Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
103     real             rswitch_scalar,d_scalar;
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
139
140     rswitch_scalar   = fr->rvdw_switch;
141     rswitch          = _mm_set1_ps(rswitch_scalar);
142     /* Setup switch parameters */
143     d_scalar         = rcutoff_scalar-rswitch_scalar;
144     d                = _mm_set1_ps(d_scalar);
145     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
146     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
147     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
148     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
149     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
150     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
151
152     /* Avoid stupid compiler warnings */
153     jnrA = jnrB = jnrC = jnrD = 0;
154     j_coord_offsetA = 0;
155     j_coord_offsetB = 0;
156     j_coord_offsetC = 0;
157     j_coord_offsetD = 0;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     for(iidx=0;iidx<4*DIM;iidx++)
163     {
164         scratch[iidx] = 0.0;
165     }
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
183                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
184
185         fix0             = _mm_setzero_ps();
186         fiy0             = _mm_setzero_ps();
187         fiz0             = _mm_setzero_ps();
188         fix1             = _mm_setzero_ps();
189         fiy1             = _mm_setzero_ps();
190         fiz1             = _mm_setzero_ps();
191         fix2             = _mm_setzero_ps();
192         fiy2             = _mm_setzero_ps();
193         fiz2             = _mm_setzero_ps();
194
195         /* Reset potential sums */
196         velecsum         = _mm_setzero_ps();
197         vvdwsum          = _mm_setzero_ps();
198
199         /* Start inner kernel loop */
200         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
201         {
202
203             /* Get j neighbor index, and coordinate index */
204             jnrA             = jjnr[jidx];
205             jnrB             = jjnr[jidx+1];
206             jnrC             = jjnr[jidx+2];
207             jnrD             = jjnr[jidx+3];
208             j_coord_offsetA  = DIM*jnrA;
209             j_coord_offsetB  = DIM*jnrB;
210             j_coord_offsetC  = DIM*jnrC;
211             j_coord_offsetD  = DIM*jnrD;
212
213             /* load j atom coordinates */
214             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
215                                               x+j_coord_offsetC,x+j_coord_offsetD,
216                                               &jx0,&jy0,&jz0);
217
218             /* Calculate displacement vector */
219             dx00             = _mm_sub_ps(ix0,jx0);
220             dy00             = _mm_sub_ps(iy0,jy0);
221             dz00             = _mm_sub_ps(iz0,jz0);
222             dx10             = _mm_sub_ps(ix1,jx0);
223             dy10             = _mm_sub_ps(iy1,jy0);
224             dz10             = _mm_sub_ps(iz1,jz0);
225             dx20             = _mm_sub_ps(ix2,jx0);
226             dy20             = _mm_sub_ps(iy2,jy0);
227             dz20             = _mm_sub_ps(iz2,jz0);
228
229             /* Calculate squared distance and things based on it */
230             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
231             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
232             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
233
234             rinv00           = gmx_mm_invsqrt_ps(rsq00);
235             rinv10           = gmx_mm_invsqrt_ps(rsq10);
236             rinv20           = gmx_mm_invsqrt_ps(rsq20);
237
238             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
239             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
240             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                               charge+jnrC+0,charge+jnrD+0);
245             vdwjidx0A        = 2*vdwtype[jnrA+0];
246             vdwjidx0B        = 2*vdwtype[jnrB+0];
247             vdwjidx0C        = 2*vdwtype[jnrC+0];
248             vdwjidx0D        = 2*vdwtype[jnrD+0];
249
250             fjx0             = _mm_setzero_ps();
251             fjy0             = _mm_setzero_ps();
252             fjz0             = _mm_setzero_ps();
253
254             /**************************
255              * CALCULATE INTERACTIONS *
256              **************************/
257
258             if (gmx_mm_any_lt(rsq00,rcutoff2))
259             {
260
261             r00              = _mm_mul_ps(rsq00,rinv00);
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm_mul_ps(iq0,jq0);
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* REACTION-FIELD ELECTROSTATICS */
272             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
273             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
279             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
280             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
281             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
282
283             d                = _mm_sub_ps(r00,rswitch);
284             d                = _mm_max_ps(d,_mm_setzero_ps());
285             d2               = _mm_mul_ps(d,d);
286             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
287
288             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
289
290             /* Evaluate switch function */
291             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
292             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
293             vvdw             = _mm_mul_ps(vvdw,sw);
294             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
295
296             /* Update potential sum for this i atom from the interaction with this j atom. */
297             velec            = _mm_and_ps(velec,cutoff_mask);
298             velecsum         = _mm_add_ps(velecsum,velec);
299             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
300             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
301
