Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99     real             rswitch_scalar,d_scalar;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125     rcutoff_scalar   = fr->rcoulomb;
126     rcutoff          = _mm_set1_ps(rcutoff_scalar);
127     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
128
129     rswitch_scalar   = fr->rvdw_switch;
130     rswitch          = _mm_set1_ps(rswitch_scalar);
131     /* Setup switch parameters */
132     d_scalar         = rcutoff_scalar-rswitch_scalar;
133     d                = _mm_set1_ps(d_scalar);
134     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173         fix0             = _mm_setzero_ps();
174         fiy0             = _mm_setzero_ps();
175         fiz0             = _mm_setzero_ps();
176
177         /* Load parameters for i particles */
178         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
179         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
180
181         /* Reset potential sums */
182         velecsum         = _mm_setzero_ps();
183         vvdwsum          = _mm_setzero_ps();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201                                               x+j_coord_offsetC,x+j_coord_offsetD,
202                                               &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm_sub_ps(ix0,jx0);
206             dy00             = _mm_sub_ps(iy0,jy0);
207             dz00             = _mm_sub_ps(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211
212             rinv00           = gmx_mm_invsqrt_ps(rsq00);
213
214             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
215
216             /* Load parameters for j particles */
217             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218                                                               charge+jnrC+0,charge+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             if (gmx_mm_any_lt(rsq00,rcutoff2))
229             {
230
231             r00              = _mm_mul_ps(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _mm_mul_ps(iq0,jq0);
235             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
236                                          vdwparam+vdwioffset0+vdwjidx0B,
237                                          vdwparam+vdwioffset0+vdwjidx0C,
238                                          vdwparam+vdwioffset0+vdwjidx0D,
239                                          &c6_00,&c12_00);
240
241             /* REACTION-FIELD ELECTROSTATICS */
242             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
243             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
249             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
250             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
251             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
252
253             d                = _mm_sub_ps(r00,rswitch);
254             d                = _mm_max_ps(d,_mm_setzero_ps());
255             d2               = _mm_mul_ps(d,d);
256             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
257
258             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
259
260             /* Evaluate switch function */
261             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
262             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
263             vvdw             = _mm_mul_ps(vvdw,sw);
264             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velec            = _mm_and_ps(velec,cutoff_mask);
268             velecsum         = _mm_add_ps(velecsum,velec);
269             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
270             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
271
272             fscal            = _mm_add_ps(felec,fvdw);
273
274             fscal            = _mm_and_ps(fscal,cutoff_mask);
275
276              /* Update vectorial force */
277             fix0             = _mm_macc_ps(dx00,fscal,fix0);
278             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
279             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
286                                                    _mm_mul_ps(dx00,fscal),
287                                                    _mm_mul_ps(dy00,fscal),
288                                                    _mm_mul_ps(dz00,fscal));
289
290             }
291
292             /* Inner loop uses 73 flops */
293         }
294
295         if(jidx<j_index_end)
296         {
297
298             /* Get j neighbor index, and coordinate index */
299             jnrlistA         = jjnr[jidx];
300             jnrlistB         = jjnr[jidx+1];
301             jnrlistC         = jjnr[jidx+2];
302             jnrlistD         = jjnr[jidx+3];
303             /* Sign of each element will be negative for non-real atoms.
