f9a2aedd17829fe3674765f03cf82ca1d4ce1160
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            LennardJones
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
129     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
130     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
131     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm_set1_ps(rcutoff_scalar);
136     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
137
138     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
139     rvdw             = _mm_set1_ps(fr->rvdw);
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
173
174         fix0             = _mm_setzero_ps();
175         fiy0             = _mm_setzero_ps();
176         fiz0             = _mm_setzero_ps();
177         fix1             = _mm_setzero_ps();
178         fiy1             = _mm_setzero_ps();
179         fiz1             = _mm_setzero_ps();
180         fix2             = _mm_setzero_ps();
181         fiy2             = _mm_setzero_ps();
182         fiz2             = _mm_setzero_ps();
183
184         /* Reset potential sums */
185         velecsum         = _mm_setzero_ps();
186         vvdwsum          = _mm_setzero_ps();
187
188         /* Start inner kernel loop */
189         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190         {
191
192             /* Get j neighbor index, and coordinate index */
193             jnrA             = jjnr[jidx];
194             jnrB             = jjnr[jidx+1];
195             jnrC             = jjnr[jidx+2];
196             jnrD             = jjnr[jidx+3];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201
202             /* load j atom coordinates */
203             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204                                               x+j_coord_offsetC,x+j_coord_offsetD,
205                                               &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm_sub_ps(ix0,jx0);
209             dy00             = _mm_sub_ps(iy0,jy0);
210             dz00             = _mm_sub_ps(iz0,jz0);
211             dx10             = _mm_sub_ps(ix1,jx0);
212             dy10             = _mm_sub_ps(iy1,jy0);
213             dz10             = _mm_sub_ps(iz1,jz0);
214             dx20             = _mm_sub_ps(ix2,jx0);
215             dy20             = _mm_sub_ps(iy2,jy0);
216             dz20             = _mm_sub_ps(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
220             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
221             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226
227             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                               charge+jnrC+0,charge+jnrD+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238
239             fjx0             = _mm_setzero_ps();
240             fjy0             = _mm_setzero_ps();
241             fjz0             = _mm_setzero_ps();
242
243             /**************************
244              * CALCULATE INTERACTIONS *
245              **************************/
246
247             if (gmx_mm_any_lt(rsq00,rcutoff2))
248             {
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm_mul_ps(iq0,jq0);
252             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
253                                          vdwparam+vdwioffset0+vdwjidx0B,
254                                          vdwparam+vdwioffset0+vdwjidx0C,
255                                          vdwparam+vdwioffset0+vdwjidx0D,
256                                          &c6_00,&c12_00);
257
258             /* REACTION-FIELD ELECTROSTATICS */
259             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
260             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
261
262             /* LENNARD-JONES DISPERSION/REPULSION */
263
264             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
265             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
266             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
267             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
268                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
269             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
270
271             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
272
273             /* Update potential sum for this i atom from the interaction with this j atom. */
274             velec            = _mm_and_ps(velec,cutoff_mask);
275             velecsum         = _mm_add_ps(velecsum,velec);
276             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
277             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
278
279             fscal            = _mm_add_ps(felec,fvdw);
280
281             fscal            = _mm_and_ps(fscal,cutoff_mask);
282
283              /* Update vectorial force */
284             fix0             = _mm_macc_ps(dx00,fscal,fix0);
285             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
286             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
287
288             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
289             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
290             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
291
292             }
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq10,rcutoff2))
299             {
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm_mul_ps(iq1,jq0);
303
304             /* REACTION-FIELD ELECTROSTATICS */
305             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
306             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
307
308             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velec            = _mm_and_ps(velec,cutoff_mask);
312             velecsum         = _mm_add_ps(velecsum,velec);
313
314             fscal            = felec;
315
316             fscal            = _mm_and_ps(fscal,cutoff_mask);
317
318              /* Update vectorial force */
319             fix1             = _mm_macc_ps(dx10,fscal,fix1);
320             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
321             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
322
323             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
324             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
325             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq20,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq20             = _mm_mul_ps(iq2,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
341             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
342
343             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_and_ps(velec,cutoff_mask);
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm_and_ps(fscal,cutoff_mask);
352
353              /* Update vectorial force */
354             fix2             = _mm_macc_ps(dx20,fscal,fix2);
355             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
356             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
357
358             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
359             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
360             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
361
362             }
363
364             fjptrA             = f+j_coord_offsetA;
365             fjptrB             = f+j_coord_offsetB;
366             fjptrC             = f+j_coord_offsetC;
367             fjptrD             = f+j_coord_offsetD;
368
369             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
370
371             /* Inner loop uses 135 flops */
372         }
373
374         if(jidx<j_index_end)
375         {
376
377             /* Get j neighbor index, and coordinate index */
378             jnrlistA         = jjnr[jidx];
379             jnrlistB         = jjnr[jidx+1];
380             jnrlistC         = jjnr[jidx+2];
381             jnrlistD         = jjnr[jidx+3];
382             /* Sign of each element will be negative for non-real atoms.