302             fscal            = _mm_add_ps(felec,fvdw);
303
304             fscal            = _mm_and_ps(fscal,cutoff_mask);
305
306              /* Update vectorial force */
307             fix0             = _mm_macc_ps(dx00,fscal,fix0);
308             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
309             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
310
311             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
312             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
313             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (gmx_mm_any_lt(rsq10,rcutoff2))
322             {
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm_mul_ps(iq1,jq0);
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
329             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
330
331             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             velec            = _mm_and_ps(velec,cutoff_mask);
335             velecsum         = _mm_add_ps(velecsum,velec);
336
337             fscal            = felec;
338
339             fscal            = _mm_and_ps(fscal,cutoff_mask);
340
341              /* Update vectorial force */
342             fix1             = _mm_macc_ps(dx10,fscal,fix1);
343             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
344             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
345
346             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
347             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
348             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
349
350             }
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm_any_lt(rsq20,rcutoff2))
357             {
358
359             /* Compute parameters for interactions between i and j atoms */
360             qq20             = _mm_mul_ps(iq2,jq0);
361
362             /* REACTION-FIELD ELECTROSTATICS */
363             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
364             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
365
366             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
367
368             /* Update potential sum for this i atom from the interaction with this j atom. */
369             velec            = _mm_and_ps(velec,cutoff_mask);
370             velecsum         = _mm_add_ps(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm_and_ps(fscal,cutoff_mask);
375
376              /* Update vectorial force */
377             fix2             = _mm_macc_ps(dx20,fscal,fix2);
378             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
379             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
380
381             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
382             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
383             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
384
385             }
386
387             fjptrA             = f+j_coord_offsetA;
388             fjptrB             = f+j_coord_offsetB;
389             fjptrC             = f+j_coord_offsetC;
390             fjptrD             = f+j_coord_offsetD;
391
392             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
393
394             /* Inner loop uses 151 flops */
395         }
396
397         if(jidx<j_index_end)
398         {
399
400             /* Get j neighbor index, and coordinate index */
401             jnrlistA         = jjnr[jidx];
402             jnrlistB         = jjnr[jidx+1];
403             jnrlistC         = jjnr[jidx+2];
404             jnrlistD         = jjnr[jidx+3];
405             /* Sign of each element will be negative for non-real atoms.
406              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
407              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
408              */
409             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
410             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
411             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
412             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
413             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
414             j_coord_offsetA  = DIM*jnrA;
415             j_coord_offsetB  = DIM*jnrB;
416             j_coord_offsetC  = DIM*jnrC;
417             j_coord_offsetD  = DIM*jnrD;
418
419             /* load j atom coordinates */
420             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
421                                               x+j_coord_offsetC,x+j_coord_offsetD,
422                                               &jx0,&jy0,&jz0);
423
424             /* Calculate displacement vector */
425             dx00             = _mm_sub_ps(ix0,jx0);
426             dy00             = _mm_sub_ps(iy0,jy0);
427             dz00             = _mm_sub_ps(iz0,jz0);
428             dx10             = _mm_sub_ps(ix1,jx0);
429             dy10             = _mm_sub_ps(iy1,jy0);
430             dz10             = _mm_sub_ps(iz1,jz0);
431             dx20             = _mm_sub_ps(ix2,jx0);
432             dy20             = _mm_sub_ps(iy2,jy0);
433             dz20             = _mm_sub_ps(iz2,jz0);
434
435             /* Calculate squared distance and things based on it */
436             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
437             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
438             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
439
440             rinv00           = gmx_mm_invsqrt_ps(rsq00);
441             rinv10           = gmx_mm_invsqrt_ps(rsq10);
442             rinv20           = gmx_mm_invsqrt_ps(rsq20);
443
444             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
445             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
446             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
447
448             /* Load parameters for j particles */
449             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
450                                                               charge+jnrC+0,charge+jnrD+0);
451             vdwjidx0A        = 2*vdwtype[jnrA+0];