304              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
305              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
306              */
307             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
308             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
309             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
310             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
311             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316
317             /* load j atom coordinates */
318             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
319                                               x+j_coord_offsetC,x+j_coord_offsetD,
320                                               &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm_sub_ps(ix0,jx0);
324             dy00             = _mm_sub_ps(iy0,jy0);
325             dz00             = _mm_sub_ps(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
329
330             rinv00           = gmx_mm_invsqrt_ps(rsq00);
331
332             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
333
334             /* Load parameters for j particles */
335             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
336                                                               charge+jnrC+0,charge+jnrD+0);
337             vdwjidx0A        = 2*vdwtype[jnrA+0];
338             vdwjidx0B        = 2*vdwtype[jnrB+0];
339             vdwjidx0C        = 2*vdwtype[jnrC+0];
340             vdwjidx0D        = 2*vdwtype[jnrD+0];
341
342             /**************************
343              * CALCULATE INTERACTIONS *
344              **************************/
345
346             if (gmx_mm_any_lt(rsq00,rcutoff2))
347             {
348
349             r00              = _mm_mul_ps(rsq00,rinv00);
350             r00              = _mm_andnot_ps(dummy_mask,r00);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq00             = _mm_mul_ps(iq0,jq0);
354             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
355                                          vdwparam+vdwioffset0+vdwjidx0B,
356                                          vdwparam+vdwioffset0+vdwjidx0C,
357                                          vdwparam+vdwioffset0+vdwjidx0D,
358                                          &c6_00,&c12_00);
359
360             /* REACTION-FIELD ELECTROSTATICS */
361             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
362             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
363
364             /* LENNARD-JONES DISPERSION/REPULSION */
365
366             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
367             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
368             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
369             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
370             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
371
372             d                = _mm_sub_ps(r00,rswitch);
373             d                = _mm_max_ps(d,_mm_setzero_ps());
374             d2               = _mm_mul_ps(d,d);
375             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
376
377             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
378
379             /* Evaluate switch function */
380             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
381             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
382             vvdw             = _mm_mul_ps(vvdw,sw);
383             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velec            = _mm_and_ps(velec,cutoff_mask);
387             velec            = _mm_andnot_ps(dummy_mask,velec);
388             velecsum         = _mm_add_ps(velecsum,velec);
389             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
390             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
391             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
392
393             fscal            = _mm_add_ps(felec,fvdw);
394
395             fscal            = _mm_and_ps(fscal,cutoff_mask);
396
397             fscal            = _mm_andnot_ps(dummy_mask,fscal);
398
399              /* Update vectorial force */
400             fix0             = _mm_macc_ps(dx00,fscal,fix0);
401             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
402             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
403
404             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
405             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
406             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
407             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
408             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
409                                                    _mm_mul_ps(dx00,fscal),
410                                                    _mm_mul_ps(dy00,fscal),
411                                                    _mm_mul_ps(dz00,fscal));
412
413             }
414
415             /* Inner loop uses 74 flops */
416         }
417
418         /* End of innermost loop */
419
420         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
421                                               f+i_coord_offset,fshift+i_shift_offset);
422
423         ggid                        = gid[iidx];
424         /* Update potential energies */
425         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
426         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
427
428         /* Increment number of inner iterations */
429         inneriter                  += j_index_end - j_index_start;
430
431         /* Outer loop uses 9 flops */
432     }
433
434     /* Increment number of outer iterations */
435     outeriter        += nri;
436
437     /* Update outer/inner flops */
438
439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
440 }
441 /*
442  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
443  * Electrostatics interaction: ReactionField
444  * VdW interaction:            LennardJones
445  * Geometry:                   Particle-Particle
446  * Calculate force/pot:        Force
447  */
448 void
449 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_128_fma_single
450                     (t_nblist                    * gmx_restrict       nlist,
451                      rvec                        * gmx_restrict          xx,
452                      rvec                        * gmx_restrict          ff,
453                      t_forcerec                  * gmx_restrict          fr,
454                      t_mdatoms                   * gmx_restrict     mdatoms,
455                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
456                      t_nrnb                      * gmx_restrict        nrnb)
457 {
458     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
459      * just 0 for non-waters.
460      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
461      * jnr indices corresponding to data put in the four positions in the SIMD register.
462      */
463     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
464     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
465     int              jnrA,jnrB,jnrC,jnrD;
466     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
467     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
468     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
469     real             rcutoff_scalar;
470     real             *shiftvec,*fshift,*x,*f;
471     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
472     real             scratch[4*DIM];
473     __m128           fscal,rcutoff,rcutoff2,jidxall;
474     int              vdwioffset0;
475     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
476     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
477     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
478     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
479     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
480     real             *charge;
481     int              nvdwtype;
482     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
483     int              *vdwtype;
484     real             *vdwparam;
485     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
