _mm_set1_ps(rcutoff_scalar);
137     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
138
139     rswitch_scalar   = fr->ic->rvdw_switch;
140     rswitch          = _mm_set1_ps(rswitch_scalar);
141     /* Setup switch parameters */
142     d_scalar         = rcutoff_scalar-rswitch_scalar;
143     d                = _mm_set1_ps(d_scalar);
144     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
145     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
146     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
147     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
148     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150
151     /* Avoid stupid compiler warnings */
152     jnrA = jnrB = jnrC = jnrD = 0;
153     j_coord_offsetA = 0;
154     j_coord_offsetB = 0;
155     j_coord_offsetC = 0;
156     j_coord_offsetD = 0;
157
158     outeriter        = 0;
159     inneriter        = 0;
160
161     for(iidx=0;iidx<4*DIM;iidx++)
162     {
163         scratch[iidx] = 0.0;
164     }
165
166     /* Start outer loop over neighborlists */
167     for(iidx=0; iidx<nri; iidx++)
168     {
169         /* Load shift vector for this list */
170         i_shift_offset   = DIM*shiftidx[iidx];
171
172         /* Load limits for loop over neighbors */
173         j_index_start    = jindex[iidx];
174         j_index_end      = jindex[iidx+1];
175
176         /* Get outer coordinate index */
177         inr              = iinr[iidx];
178         i_coord_offset   = DIM*inr;
179
180         /* Load i particle coords and add shift vector */
181         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
182                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
183
184         fix0             = _mm_setzero_ps();
185         fiy0             = _mm_setzero_ps();
186         fiz0             = _mm_setzero_ps();
187         fix1             = _mm_setzero_ps();
188         fiy1             = _mm_setzero_ps();
189         fiz1             = _mm_setzero_ps();
190         fix2             = _mm_setzero_ps();
191         fiy2             = _mm_setzero_ps();
192         fiz2             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232
233             rinv00           = avx128fma_invsqrt_f(rsq00);
234             rinv10           = avx128fma_invsqrt_f(rsq10);
235             rinv20           = avx128fma_invsqrt_f(rsq20);
236
237             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
238             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
240
241             /* Load parameters for j particles */
242             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243                                                               charge+jnrC+0,charge+jnrD+0);
244             vdwjidx0A        = 2*vdwtype[jnrA+0];
245             vdwjidx0B        = 2*vdwtype[jnrB+0];
246             vdwjidx0C        = 2*vdwtype[jnrC+0];
247             vdwjidx0D        = 2*vdwtype[jnrD+0];
248
249             fjx0             = _mm_setzero_ps();
250             fjy0             = _mm_setzero_ps();
251             fjz0             = _mm_setzero_ps();
252
253             /**************************
254              * CALCULATE INTERACTIONS *
255              **************************/
256
257             if (gmx_mm_any_lt(rsq00,rcutoff2))
258             {
259
260             r00              = _mm_mul_ps(rsq00,rinv00);
261
262             /* Compute parameters for interactions between i and j atoms */
263             qq00             = _mm_mul_ps(iq0,jq0);
264             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
265                                          vdwparam+vdwioffset0+vdwjidx0B,
266                                          vdwparam+vdwioffset0+vdwjidx0C,
267                                          vdwparam+vdwioffset0+vdwjidx0D,
268                                          &c6_00,&c12_00);
269
270             /* REACTION-FIELD ELECTROSTATICS */
271             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
272             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
273
274             /* LENNARD-JONES DISPERSION/REPULSION */
275
276             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
277             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
278             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
279             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
280             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
281
282             d                = _mm_sub_ps(r00,rswitch);
283             d                = _mm_max_ps(d,_mm_setzero_ps());
284             d2               = _mm_mul_ps(d,d);
285             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
286
287             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
288
289             /* Evaluate switch function */
290             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
291             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
292             vvdw             = _mm_mul_ps(vvdw,sw);
293             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             velec            = _mm_and_ps(velec,cutoff_mask);
297             velecsum         = _mm_add_ps(velecsum,velec);
298             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
299             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
300
301             fscal            = _mm_add_ps(felec,fvdw);
302
303             fscal            = _mm_and_ps(fscal,cutoff_mask);
304
305              /* Update vectorial force */
306             fix0             = _mm_macc_ps(dx00,fscal,fix0);
307             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
308             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
309
310             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
311             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
312             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
313
314             }
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm_any_lt(rsq10,rcutoff2))
321             {
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq10             = _mm_mul_ps(iq1,jq0);
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
328             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
329
330             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm_and_ps(velec,cutoff_mask);
334             velecsum         = _mm_add_ps(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm_and_ps(fscal,cutoff_mask);