452             vdwjidx0B        = 2*vdwtype[jnrB+0];
453             vdwjidx0C        = 2*vdwtype[jnrC+0];
454             vdwjidx0D        = 2*vdwtype[jnrD+0];
455
456             fjx0             = _mm_setzero_ps();
457             fjy0             = _mm_setzero_ps();
458             fjz0             = _mm_setzero_ps();
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (gmx_mm_any_lt(rsq00,rcutoff2))
465             {
466
467             r00              = _mm_mul_ps(rsq00,rinv00);
468             r00              = _mm_andnot_ps(dummy_mask,r00);
469
470             /* Compute parameters for interactions between i and j atoms */
471             qq00             = _mm_mul_ps(iq0,jq0);
472             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
473                                          vdwparam+vdwioffset0+vdwjidx0B,
474                                          vdwparam+vdwioffset0+vdwjidx0C,
475                                          vdwparam+vdwioffset0+vdwjidx0D,
476                                          &c6_00,&c12_00);
477
478             /* REACTION-FIELD ELECTROSTATICS */
479             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
480             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
481
482             /* LENNARD-JONES DISPERSION/REPULSION */
483
484             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
485             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
486             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
487             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
488             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
489
490             d                = _mm_sub_ps(r00,rswitch);
491             d                = _mm_max_ps(d,_mm_setzero_ps());
492             d2               = _mm_mul_ps(d,d);
493             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
494
495             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
496
497             /* Evaluate switch function */
498             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
499             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
500             vvdw             = _mm_mul_ps(vvdw,sw);
501             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm_and_ps(velec,cutoff_mask);
505             velec            = _mm_andnot_ps(dummy_mask,velec);
506             velecsum         = _mm_add_ps(velecsum,velec);
507             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
508             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
509             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
510
511             fscal            = _mm_add_ps(felec,fvdw);
512
513             fscal            = _mm_and_ps(fscal,cutoff_mask);
514
515             fscal            = _mm_andnot_ps(dummy_mask,fscal);
516
517              /* Update vectorial force */
518             fix0             = _mm_macc_ps(dx00,fscal,fix0);
519             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
520             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
521
522             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
523             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
524             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
525
526             }
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (gmx_mm_any_lt(rsq10,rcutoff2))
533             {
534
535             /* Compute parameters for interactions between i and j atoms */
536             qq10             = _mm_mul_ps(iq1,jq0);
537
538             /* REACTION-FIELD ELECTROSTATICS */
539             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
540             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
541
542             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm_and_ps(velec,cutoff_mask);
546             velec            = _mm_andnot_ps(dummy_mask,velec);
547             velecsum         = _mm_add_ps(velecsum,velec);
548
549             fscal            = felec;
550
551             fscal            = _mm_and_ps(fscal,cutoff_mask);
552
553             fscal            = _mm_andnot_ps(dummy_mask,fscal);
554
555              /* Update vectorial force */
556             fix1             = _mm_macc_ps(dx10,fscal,fix1);
557             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
558             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
559
560             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
561             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
562             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
563
564             }
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_mm_any_lt(rsq20,rcutoff2))
571             {
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq20             = _mm_mul_ps(iq2,jq0);
575
576             /* REACTION-FIELD ELECTROSTATICS */
577             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
578             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
579
580             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm_and_ps(velec,cutoff_mask);
584             velec            = _mm_andnot_ps(dummy_mask,velec);
585             velecsum         = _mm_add_ps(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm_and_ps(fscal,cutoff_mask);
590
591             fscal            = _mm_andnot_ps(dummy_mask,fscal);
592
593              /* Update vectorial force */
594             fix2             = _mm_macc_ps(dx20,fscal,fix2);
595             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
596             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
597
598             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
599             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
600             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
601
602             }
603
604             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
605             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
606             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
