e1437071fefcc9b6f01107338230562ec3da9db3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     rswitch_scalar   = fr->rvdw_switch;
128     rswitch          = _mm_set1_ps(rswitch_scalar);
129     /* Setup switch parameters */
130     d_scalar         = rcutoff_scalar-rswitch_scalar;
131     d                = _mm_set1_ps(d_scalar);
132     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
133     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
135     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
136     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
170
171         fix0             = _mm_setzero_ps();
172         fiy0             = _mm_setzero_ps();
173         fiz0             = _mm_setzero_ps();
174
175         /* Load parameters for i particles */
176         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
177         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
178
179         /* Reset potential sums */
180         velecsum         = _mm_setzero_ps();
181         vvdwsum          = _mm_setzero_ps();
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
185         {
186
187             /* Get j neighbor index, and coordinate index */
188             jnrA             = jjnr[jidx];
189             jnrB             = jjnr[jidx+1];
190             jnrC             = jjnr[jidx+2];
191             jnrD             = jjnr[jidx+3];
192             j_coord_offsetA  = DIM*jnrA;
193             j_coord_offsetB  = DIM*jnrB;
194             j_coord_offsetC  = DIM*jnrC;
195             j_coord_offsetD  = DIM*jnrD;
196
197             /* load j atom coordinates */
198             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
199                                               x+j_coord_offsetC,x+j_coord_offsetD,
200                                               &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm_sub_ps(ix0,jx0);
204             dy00             = _mm_sub_ps(iy0,jy0);
205             dz00             = _mm_sub_ps(iz0,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
209
210             rinv00           = gmx_mm_invsqrt_ps(rsq00);
211
212             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
216                                                               charge+jnrC+0,charge+jnrD+0);
217             vdwjidx0A        = 2*vdwtype[jnrA+0];
218             vdwjidx0B        = 2*vdwtype[jnrB+0];
219             vdwjidx0C        = 2*vdwtype[jnrC+0];
220             vdwjidx0D        = 2*vdwtype[jnrD+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (gmx_mm_any_lt(rsq00,rcutoff2))
227             {
228
229             r00              = _mm_mul_ps(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm_mul_ps(iq0,jq0);
233             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
234                                          vdwparam+vdwioffset0+vdwjidx0B,
235                                          vdwparam+vdwioffset0+vdwjidx0C,
236                                          vdwparam+vdwioffset0+vdwjidx0D,
237                                          &c6_00,&c12_00);
238
239             /* REACTION-FIELD ELECTROSTATICS */
240             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
241             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
242
243             /* LENNARD-JONES DISPERSION/REPULSION */
244
245             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
246             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
247             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
248             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
249             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
250
251             d                = _mm_sub_ps(r00,rswitch);
252             d                = _mm_max_ps(d,_mm_setzero_ps());
253             d2               = _mm_mul_ps(d,d);
254             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
255
256             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
257
258             /* Evaluate switch function */
259             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
260             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
261             vvdw             = _mm_mul_ps(vvdw,sw);
262             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velec            = _mm_and_ps(velec,cutoff_mask);
266             velecsum         = _mm_add_ps(velecsum,velec);
267             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
268             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
269
270             fscal            = _mm_add_ps(felec,fvdw);
271
272             fscal            = _mm_and_ps(fscal,cutoff_mask);
273
274              /* Update vectorial force */
275             fix0             = _mm_macc_ps(dx00,fscal,fix0);
276             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
277             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
284                                                    _mm_mul_ps(dx00,fscal),
285                                                    _mm_mul_ps(dy00,fscal),
286                                                    _mm_mul_ps(dz00,fscal));
287
288             }
289
290             /* Inner loop uses 73 flops */
291         }
292
293         if(jidx<j_index_end)
294         {
295
296             /* Get j neighbor index, and coordinate index */
297             jnrlistA         = jjnr[jidx];
298             jnrlistB         = jjnr[jidx+1];
299             jnrlistC         = jjnr[jidx+2];
300             jnrlistD         = jjnr[jidx+3];
301             /* Sign of each element will be negative for non-real atoms.