339
340              /* Update vectorial force */
341             fix1             = _mm_macc_ps(dx10,fscal,fix1);
342             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
343             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
344
345             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
346             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
347             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq20,rcutoff2))
356             {
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq20             = _mm_mul_ps(iq2,jq0);
360
361             /* REACTION-FIELD ELECTROSTATICS */
362             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
363             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
364
365             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm_and_ps(velec,cutoff_mask);
369             velecsum         = _mm_add_ps(velecsum,velec);
370
371             fscal            = felec;
372
373             fscal            = _mm_and_ps(fscal,cutoff_mask);
374
375              /* Update vectorial force */
376             fix2             = _mm_macc_ps(dx20,fscal,fix2);
377             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
378             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
379
380             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
381             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
382             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
383
384             }
385
386             fjptrA             = f+j_coord_offsetA;
387             fjptrB             = f+j_coord_offsetB;
388             fjptrC             = f+j_coord_offsetC;
389             fjptrD             = f+j_coord_offsetD;
390
391             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
392
393             /* Inner loop uses 151 flops */
394         }
395
396         if(jidx<j_index_end)
397         {
398
399             /* Get j neighbor index, and coordinate index */
400             jnrlistA         = jjnr[jidx];
401             jnrlistB         = jjnr[jidx+1];
402             jnrlistC         = jjnr[jidx+2];
403             jnrlistD         = jjnr[jidx+3];
404             /* Sign of each element will be negative for non-real atoms.
405              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
406              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
407              */
408             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
409             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
410             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
411             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
412             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
413             j_coord_offsetA  = DIM*jnrA;
414             j_coord_offsetB  = DIM*jnrB;
415             j_coord_offsetC  = DIM*jnrC;
416             j_coord_offsetD  = DIM*jnrD;
417
418             /* load j atom coordinates */
419             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
420                                               x+j_coord_offsetC,x+j_coord_offsetD,
421                                               &jx0,&jy0,&jz0);
422
423             /* Calculate displacement vector */
424             dx00             = _mm_sub_ps(ix0,jx0);
425             dy00             = _mm_sub_ps(iy0,jy0);
426             dz00             = _mm_sub_ps(iz0,jz0);
427             dx10             = _mm_sub_ps(ix1,jx0);
428             dy10             = _mm_sub_ps(iy1,jy0);
429             dz10             = _mm_sub_ps(iz1,jz0);
430             dx20             = _mm_sub_ps(ix2,jx0);
431             dy20             = _mm_sub_ps(iy2,jy0);
432             dz20             = _mm_sub_ps(iz2,jz0);
433
434             /* Calculate squared distance and things based on it */
435             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
436             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
437             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
438
439             rinv00           = avx128fma_invsqrt_f(rsq00);
440             rinv10           = avx128fma_invsqrt_f(rsq10);
441             rinv20           = avx128fma_invsqrt_f(rsq20);
442
443             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
444             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
445             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
446
447             /* Load parameters for j particles */
448             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
449                                                               charge+jnrC+0,charge+jnrD+0);
450             vdwjidx0A        = 2*vdwtype[jnrA+0];
451             vdwjidx0B        = 2*vdwtype[jnrB+0];
452             vdwjidx0C        = 2*vdwtype[jnrC+0];
453             vdwjidx0D        = 2*vdwtype[jnrD+0];
454
455             fjx0             = _mm_setzero_ps();
456             fjy0             = _mm_setzero_ps();
457             fjz0             = _mm_setzero_ps();
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             if (gmx_mm_any_lt(rsq00,rcutoff2))
464             {
465
466             r00              = _mm_mul_ps(rsq00,rinv00);
467             r00              = _mm_andnot_ps(dummy_mask,r00);
468
469             /* Compute parameters for interactions between i and j atoms */
470             qq00             = _mm_mul_ps(iq0,jq0);
471             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
472                                          vdwparam+vdwioffset0+vdwjidx0B,
473                                          vdwparam+vdwioffset0+vdwjidx0C,
474                                          vdwparam+vdwioffset0+vdwjidx0D,
475                                          &c6_00,&c12_00);
476
477             /* REACTION-FIELD ELECTROSTATICS */
478             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
479             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
480
481             /* LENNARD-JONES DISPERSION/REPULSION */
482
483             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
484             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
485             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
486             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
487             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
488
489             d                = _mm_sub_ps(r00,rswitch);