607             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
608
609             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
610
611             /* Inner loop uses 152 flops */
612         }
613
614         /* End of innermost loop */
615
616         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
617                                               f+i_coord_offset,fshift+i_shift_offset);
618
619         ggid                        = gid[iidx];
620         /* Update potential energies */
621         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
622         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
623
624         /* Increment number of inner iterations */
625         inneriter                  += j_index_end - j_index_start;
626
627         /* Outer loop uses 20 flops */
628     }
629
630     /* Increment number of outer iterations */
631     outeriter        += nri;
632
633     /* Update outer/inner flops */
634
635     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*152);
636 }
637 /*
638  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
639  * Electrostatics interaction: ReactionField
640  * VdW interaction:            LennardJones
641  * Geometry:                   Water3-Particle
642  * Calculate force/pot:        Force
643  */
644 void
645 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_128_fma_single
646                     (t_nblist                    * gmx_restrict       nlist,
647                      rvec                        * gmx_restrict          xx,
648                      rvec                        * gmx_restrict          ff,
649                      t_forcerec                  * gmx_restrict          fr,
650                      t_mdatoms                   * gmx_restrict     mdatoms,
651                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
652                      t_nrnb                      * gmx_restrict        nrnb)
653 {
654     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
655      * just 0 for non-waters.
656      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
657      * jnr indices corresponding to data put in the four positions in the SIMD register.
658      */
659     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
660     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
661     int              jnrA,jnrB,jnrC,jnrD;
662     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
663     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
664     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
665     real             rcutoff_scalar;
666     real             *shiftvec,*fshift,*x,*f;
667     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
668     real             scratch[4*DIM];
669     __m128           fscal,rcutoff,rcutoff2,jidxall;
670     int              vdwioffset0;
671     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
672     int              vdwioffset1;
673     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
674     int              vdwioffset2;
675     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
676     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
677     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
678     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
679     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
680     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
681     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
682     real             *charge;
683     int              nvdwtype;
684     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
685     int              *vdwtype;
686     real             *vdwparam;
687     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
688     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
689     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
690     real             rswitch_scalar,d_scalar;
691     __m128           dummy_mask,cutoff_mask;
692     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
693     __m128           one     = _mm_set1_ps(1.0);
694     __m128           two     = _mm_set1_ps(2.0);
695     x                = xx[0];
696     f                = ff[0];
697
698     nri              = nlist->nri;
699     iinr             = nlist->iinr;
700     jindex           = nlist->jindex;
701     jjnr             = nlist->jjnr;
702     shiftidx         = nlist->shift;
703     gid              = nlist->gid;
704     shiftvec         = fr->shift_vec[0];
705     fshift           = fr->fshift[0];
706     facel            = _mm_set1_ps(fr->epsfac);
707     charge           = mdatoms->chargeA;
708     krf              = _mm_set1_ps(fr->ic->k_rf);
709     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
710     crf              = _mm_set1_ps(fr->ic->c_rf);
711     nvdwtype         = fr->ntype;
712     vdwparam         = fr->nbfp;
713     vdwtype          = mdatoms->typeA;
714
715     /* Setup water-specific parameters */
716     inr              = nlist->iinr[0];
717     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
718     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
719     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
720     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
721
722     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
723     rcutoff_scalar   = fr->rcoulomb;
724     rcutoff          = _mm_set1_ps(rcutoff_scalar);
725     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
726
727     rswitch_scalar   = fr->rvdw_switch;
728     rswitch          = _mm_set1_ps(rswitch_scalar);
729     /* Setup switch parameters */
730     d_scalar         = rcutoff_scalar-rswitch_scalar;
731     d                = _mm_set1_ps(d_scalar);
732     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
733     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
734     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
735     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
736     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
737     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
738
739     /* Avoid stupid compiler warnings */