302              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
303              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
304              */
305             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
306             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
307             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
308             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
309             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
310             j_coord_offsetA  = DIM*jnrA;
311             j_coord_offsetB  = DIM*jnrB;
312             j_coord_offsetC  = DIM*jnrC;
313             j_coord_offsetD  = DIM*jnrD;
314
315             /* load j atom coordinates */
316             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
317                                               x+j_coord_offsetC,x+j_coord_offsetD,
318                                               &jx0,&jy0,&jz0);
319
320             /* Calculate displacement vector */
321             dx00             = _mm_sub_ps(ix0,jx0);
322             dy00             = _mm_sub_ps(iy0,jy0);
323             dz00             = _mm_sub_ps(iz0,jz0);
324
325             /* Calculate squared distance and things based on it */
326             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
327
328             rinv00           = gmx_mm_invsqrt_ps(rsq00);
329
330             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
331
332             /* Load parameters for j particles */
333             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
334                                                               charge+jnrC+0,charge+jnrD+0);
335             vdwjidx0A        = 2*vdwtype[jnrA+0];
336             vdwjidx0B        = 2*vdwtype[jnrB+0];
337             vdwjidx0C        = 2*vdwtype[jnrC+0];
338             vdwjidx0D        = 2*vdwtype[jnrD+0];
339
340             /**************************
341              * CALCULATE INTERACTIONS *
342              **************************/
343
344             if (gmx_mm_any_lt(rsq00,rcutoff2))
345             {
346
347             r00              = _mm_mul_ps(rsq00,rinv00);
348             r00              = _mm_andnot_ps(dummy_mask,r00);
349
350             /* Compute parameters for interactions between i and j atoms */
351             qq00             = _mm_mul_ps(iq0,jq0);
352             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
353                                          vdwparam+vdwioffset0+vdwjidx0B,
354                                          vdwparam+vdwioffset0+vdwjidx0C,
355                                          vdwparam+vdwioffset0+vdwjidx0D,
356                                          &c6_00,&c12_00);
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
360             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
361
362             /* LENNARD-JONES DISPERSION/REPULSION */
363
364             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
365             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
366             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
367             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
368             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
369
370             d                = _mm_sub_ps(r00,rswitch);
371             d                = _mm_max_ps(d,_mm_setzero_ps());
372             d2               = _mm_mul_ps(d,d);
373             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
374
375             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
376
377             /* Evaluate switch function */
378             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
379             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
380             vvdw             = _mm_mul_ps(vvdw,sw);
381             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
382
383             /* Update potential sum for this i atom from the interaction with this j atom. */
384             velec            = _mm_and_ps(velec,cutoff_mask);
385             velec            = _mm_andnot_ps(dummy_mask,velec);
386             velecsum         = _mm_add_ps(velecsum,velec);
387             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
388             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
389             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
390
391             fscal            = _mm_add_ps(felec,fvdw);
392
393             fscal            = _mm_and_ps(fscal,cutoff_mask);
394
395             fscal            = _mm_andnot_ps(dummy_mask,fscal);
396
397              /* Update vectorial force */
398             fix0             = _mm_macc_ps(dx00,fscal,fix0);
399             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
400             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
401
402             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
403             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
404             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
405             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
406             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
407                                                    _mm_mul_ps(dx00,fscal),
408                                                    _mm_mul_ps(dy00,fscal),
409                                                    _mm_mul_ps(dz00,fscal));
410
411             }
412
413             /* Inner loop uses 74 flops */
414         }
415
416         /* End of innermost loop */
417
418         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
419                                               f+i_coord_offset,fshift+i_shift_offset);
420
421         ggid                        = gid[iidx];
422         /* Update potential energies */
423         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
424         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
425
426         /* Increment number of inner iterations */
427         inneriter                  += j_index_end - j_index_start;
428
429         /* Outer loop uses 9 flops */
430     }
431
432     /* Increment number of outer iterations */
433     outeriter        += nri;
434
435     /* Update outer/inner flops */
436
437     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
438 }
439 /*
440  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
441  * Electrostatics interaction: ReactionField
442  * VdW interaction:            LennardJones
443  * Geometry:                   Particle-Particle
444  * Calculate force/pot:        Force
445  */
446 void
447 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
448                     (t_nblist                    * gmx_restrict       nlist,
449                      rvec                        * gmx_restrict          xx,
450                      rvec                        * gmx_restrict          ff,
451                      t_forcerec                  * gmx_restrict          fr,
452                      t_mdatoms                   * gmx_restrict     mdatoms,
453                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
454                      t_nrnb                      * gmx_restrict        nrnb)
455 {
456     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
457      * just 0 for non-waters.
458      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
459      * jnr indices corresponding to data put in the four positions in the SIMD register.