490             d                = _mm_max_ps(d,_mm_setzero_ps());
491             d2               = _mm_mul_ps(d,d);
492             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
493
494             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
495
496             /* Evaluate switch function */
497             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
498             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
499             vvdw             = _mm_mul_ps(vvdw,sw);
500             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
501
502             /* Update potential sum for this i atom from the interaction with this j atom. */
503             velec            = _mm_and_ps(velec,cutoff_mask);
504             velec            = _mm_andnot_ps(dummy_mask,velec);
505             velecsum         = _mm_add_ps(velecsum,velec);
506             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
507             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
508             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
509
510             fscal            = _mm_add_ps(felec,fvdw);
511
512             fscal            = _mm_and_ps(fscal,cutoff_mask);
513
514             fscal            = _mm_andnot_ps(dummy_mask,fscal);
515
516              /* Update vectorial force */
517             fix0             = _mm_macc_ps(dx00,fscal,fix0);
518             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
519             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
520
521             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
522             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
523             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
524
525             }
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             if (gmx_mm_any_lt(rsq10,rcutoff2))
532             {
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq10             = _mm_mul_ps(iq1,jq0);
536
537             /* REACTION-FIELD ELECTROSTATICS */
538             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
539             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
540
541             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
542
543             /* Update potential sum for this i atom from the interaction with this j atom. */
544             velec            = _mm_and_ps(velec,cutoff_mask);
545             velec            = _mm_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm_add_ps(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm_and_ps(fscal,cutoff_mask);
551
552             fscal            = _mm_andnot_ps(dummy_mask,fscal);
553
554              /* Update vectorial force */
555             fix1             = _mm_macc_ps(dx10,fscal,fix1);
556             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
557             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
558
559             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
560             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
561             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
562
563             }
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm_any_lt(rsq20,rcutoff2))
570             {
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq20             = _mm_mul_ps(iq2,jq0);
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
577             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
578
579             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm_and_ps(velec,cutoff_mask);
583             velec            = _mm_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm_add_ps(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm_and_ps(fscal,cutoff_mask);
589
590             fscal            = _mm_andnot_ps(dummy_mask,fscal);
591
592              /* Update vectorial force */
593             fix2             = _mm_macc_ps(dx20,fscal,fix2);
594             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
595             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
596
597             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
598             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
599             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
600
601             }
602
603             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
604             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
605             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
606             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
607
608             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
609
610             /* Inner loop uses 152 flops */
611         }
612
613         /* End of innermost loop */
614
615         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
616                                               f+i_coord_offset,fshift+i_shift_offset);
617
618         ggid                        = gid[iidx];
619         /* Update potential energies */
620         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
621         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
622
623         /* Increment number of inner iterations */
624         inneriter                  += j_index_end - j_index_start;
625
626         /* Outer loop uses 20 flops */
627     }
628
629     /* Increment number of outer iterations */
630     outeriter        += nri;
631
632     /* Update outer/inner flops */
633
634     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*152);
635 }
636 /*
637  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
638  * Electrostatics interaction: ReactionField
639  * VdW interaction:            LennardJones
640  * Geometry:                   Water3-Particle
641  * Calculate force/pot:        Force
642  */
643 void
644 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
645                     (t_nblist                    * gmx_restrict       nlist,
646                      rvec                        * gmx_restrict          xx,
647                      rvec                        * gmx_restrict          ff,
648                      struct t_forcerec           * gmx_restrict          fr,
649                      t_mdatoms                   * gmx_restrict     mdatoms,
650                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
651                      t_nrnb                      * gmx_restrict        nrnb)
652 {
653     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
654      * just 0 for non-waters.