740     jnrA = jnrB = jnrC = jnrD = 0;
741     j_coord_offsetA = 0;
742     j_coord_offsetB = 0;
743     j_coord_offsetC = 0;
744     j_coord_offsetD = 0;
745
746     outeriter        = 0;
747     inneriter        = 0;
748
749     for(iidx=0;iidx<4*DIM;iidx++)
750     {
751         scratch[iidx] = 0.0;
752     }
753
754     /* Start outer loop over neighborlists */
755     for(iidx=0; iidx<nri; iidx++)
756     {
757         /* Load shift vector for this list */
758         i_shift_offset   = DIM*shiftidx[iidx];
759
760         /* Load limits for loop over neighbors */
761         j_index_start    = jindex[iidx];
762         j_index_end      = jindex[iidx+1];
763
764         /* Get outer coordinate index */
765         inr              = iinr[iidx];
766         i_coord_offset   = DIM*inr;
767
768         /* Load i particle coords and add shift vector */
769         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
770                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
771
772         fix0             = _mm_setzero_ps();
773         fiy0             = _mm_setzero_ps();
774         fiz0             = _mm_setzero_ps();
775         fix1             = _mm_setzero_ps();
776         fiy1             = _mm_setzero_ps();
777         fiz1             = _mm_setzero_ps();
778         fix2             = _mm_setzero_ps();
779         fiy2             = _mm_setzero_ps();
780         fiz2             = _mm_setzero_ps();
781
782         /* Start inner kernel loop */
783         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
784         {
785
786             /* Get j neighbor index, and coordinate index */
787             jnrA             = jjnr[jidx];
788             jnrB             = jjnr[jidx+1];
789             jnrC             = jjnr[jidx+2];
790             jnrD             = jjnr[jidx+3];
791             j_coord_offsetA  = DIM*jnrA;
792             j_coord_offsetB  = DIM*jnrB;
793             j_coord_offsetC  = DIM*jnrC;
794             j_coord_offsetD  = DIM*jnrD;
795
796             /* load j atom coordinates */
797             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
798                                               x+j_coord_offsetC,x+j_coord_offsetD,
799                                               &jx0,&jy0,&jz0);
800
801             /* Calculate displacement vector */
802             dx00             = _mm_sub_ps(ix0,jx0);
803             dy00             = _mm_sub_ps(iy0,jy0);
804             dz00             = _mm_sub_ps(iz0,jz0);
805             dx10             = _mm_sub_ps(ix1,jx0);
806             dy10             = _mm_sub_ps(iy1,jy0);
807             dz10             = _mm_sub_ps(iz1,jz0);
808             dx20             = _mm_sub_ps(ix2,jx0);
809             dy20             = _mm_sub_ps(iy2,jy0);
810             dz20             = _mm_sub_ps(iz2,jz0);
811
812             /* Calculate squared distance and things based on it */
813             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
814             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
815             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
816
817             rinv00           = gmx_mm_invsqrt_ps(rsq00);
818             rinv10           = gmx_mm_invsqrt_ps(rsq10);
819             rinv20           = gmx_mm_invsqrt_ps(rsq20);
820
821             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
822             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
823             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
824
825             /* Load parameters for j particles */
826             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
827                                                               charge+jnrC+0,charge+jnrD+0);
828             vdwjidx0A        = 2*vdwtype[jnrA+0];
829             vdwjidx0B        = 2*vdwtype[jnrB+0];
830             vdwjidx0C        = 2*vdwtype[jnrC+0];
831             vdwjidx0D        = 2*vdwtype[jnrD+0];
832
833             fjx0             = _mm_setzero_ps();
834             fjy0             = _mm_setzero_ps();
835             fjz0             = _mm_setzero_ps();
836
837             /**************************
838              * CALCULATE INTERACTIONS *
839              **************************/
840
841             if (gmx_mm_any_lt(rsq00,rcutoff2))
842             {
843
844             r00              = _mm_mul_ps(rsq00,rinv00);
845
846             /* Compute parameters for interactions between i and j atoms */
847             qq00             = _mm_mul_ps(iq0,jq0);
848             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
849                                          vdwparam+vdwioffset0+vdwjidx0B,
850                                          vdwparam+vdwioffset0+vdwjidx0C,
851                                          vdwparam+vdwioffset0+vdwjidx0D,
852                                          &c6_00,&c12_00);
853
854             /* REACTION-FIELD ELECTROSTATICS */
855             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
856
857             /* LENNARD-JONES DISPERSION/REPULSION */
858
859             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
860             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
861             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
862             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
863             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
864
865             d                = _mm_sub_ps(r00,rswitch);
866             d                = _mm_max_ps(d,_mm_setzero_ps());
867             d2               = _mm_mul_ps(d,d);
868             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
869
870             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
871
872             /* Evaluate switch function */
873             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
874             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
875             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
876
877             fscal            = _mm_add_ps(felec,fvdw);
878
879             fscal            = _mm_and_ps(fscal,cutoff_mask);