460      */
461     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
462     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
463     int              jnrA,jnrB,jnrC,jnrD;
464     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
465     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
466     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
467     real             rcutoff_scalar;
468     real             *shiftvec,*fshift,*x,*f;
469     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
470     real             scratch[4*DIM];
471     __m128           fscal,rcutoff,rcutoff2,jidxall;
472     int              vdwioffset0;
473     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
474     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
475     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
476     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
477     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
478     real             *charge;
479     int              nvdwtype;
480     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
481     int              *vdwtype;
482     real             *vdwparam;
483     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
484     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
485     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
486     real             rswitch_scalar,d_scalar;
487     __m128           dummy_mask,cutoff_mask;
488     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
489     __m128           one     = _mm_set1_ps(1.0);
490     __m128           two     = _mm_set1_ps(2.0);
491     x                = xx[0];
492     f                = ff[0];
493
494     nri              = nlist->nri;
495     iinr             = nlist->iinr;
496     jindex           = nlist->jindex;
497     jjnr             = nlist->jjnr;
498     shiftidx         = nlist->shift;
499     gid              = nlist->gid;
500     shiftvec         = fr->shift_vec[0];
501     fshift           = fr->fshift[0];
502     facel            = _mm_set1_ps(fr->epsfac);
503     charge           = mdatoms->chargeA;
504     krf              = _mm_set1_ps(fr->ic->k_rf);
505     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
506     crf              = _mm_set1_ps(fr->ic->c_rf);
507     nvdwtype         = fr->ntype;
508     vdwparam         = fr->nbfp;
509     vdwtype          = mdatoms->typeA;
510
511     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
512     rcutoff_scalar   = fr->rcoulomb;
513     rcutoff          = _mm_set1_ps(rcutoff_scalar);
514     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
515
516     rswitch_scalar   = fr->rvdw_switch;
517     rswitch          = _mm_set1_ps(rswitch_scalar);
518     /* Setup switch parameters */
519     d_scalar         = rcutoff_scalar-rswitch_scalar;
520     d                = _mm_set1_ps(d_scalar);
521     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
522     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
523     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
524     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
525     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
526     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
527
528     /* Avoid stupid compiler warnings */
529     jnrA = jnrB = jnrC = jnrD = 0;
530     j_coord_offsetA = 0;
531     j_coord_offsetB = 0;
532     j_coord_offsetC = 0;
533     j_coord_offsetD = 0;
534
535     outeriter        = 0;
536     inneriter        = 0;
537
538     for(iidx=0;iidx<4*DIM;iidx++)
539     {
540         scratch[iidx] = 0.0;
541     }
542
543     /* Start outer loop over neighborlists */
544     for(iidx=0; iidx<nri; iidx++)
545     {
546         /* Load shift vector for this list */
547         i_shift_offset   = DIM*shiftidx[iidx];
548
549         /* Load limits for loop over neighbors */
550         j_index_start    = jindex[iidx];
551         j_index_end      = jindex[iidx+1];
552
553         /* Get outer coordinate index */
554         inr              = iinr[iidx];
555         i_coord_offset   = DIM*inr;
556
557         /* Load i particle coords and add shift vector */
558         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
559
560         fix0             = _mm_setzero_ps();
561         fiy0             = _mm_setzero_ps();
562         fiz0             = _mm_setzero_ps();
563
564         /* Load parameters for i particles */
565         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
566         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
567
568         /* Start inner kernel loop */
569         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
570         {
571
572             /* Get j neighbor index, and coordinate index */
573             jnrA             = jjnr[jidx];
574             jnrB             = jjnr[jidx+1];
575             jnrC             = jjnr[jidx+2];
576             jnrD             = jjnr[jidx+3];
577             j_coord_offsetA  = DIM*jnrA;
578             j_coord_offsetB  = DIM*jnrB;
579             j_coord_offsetC  = DIM*jnrC;
580             j_coord_offsetD  = DIM*jnrD;
581
582             /* load j atom coordinates */
583             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
584                                               x+j_coord_offsetC,x+j_coord_offsetD,
585                                               &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm_sub_ps(ix0,jx0);
589             dy00             = _mm_sub_ps(iy0,jy0);
590             dz00             = _mm_sub_ps(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm_invsqrt_ps(rsq00);
596
597             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
601                                                               charge+jnrC+0,charge+jnrD+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603             vdwjidx0B        = 2*vdwtype[jnrB+0];
604             vdwjidx0C        = 2*vdwtype[jnrC+0];
605             vdwjidx0D        = 2*vdwtype[jnrD+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             if (gmx_mm_any_lt(rsq00,rcutoff2))
612             {
613
614             r00              = _mm_mul_ps(rsq00,rinv00);
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq00             = _mm_mul_ps(iq0,jq0);
618             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
619                                          vdwparam+vdwioffset0+vdwjidx0B,
620                                          vdwparam+vdwioffset0+vdwjidx0C,
621                                          vdwparam+vdwioffset0+vdwjidx0D,
622                                          &c6_00,&c12_00);
623
624             /* REACTION-FIELD ELECTROSTATICS */
625             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
626
627             /* LENNARD-JONES DISPERSION/REPULSION */
628
629             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
630             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
631             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
632             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
633             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