655      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
656      * jnr indices corresponding to data put in the four positions in the SIMD register.
657      */
658     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
659     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
660     int              jnrA,jnrB,jnrC,jnrD;
661     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
662     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
663     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
664     real             rcutoff_scalar;
665     real             *shiftvec,*fshift,*x,*f;
666     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
667     real             scratch[4*DIM];
668     __m128           fscal,rcutoff,rcutoff2,jidxall;
669     int              vdwioffset0;
670     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
671     int              vdwioffset1;
672     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
673     int              vdwioffset2;
674     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
675     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
676     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
677     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
678     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
679     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
680     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
681     real             *charge;
682     int              nvdwtype;
683     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
684     int              *vdwtype;
685     real             *vdwparam;
686     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
687     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
688     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
689     real             rswitch_scalar,d_scalar;
690     __m128           dummy_mask,cutoff_mask;
691     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
692     __m128           one     = _mm_set1_ps(1.0);
693     __m128           two     = _mm_set1_ps(2.0);
694     x                = xx[0];
695     f                = ff[0];
696
697     nri              = nlist->nri;
698     iinr             = nlist->iinr;
699     jindex           = nlist->jindex;
700     jjnr             = nlist->jjnr;
701     shiftidx         = nlist->shift;
702     gid              = nlist->gid;
703     shiftvec         = fr->shift_vec[0];
704     fshift           = fr->fshift[0];
705     facel            = _mm_set1_ps(fr->ic->epsfac);
706     charge           = mdatoms->chargeA;
707     krf              = _mm_set1_ps(fr->ic->k_rf);
708     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
709     crf              = _mm_set1_ps(fr->ic->c_rf);
710     nvdwtype         = fr->ntype;
711     vdwparam         = fr->nbfp;
712     vdwtype          = mdatoms->typeA;
713
714     /* Setup water-specific parameters */
715     inr              = nlist->iinr[0];
716     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
717     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
718     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
719     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
720
721     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
722     rcutoff_scalar   = fr->ic->rcoulomb;
723     rcutoff          = _mm_set1_ps(rcutoff_scalar);
724     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
725
726     rswitch_scalar   = fr->ic->rvdw_switch;
727     rswitch          = _mm_set1_ps(rswitch_scalar);
728     /* Setup switch parameters */
729     d_scalar         = rcutoff_scalar-rswitch_scalar;
730     d                = _mm_set1_ps(d_scalar);
731     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
732     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
733     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
734     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
735     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
736     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
737
738     /* Avoid stupid compiler warnings */
739     jnrA = jnrB = jnrC = jnrD = 0;
740     j_coord_offsetA = 0;
741     j_coord_offsetB = 0;
742     j_coord_offsetC = 0;
743     j_coord_offsetD = 0;
744
745     outeriter        = 0;
746     inneriter        = 0;
747
748     for(iidx=0;iidx<4*DIM;iidx++)
749     {
750         scratch[iidx] = 0.0;
751     }
752
753     /* Start outer loop over neighborlists */
754     for(iidx=0; iidx<nri; iidx++)
755     {
756         /* Load shift vector for this list */
757         i_shift_offset   = DIM*shiftidx[iidx];
758
759         /* Load limits for loop over neighbors */
760         j_index_start    = jindex[iidx];
761         j_index_end      = jindex[iidx+1];
762
763         /* Get outer coordinate index */
764         inr              = iinr[iidx];
765         i_coord_offset   = DIM*inr;
766
767         /* Load i particle coords and add shift vector */
768         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
769                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
770
771         fix0             = _mm_setzero_ps();
772         fiy0             = _mm_setzero_ps();
773         fiz0             = _mm_setzero_ps();
774         fix1             = _mm_setzero_ps();
775         fiy1             = _mm_setzero_ps();
776         fiz1             = _mm_setzero_ps();
777         fix2             = _mm_setzero_ps();
778         fiy2             = _mm_setzero_ps();
779         fiz2             = _mm_setzero_ps();
780
781         /* Start inner kernel loop */
782         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