486     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
487     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
488     real             rswitch_scalar,d_scalar;
489     __m128           dummy_mask,cutoff_mask;
490     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
491     __m128           one     = _mm_set1_ps(1.0);
492     __m128           two     = _mm_set1_ps(2.0);
493     x                = xx[0];
494     f                = ff[0];
495
496     nri              = nlist->nri;
497     iinr             = nlist->iinr;
498     jindex           = nlist->jindex;
499     jjnr             = nlist->jjnr;
500     shiftidx         = nlist->shift;
501     gid              = nlist->gid;
502     shiftvec         = fr->shift_vec[0];
503     fshift           = fr->fshift[0];
504     facel            = _mm_set1_ps(fr->epsfac);
505     charge           = mdatoms->chargeA;
506     krf              = _mm_set1_ps(fr->ic->k_rf);
507     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
508     crf              = _mm_set1_ps(fr->ic->c_rf);
509     nvdwtype         = fr->ntype;
510     vdwparam         = fr->nbfp;
511     vdwtype          = mdatoms->typeA;
512
513     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
514     rcutoff_scalar   = fr->rcoulomb;
515     rcutoff          = _mm_set1_ps(rcutoff_scalar);
516     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
517
518     rswitch_scalar   = fr->rvdw_switch;
519     rswitch          = _mm_set1_ps(rswitch_scalar);
520     /* Setup switch parameters */
521     d_scalar         = rcutoff_scalar-rswitch_scalar;
522     d                = _mm_set1_ps(d_scalar);
523     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
524     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
525     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
526     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
527     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
528     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
529
530     /* Avoid stupid compiler warnings */
531     jnrA = jnrB = jnrC = jnrD = 0;
532     j_coord_offsetA = 0;
533     j_coord_offsetB = 0;
534     j_coord_offsetC = 0;
535     j_coord_offsetD = 0;
536
537     outeriter        = 0;
538     inneriter        = 0;
539
540     for(iidx=0;iidx<4*DIM;iidx++)
541     {
542         scratch[iidx] = 0.0;
543     }
544
545     /* Start outer loop over neighborlists */
546     for(iidx=0; iidx<nri; iidx++)
547     {
548         /* Load shift vector for this list */
549         i_shift_offset   = DIM*shiftidx[iidx];
550
551         /* Load limits for loop over neighbors */
552         j_index_start    = jindex[iidx];
553         j_index_end      = jindex[iidx+1];
554
555         /* Get outer coordinate index */
556         inr              = iinr[iidx];
557         i_coord_offset   = DIM*inr;
558
559         /* Load i particle coords and add shift vector */
560         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
561
562         fix0             = _mm_setzero_ps();
563         fiy0             = _mm_setzero_ps();
564         fiz0             = _mm_setzero_ps();
565
566         /* Load parameters for i particles */
567         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
568         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
569
570         /* Start inner kernel loop */
571         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
572         {
573
574             /* Get j neighbor index, and coordinate index */
575             jnrA             = jjnr[jidx];
576             jnrB             = jjnr[jidx+1];
577             jnrC             = jjnr[jidx+2];
578             jnrD             = jjnr[jidx+3];
579             j_coord_offsetA  = DIM*jnrA;
580             j_coord_offsetB  = DIM*jnrB;
581             j_coord_offsetC  = DIM*jnrC;
582             j_coord_offsetD  = DIM*jnrD;
583
584             /* load j atom coordinates */
585             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
586                                               x+j_coord_offsetC,x+j_coord_offsetD,
587                                               &jx0,&jy0,&jz0);
588
589             /* Calculate displacement vector */
590             dx00             = _mm_sub_ps(ix0,jx0);
591             dy00             = _mm_sub_ps(iy0,jy0);
592             dz00             = _mm_sub_ps(iz0,jz0);
593
594             /* Calculate squared distance and things based on it */
595             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
596
597             rinv00           = gmx_mm_invsqrt_ps(rsq00);
598
599             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
600
601             /* Load parameters for j particles */
602             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
603                                                               charge+jnrC+0,charge+jnrD+0);
604             vdwjidx0A        = 2*vdwtype[jnrA+0];
605             vdwjidx0B        = 2*vdwtype[jnrB+0];
606             vdwjidx0C        = 2*vdwtype[jnrC+0];
607             vdwjidx0D        = 2*vdwtype[jnrD+0];
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm_any_lt(rsq00,rcutoff2))
614             {
615
616             r00              = _mm_mul_ps(rsq00,rinv00);
617
618             /* Compute parameters for interactions between i and j atoms */
619             qq00             = _mm_mul_ps(iq0,jq0);
620             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
621                                          vdwparam+vdwioffset0+vdwjidx0B,
622                                          vdwparam+vdwioffset0+vdwjidx0C,
623                                          vdwparam+vdwioffset0+vdwjidx0D,
624                                          &c6_00,&c12_00);
625
626             /* REACTION-FIELD ELECTROSTATICS */
627             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
628
629             /* LENNARD-JONES DISPERSION/REPULSION */
630
631             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
632             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
633             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
634             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
635             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
636
637             d                = _mm_sub_ps(r00,rswitch);
638             d                = _mm_max_ps(d,_mm_setzero_ps());
639             d2               = _mm_mul_ps(d,d);
640             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
641
642             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
643
644             /* Evaluate switch function */
645             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
646             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
647             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
648
649             fscal            = _mm_add_ps(felec,fvdw);
650
651             fscal            = _mm_and_ps(fscal,cutoff_mask);
652
653              /* Update vectorial force */
654             fix0             = _mm_macc_ps(dx00,fscal,fix0);
655             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
656             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
657
658             fjptrA             = f+j_coord_offsetA;
659             fjptrB             = f+j_coord_offsetB;
660             fjptrC             = f+j_coord_offsetC;
661             fjptrD             = f+j_coord_offsetD;
662             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
663                                                    _mm_mul_ps(dx00,fscal),
664                                                    _mm_mul_ps(dy00,fscal),
665                                                    _mm_mul_ps(dz00,fscal));
666
667             }
668
669             /* Inner loop uses 64 flops */
670         }
671
672         if(jidx<j_index_end)
673         {
674
675             /* Get j neighbor index, and coordinate index */
676             jnrlistA         = jjnr[jidx];
677             jnrlistB         = jjnr[jidx+1];
678             jnrlistC         = jjnr[jidx+2];
679             jnrlistD         = jjnr[jidx+3];
680             /* Sign of each element will be negative for non-real atoms.