634
635             d                = _mm_sub_ps(r00,rswitch);
636             d                = _mm_max_ps(d,_mm_setzero_ps());
637             d2               = _mm_mul_ps(d,d);
638             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
639
640             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
641
642             /* Evaluate switch function */
643             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
644             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
645             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
646
647             fscal            = _mm_add_ps(felec,fvdw);
648
649             fscal            = _mm_and_ps(fscal,cutoff_mask);
650
651              /* Update vectorial force */
652             fix0             = _mm_macc_ps(dx00,fscal,fix0);
653             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
654             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
655
656             fjptrA             = f+j_coord_offsetA;
657             fjptrB             = f+j_coord_offsetB;
658             fjptrC             = f+j_coord_offsetC;
659             fjptrD             = f+j_coord_offsetD;
660             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
661                                                    _mm_mul_ps(dx00,fscal),
662                                                    _mm_mul_ps(dy00,fscal),
663                                                    _mm_mul_ps(dz00,fscal));
664
665             }
666
667             /* Inner loop uses 64 flops */
668         }
669
670         if(jidx<j_index_end)
671         {
672
673             /* Get j neighbor index, and coordinate index */
674             jnrlistA         = jjnr[jidx];
675             jnrlistB         = jjnr[jidx+1];
676             jnrlistC         = jjnr[jidx+2];
677             jnrlistD         = jjnr[jidx+3];
678             /* Sign of each element will be negative for non-real atoms.
679              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
680              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
681              */
682             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
683             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
684             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
685             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
686             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
687             j_coord_offsetA  = DIM*jnrA;
688             j_coord_offsetB  = DIM*jnrB;
689             j_coord_offsetC  = DIM*jnrC;
690             j_coord_offsetD  = DIM*jnrD;
691
692             /* load j atom coordinates */
693             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                               x+j_coord_offsetC,x+j_coord_offsetD,
695                                               &jx0,&jy0,&jz0);
696
697             /* Calculate displacement vector */
698             dx00             = _mm_sub_ps(ix0,jx0);
699             dy00             = _mm_sub_ps(iy0,jy0);
700             dz00             = _mm_sub_ps(iz0,jz0);
701
702             /* Calculate squared distance and things based on it */
703             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
704
705             rinv00           = gmx_mm_invsqrt_ps(rsq00);
706
707             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
708
709             /* Load parameters for j particles */
710             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
711                                                               charge+jnrC+0,charge+jnrD+0);
712             vdwjidx0A        = 2*vdwtype[jnrA+0];
713             vdwjidx0B        = 2*vdwtype[jnrB+0];
714             vdwjidx0C        = 2*vdwtype[jnrC+0];
715             vdwjidx0D        = 2*vdwtype[jnrD+0];
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             if (gmx_mm_any_lt(rsq00,rcutoff2))
722             {
723
724             r00              = _mm_mul_ps(rsq00,rinv00);
725             r00              = _mm_andnot_ps(dummy_mask,r00);
726
727             /* Compute parameters for interactions between i and j atoms */
728             qq00             = _mm_mul_ps(iq0,jq0);
729             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
730                                          vdwparam+vdwioffset0+vdwjidx0B,
731                                          vdwparam+vdwioffset0+vdwjidx0C,
732                                          vdwparam+vdwioffset0+vdwjidx0D,
733                                          &c6_00,&c12_00);
734
735             /* REACTION-FIELD ELECTROSTATICS */
736             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
737
738             /* LENNARD-JONES DISPERSION/REPULSION */
739
740             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
741             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
742             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
743             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
744             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
745
746             d                = _mm_sub_ps(r00,rswitch);
747             d                = _mm_max_ps(d,_mm_setzero_ps());
748             d2               = _mm_mul_ps(d,d);
749             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
750
751             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
752
753             /* Evaluate switch function */
754             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
755             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
756             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
757
758             fscal            = _mm_add_ps(felec,fvdw);
759
760             fscal            = _mm_and_ps(fscal,cutoff_mask);
761
762             fscal            = _mm_andnot_ps(dummy_mask,fscal);
763
764              /* Update vectorial force */
765             fix0             = _mm_macc_ps(dx00,fscal,fix0);
766             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
767             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
768
769             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
770             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
771             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
772             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
773             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
774                                                    _mm_mul_ps(dx00,fscal),
775                                                    _mm_mul_ps(dy00,fscal),
776                                                    _mm_mul_ps(dz00,fscal));
777
778             }
779
780             /* Inner loop uses 65 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
786                                               f+i_coord_offset,fshift+i_shift_offset);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 7 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
800 }