783         {
784
785             /* Get j neighbor index, and coordinate index */
786             jnrA             = jjnr[jidx];
787             jnrB             = jjnr[jidx+1];
788             jnrC             = jjnr[jidx+2];
789             jnrD             = jjnr[jidx+3];
790             j_coord_offsetA  = DIM*jnrA;
791             j_coord_offsetB  = DIM*jnrB;
792             j_coord_offsetC  = DIM*jnrC;
793             j_coord_offsetD  = DIM*jnrD;
794
795             /* load j atom coordinates */
796             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
797                                               x+j_coord_offsetC,x+j_coord_offsetD,
798                                               &jx0,&jy0,&jz0);
799
800             /* Calculate displacement vector */
801             dx00             = _mm_sub_ps(ix0,jx0);
802             dy00             = _mm_sub_ps(iy0,jy0);
803             dz00             = _mm_sub_ps(iz0,jz0);
804             dx10             = _mm_sub_ps(ix1,jx0);
805             dy10             = _mm_sub_ps(iy1,jy0);
806             dz10             = _mm_sub_ps(iz1,jz0);
807             dx20             = _mm_sub_ps(ix2,jx0);
808             dy20             = _mm_sub_ps(iy2,jy0);
809             dz20             = _mm_sub_ps(iz2,jz0);
810
811             /* Calculate squared distance and things based on it */
812             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
813             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
814             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
815
816             rinv00           = avx128fma_invsqrt_f(rsq00);
817             rinv10           = avx128fma_invsqrt_f(rsq10);
818             rinv20           = avx128fma_invsqrt_f(rsq20);
819
820             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
821             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
822             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
823
824             /* Load parameters for j particles */
825             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
826                                                               charge+jnrC+0,charge+jnrD+0);
827             vdwjidx0A        = 2*vdwtype[jnrA+0];
828             vdwjidx0B        = 2*vdwtype[jnrB+0];
829             vdwjidx0C        = 2*vdwtype[jnrC+0];
830             vdwjidx0D        = 2*vdwtype[jnrD+0];
831
832             fjx0             = _mm_setzero_ps();
833             fjy0             = _mm_setzero_ps();
834             fjz0             = _mm_setzero_ps();
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             if (gmx_mm_any_lt(rsq00,rcutoff2))
841             {
842
843             r00              = _mm_mul_ps(rsq00,rinv00);
844
845             /* Compute parameters for interactions between i and j atoms */
846             qq00             = _mm_mul_ps(iq0,jq0);
847             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
848                                          vdwparam+vdwioffset0+vdwjidx0B,
849                                          vdwparam+vdwioffset0+vdwjidx0C,
850                                          vdwparam+vdwioffset0+vdwjidx0D,
851                                          &c6_00,&c12_00);
852
853             /* REACTION-FIELD ELECTROSTATICS */
854             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
855
856             /* LENNARD-JONES DISPERSION/REPULSION */
857
858             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
859             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
860             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
861             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
862             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
863
864             d                = _mm_sub_ps(r00,rswitch);
865             d                = _mm_max_ps(d,_mm_setzero_ps());
866             d2               = _mm_mul_ps(d,d);
867             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
868
869             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
870
871             /* Evaluate switch function */
872             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
873             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
874             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
875
876             fscal            = _mm_add_ps(felec,fvdw);
877
878             fscal            = _mm_and_ps(fscal,cutoff_mask);
879
880              /* Update vectorial force */
881             fix0             = _mm_macc_ps(dx00,fscal,fix0);
882             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
883             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
884
885             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
886             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
887             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
888
889             }
890
891             /**************************
892              * CALCULATE INTERACTIONS *
893              **************************/
894
895             if (gmx_mm_any_lt(rsq10,rcutoff2))
896             {
897
898             /* Compute parameters for interactions between i and j atoms */
899             qq10             = _mm_mul_ps(iq1,jq0);
900
901             /* REACTION-FIELD ELECTROSTATICS */
902             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
903
904             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
905
906             fscal            = felec;
907
908             fscal            = _mm_and_ps(fscal,cutoff_mask);