681              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
682              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
683              */
684             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
685             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
686             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
687             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
688             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
689             j_coord_offsetA  = DIM*jnrA;
690             j_coord_offsetB  = DIM*jnrB;
691             j_coord_offsetC  = DIM*jnrC;
692             j_coord_offsetD  = DIM*jnrD;
693
694             /* load j atom coordinates */
695             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
696                                               x+j_coord_offsetC,x+j_coord_offsetD,
697                                               &jx0,&jy0,&jz0);
698
699             /* Calculate displacement vector */
700             dx00             = _mm_sub_ps(ix0,jx0);
701             dy00             = _mm_sub_ps(iy0,jy0);
702             dz00             = _mm_sub_ps(iz0,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
706
707             rinv00           = gmx_mm_invsqrt_ps(rsq00);
708
709             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
710
711             /* Load parameters for j particles */
712             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
713                                                               charge+jnrC+0,charge+jnrD+0);
714             vdwjidx0A        = 2*vdwtype[jnrA+0];
715             vdwjidx0B        = 2*vdwtype[jnrB+0];
716             vdwjidx0C        = 2*vdwtype[jnrC+0];
717             vdwjidx0D        = 2*vdwtype[jnrD+0];
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (gmx_mm_any_lt(rsq00,rcutoff2))
724             {
725
726             r00              = _mm_mul_ps(rsq00,rinv00);
727             r00              = _mm_andnot_ps(dummy_mask,r00);
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq00             = _mm_mul_ps(iq0,jq0);
731             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
732                                          vdwparam+vdwioffset0+vdwjidx0B,
733                                          vdwparam+vdwioffset0+vdwjidx0C,
734                                          vdwparam+vdwioffset0+vdwjidx0D,
735                                          &c6_00,&c12_00);
736
737             /* REACTION-FIELD ELECTROSTATICS */
738             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
739
740             /* LENNARD-JONES DISPERSION/REPULSION */
741
742             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
743             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
744             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
745             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
746             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
747
748             d                = _mm_sub_ps(r00,rswitch);
749             d                = _mm_max_ps(d,_mm_setzero_ps());
750             d2               = _mm_mul_ps(d,d);
751             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
752
753             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
754
755             /* Evaluate switch function */
756             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
757             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
758             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
759
760             fscal            = _mm_add_ps(felec,fvdw);
761
762             fscal            = _mm_and_ps(fscal,cutoff_mask);
763
764             fscal            = _mm_andnot_ps(dummy_mask,fscal);
765
766              /* Update vectorial force */
767             fix0             = _mm_macc_ps(dx00,fscal,fix0);
768             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
769             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
770
771             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
772             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
773             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
774             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
775             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
776                                                    _mm_mul_ps(dx00,fscal),
777                                                    _mm_mul_ps(dy00,fscal),
778                                                    _mm_mul_ps(dz00,fscal));
779
780             }
781
782             /* Inner loop uses 65 flops */
783         }
784
785         /* End of innermost loop */
786
787         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
788                                               f+i_coord_offset,fshift+i_shift_offset);
789
790         /* Increment number of inner iterations */
791         inneriter                  += j_index_end - j_index_start;
792
793         /* Outer loop uses 7 flops */
794     }
795
796     /* Increment number of outer iterations */
797     outeriter        += nri;
798
799     /* Update outer/inner flops */
800
801     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*65);
802 }