880
881              /* Update vectorial force */
882             fix0             = _mm_macc_ps(dx00,fscal,fix0);
883             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
884             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
885
886             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
887             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
888             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
889
890             }
891
892             /**************************
893              * CALCULATE INTERACTIONS *
894              **************************/
895
896             if (gmx_mm_any_lt(rsq10,rcutoff2))
897             {
898
899             /* Compute parameters for interactions between i and j atoms */
900             qq10             = _mm_mul_ps(iq1,jq0);
901
902             /* REACTION-FIELD ELECTROSTATICS */
903             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
904
905             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
906
907             fscal            = felec;
908
909             fscal            = _mm_and_ps(fscal,cutoff_mask);
910
911              /* Update vectorial force */
912             fix1             = _mm_macc_ps(dx10,fscal,fix1);
913             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
914             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
915
916             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
917             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
918             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_mm_any_lt(rsq20,rcutoff2))
927             {
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq20             = _mm_mul_ps(iq2,jq0);
931
932             /* REACTION-FIELD ELECTROSTATICS */
933             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
934
935             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
936
937             fscal            = felec;
938
939             fscal            = _mm_and_ps(fscal,cutoff_mask);
940
941              /* Update vectorial force */
942             fix2             = _mm_macc_ps(dx20,fscal,fix2);
943             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
944             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
945
946             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
947             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
948             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
949
950             }
951
952             fjptrA             = f+j_coord_offsetA;
953             fjptrB             = f+j_coord_offsetB;
954             fjptrC             = f+j_coord_offsetC;
955             fjptrD             = f+j_coord_offsetD;
956
957             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
958
959             /* Inner loop uses 130 flops */
960         }
961
962         if(jidx<j_index_end)
963         {
964
965             /* Get j neighbor index, and coordinate index */
966             jnrlistA         = jjnr[jidx];
967             jnrlistB         = jjnr[jidx+1];
968             jnrlistC         = jjnr[jidx+2];
969             jnrlistD         = jjnr[jidx+3];
970             /* Sign of each element will be negative for non-real atoms.
971              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
972              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
973              */
974             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
975             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
976             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
977             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
978             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
979             j_coord_offsetA  = DIM*jnrA;
980             j_coord_offsetB  = DIM*jnrB;
981             j_coord_offsetC  = DIM*jnrC;
982             j_coord_offsetD  = DIM*jnrD;
983
984             /* load j atom coordinates */
985             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
986                                               x+j_coord_offsetC,x+j_coord_offsetD,
987                                               &jx0,&jy0,&jz0);
988
989             /* Calculate displacement vector */
990             dx00             = _mm_sub_ps(ix0,jx0);
991             dy00             = _mm_sub_ps(iy0,jy0);
992             dz00             = _mm_sub_ps(iz0,jz0);
993             dx10             = _mm_sub_ps(ix1,jx0);
994             dy10             = _mm_sub_ps(iy1,jy0);
995             dz10             = _mm_sub_ps(iz1,jz0);
996             dx20             = _mm_sub_ps(ix2,jx0);
997             dy20             = _mm_sub_ps(iy2,jy0);
998             dz20             = _mm_sub_ps(iz2,jz0);
999
1000             /* Calculate squared distance and things based on it */
1001             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1002             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1003             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1004
1005             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1006             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1007             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1008
1009             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1010             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1011             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1012
1013             /* Load parameters for j particles */
1014             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1015                                                               charge+jnrC+0,charge+jnrD+0);
1016             vdwjidx0A        = 2*vdwtype[jnrA+0];
1017             vdwjidx0B        = 2*vdwtype[jnrB+0];
1018             vdwjidx0C        = 2*vdwtype[jnrC+0];
1019             vdwjidx0D        = 2*vdwtype[jnrD+0];
1020
1021             fjx0             = _mm_setzero_ps();
1022             fjy0             = _mm_setzero_ps();
1023             fjz0             = _mm_setzero_ps();