909
910              /* Update vectorial force */
911             fix1             = _mm_macc_ps(dx10,fscal,fix1);
912             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
913             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
914
915             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
916             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
917             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
918
919             }
920
921             /**************************
922              * CALCULATE INTERACTIONS *
923              **************************/
924
925             if (gmx_mm_any_lt(rsq20,rcutoff2))
926             {
927
928             /* Compute parameters for interactions between i and j atoms */
929             qq20             = _mm_mul_ps(iq2,jq0);
930
931             /* REACTION-FIELD ELECTROSTATICS */
932             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
933
934             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
935
936             fscal            = felec;
937
938             fscal            = _mm_and_ps(fscal,cutoff_mask);
939
940              /* Update vectorial force */
941             fix2             = _mm_macc_ps(dx20,fscal,fix2);
942             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
943             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
944
945             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
946             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
947             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
948
949             }
950
951             fjptrA             = f+j_coord_offsetA;
952             fjptrB             = f+j_coord_offsetB;
953             fjptrC             = f+j_coord_offsetC;
954             fjptrD             = f+j_coord_offsetD;
955
956             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
957
958             /* Inner loop uses 130 flops */
959         }
960
961         if(jidx<j_index_end)
962         {
963
964             /* Get j neighbor index, and coordinate index */
965             jnrlistA         = jjnr[jidx];
966             jnrlistB         = jjnr[jidx+1];
967             jnrlistC         = jjnr[jidx+2];
968             jnrlistD         = jjnr[jidx+3];
969             /* Sign of each element will be negative for non-real atoms.
970              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
971              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
972              */
973             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
974             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
975             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
976             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
977             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
978             j_coord_offsetA  = DIM*jnrA;
979             j_coord_offsetB  = DIM*jnrB;
980             j_coord_offsetC  = DIM*jnrC;
981             j_coord_offsetD  = DIM*jnrD;
982
983             /* load j atom coordinates */
984             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
985                                               x+j_coord_offsetC,x+j_coord_offsetD,
986                                               &jx0,&jy0,&jz0);
987
988             /* Calculate displacement vector */
989             dx00             = _mm_sub_ps(ix0,jx0);
990             dy00             = _mm_sub_ps(iy0,jy0);
991             dz00             = _mm_sub_ps(iz0,jz0);
992             dx10             = _mm_sub_ps(ix1,jx0);
993             dy10             = _mm_sub_ps(iy1,jy0);
994             dz10             = _mm_sub_ps(iz1,jz0);
995             dx20             = _mm_sub_ps(ix2,jx0);
996             dy20             = _mm_sub_ps(iy2,jy0);
997             dz20             = _mm_sub_ps(iz2,jz0);
998
999             /* Calculate squared distance and things based on it */
1000             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1001             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1002             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1003
1004             rinv00           = avx128fma_invsqrt_f(rsq00);
1005             rinv10           = avx128fma_invsqrt_f(rsq10);
1006             rinv20           = avx128fma_invsqrt_f(rsq20);
1007
1008             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1009             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1010             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1011
1012             /* Load parameters for j particles */
1013             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1014                                                               charge+jnrC+0,charge+jnrD+0);
1015             vdwjidx0A        = 2*vdwtype[jnrA+0];
1016             vdwjidx0B        = 2*vdwtype[jnrB+0];
1017             vdwjidx0C        = 2*vdwtype[jnrC+0];
1018             vdwjidx0D        = 2*vdwtype[jnrD+0];
1019
1020             fjx0             = _mm_setzero_ps();
1021             fjy0             = _mm_setzero_ps();
1022             fjz0             = _mm_setzero_ps();
1023
1024             /**************************
1025              * CALCULATE INTERACTIONS *
1026              **************************/
1027
1028             if (gmx_mm_any_lt(rsq00,rcutoff2))
1029             {
1030
1031             r00              = _mm_mul_ps(rsq00,rinv00);
1032             r00              = _mm_andnot_ps(dummy_mask,r00);
1033
1034             /* Compute parameters for interactions between i and j atoms */
1035             qq00             = _mm_mul_ps(iq0,jq0);
1036             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1037                                          vdwparam+vdwioffset0+vdwjidx0B,
1038                                          vdwparam+vdwioffset0+vdwjidx0C,
1039                                          vdwparam+vdwioffset0+vdwjidx0D,
1040                                          &c6_00,&c12_00);
1041
1042             /* REACTION-FIELD ELECTROSTATICS */
1043             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1044
1045             /* LENNARD-JONES DISPERSION/REPULSION */
1046
1047             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1048             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1049             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1050             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1051             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1052
1053             d                = _mm_sub_ps(r00,rswitch);
1054             d                = _mm_max_ps(d,_mm_setzero_ps());
1055             d2               = _mm_mul_ps(d,d);
1056             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1057
1058             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1059
1060             /* Evaluate switch function */
1061             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1062             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1063             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1064
1065             fscal            = _mm_add_ps(felec,fvdw);
1066
1067             fscal            = _mm_and_ps(fscal,cutoff_mask);
1068
1069             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1070
1071              /* Update vectorial force */
1072             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1073             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1074             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1075
1076             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1077             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1078             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1079
1080             }
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             if (gmx_mm_any_lt(rsq10,rcutoff2))
1087             {
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             qq10             = _mm_mul_ps(iq1,jq0);
1091
1092             /* REACTION-FIELD ELECTROSTATICS */
1093             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1094
1095             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1096
1097             fscal            = felec;
1098
1099             fscal            = _mm_and_ps(fscal,cutoff_mask);
1100
1101             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1102
1103              /* Update vectorial force */
1104             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1105             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1106             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1107
1108             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1109             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1110             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1111
1112             }
1113
1114             /**************************
1115              * CALCULATE INTERACTIONS *
1116              **************************/
1117
1118             if (gmx_mm_any_lt(rsq20,rcutoff2))
1119             {
1120
1121             /* Compute parameters for interactions between i and j atoms */
1122             qq20             = _mm_mul_ps(iq2,jq0);
1123
1124             /* REACTION-FIELD ELECTROSTATICS */
1125             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1126
1127             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1128
1129             fscal            = felec;
1130
1131             fscal            = _mm_and_ps(fscal,cutoff_mask);
1132
1133             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1134
1135              /* Update vectorial force */
1136             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1137             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1138             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1139
1140             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1141             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1142             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1143
1144             }
1145
1146             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1147             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1148             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1149             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1150
1151             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1152
1153             /* Inner loop uses 131 flops */
1154         }
1155
1156         /* End of innermost loop */
1157
1158         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1159                                               f+i_coord_offset,fshift+i_shift_offset);
1160
1161         /* Increment number of inner iterations */
1162         inneriter                  += j_index_end - j_index_start;
1163
1164         /* Outer loop uses 18 flops */
1165     }
1166
1167     /* Increment number of outer iterations */
1168     outeriter        += nri;
1169
1170     /* Update outer/inner flops */
1171
1172     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1173 }