1024
1025             /**************************
1026              * CALCULATE INTERACTIONS *
1027              **************************/
1028
1029             if (gmx_mm_any_lt(rsq00,rcutoff2))
1030             {
1031
1032             r00              = _mm_mul_ps(rsq00,rinv00);
1033             r00              = _mm_andnot_ps(dummy_mask,r00);
1034
1035             /* Compute parameters for interactions between i and j atoms */
1036             qq00             = _mm_mul_ps(iq0,jq0);
1037             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1038                                          vdwparam+vdwioffset0+vdwjidx0B,
1039                                          vdwparam+vdwioffset0+vdwjidx0C,
1040                                          vdwparam+vdwioffset0+vdwjidx0D,
1041                                          &c6_00,&c12_00);
1042
1043             /* REACTION-FIELD ELECTROSTATICS */
1044             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1045
1046             /* LENNARD-JONES DISPERSION/REPULSION */
1047
1048             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1049             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
1050             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1051             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
1052             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1053
1054             d                = _mm_sub_ps(r00,rswitch);
1055             d                = _mm_max_ps(d,_mm_setzero_ps());
1056             d2               = _mm_mul_ps(d,d);
1057             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
1058
1059             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
1060
1061             /* Evaluate switch function */
1062             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1063             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1064             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1065
1066             fscal            = _mm_add_ps(felec,fvdw);
1067
1068             fscal            = _mm_and_ps(fscal,cutoff_mask);
1069
1070             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1071
1072              /* Update vectorial force */
1073             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1074             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1075             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1076
1077             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1078             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1079             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1080
1081             }
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             if (gmx_mm_any_lt(rsq10,rcutoff2))
1088             {
1089
1090             /* Compute parameters for interactions between i and j atoms */
1091             qq10             = _mm_mul_ps(iq1,jq0);
1092
1093             /* REACTION-FIELD ELECTROSTATICS */
1094             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1095
1096             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1097
1098             fscal            = felec;
1099
1100             fscal            = _mm_and_ps(fscal,cutoff_mask);
1101
1102             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1103
1104              /* Update vectorial force */
1105             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1106             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1107             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1108
1109             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1110             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1111             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1112
1113             }
1114
1115             /**************************
1116              * CALCULATE INTERACTIONS *
1117              **************************/
1118
1119             if (gmx_mm_any_lt(rsq20,rcutoff2))
1120             {
1121
1122             /* Compute parameters for interactions between i and j atoms */
1123             qq20             = _mm_mul_ps(iq2,jq0);
1124
1125             /* REACTION-FIELD ELECTROSTATICS */
1126             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1127
1128             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1129
1130             fscal            = felec;
1131
1132             fscal            = _mm_and_ps(fscal,cutoff_mask);
1133
1134             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1135
1136              /* Update vectorial force */
1137             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1138             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1139             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1140
1141             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1142             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1143             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1144
1145             }
1146
1147             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1148             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1149             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1150             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1151
1152             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1153
1154             /* Inner loop uses 131 flops */
1155         }
1156
1157         /* End of innermost loop */
1158
1159         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1160                                               f+i_coord_offset,fshift+i_shift_offset);
1161
1162         /* Increment number of inner iterations */
1163         inneriter                  += j_index_end - j_index_start;
1164
1165         /* Outer loop uses 18 flops */
1166     }
1167
1168     /* Increment number of outer iterations */
1169     outeriter        += nri;
1170
1171     /* Update outer/inner flops */
1172
1173     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1174 }