383              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
384              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
385              */
386             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
387             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
388             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
389             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
390             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
391             j_coord_offsetA  = DIM*jnrA;
392             j_coord_offsetB  = DIM*jnrB;
393             j_coord_offsetC  = DIM*jnrC;
394             j_coord_offsetD  = DIM*jnrD;
395
396             /* load j atom coordinates */
397             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
398                                               x+j_coord_offsetC,x+j_coord_offsetD,
399                                               &jx0,&jy0,&jz0);
400
401             /* Calculate displacement vector */
402             dx00             = _mm_sub_ps(ix0,jx0);
403             dy00             = _mm_sub_ps(iy0,jy0);
404             dz00             = _mm_sub_ps(iz0,jz0);
405             dx10             = _mm_sub_ps(ix1,jx0);
406             dy10             = _mm_sub_ps(iy1,jy0);
407             dz10             = _mm_sub_ps(iz1,jz0);
408             dx20             = _mm_sub_ps(ix2,jx0);
409             dy20             = _mm_sub_ps(iy2,jy0);
410             dz20             = _mm_sub_ps(iz2,jz0);
411
412             /* Calculate squared distance and things based on it */
413             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
414             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
415             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
416
417             rinv00           = gmx_mm_invsqrt_ps(rsq00);
418             rinv10           = gmx_mm_invsqrt_ps(rsq10);
419             rinv20           = gmx_mm_invsqrt_ps(rsq20);
420
421             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
422             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
423             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
424
425             /* Load parameters for j particles */
426             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
427                                                               charge+jnrC+0,charge+jnrD+0);
428             vdwjidx0A        = 2*vdwtype[jnrA+0];
429             vdwjidx0B        = 2*vdwtype[jnrB+0];
430             vdwjidx0C        = 2*vdwtype[jnrC+0];
431             vdwjidx0D        = 2*vdwtype[jnrD+0];
432
433             fjx0             = _mm_setzero_ps();
434             fjy0             = _mm_setzero_ps();
435             fjz0             = _mm_setzero_ps();
436
437             /**************************
438              * CALCULATE INTERACTIONS *
439              **************************/
440
441             if (gmx_mm_any_lt(rsq00,rcutoff2))
442             {
443
444             /* Compute parameters for interactions between i and j atoms */
445             qq00             = _mm_mul_ps(iq0,jq0);
446             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
447                                          vdwparam+vdwioffset0+vdwjidx0B,
448                                          vdwparam+vdwioffset0+vdwjidx0C,
449                                          vdwparam+vdwioffset0+vdwjidx0D,
450                                          &c6_00,&c12_00);
451
452             /* REACTION-FIELD ELECTROSTATICS */
453             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
454             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
455
456             /* LENNARD-JONES DISPERSION/REPULSION */
457
458             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
459             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
460             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
461             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
462                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
463             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
464
465             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
466
467             /* Update potential sum for this i atom from the interaction with this j atom. */
468             velec            = _mm_and_ps(velec,cutoff_mask);
469             velec            = _mm_andnot_ps(dummy_mask,velec);
470             velecsum         = _mm_add_ps(velecsum,velec);
471             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
472             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
473             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
474
475             fscal            = _mm_add_ps(felec,fvdw);
476
477             fscal            = _mm_and_ps(fscal,cutoff_mask);
478
479             fscal            = _mm_andnot_ps(dummy_mask,fscal);
480
481              /* Update vectorial force */
482             fix0             = _mm_macc_ps(dx00,fscal,fix0);
483             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
484             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
485
486             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
487             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
488             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
489
490             }
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             if (gmx_mm_any_lt(rsq10,rcutoff2))
497             {
498
499             /* Compute parameters for interactions between i and j atoms */
500             qq10             = _mm_mul_ps(iq1,jq0);
501
502             /* REACTION-FIELD ELECTROSTATICS */
503             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
504             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
505
506             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
507
508             /* Update potential sum for this i atom from the interaction with this j atom. */
509             velec            = _mm_and_ps(velec,cutoff_mask);
510             velec            = _mm_andnot_ps(dummy_mask,velec);
511             velecsum         = _mm_add_ps(velecsum,velec);
512
513             fscal            = felec;
514
515             fscal            = _mm_and_ps(fscal,cutoff_mask);
516
517             fscal            = _mm_andnot_ps(dummy_mask,fscal);
518
519              /* Update vectorial force */
520             fix1             = _mm_macc_ps(dx10,fscal,fix1);
521             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
522             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
523
524             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
525             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
526             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
527
528             }
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             if (gmx_mm_any_lt(rsq20,rcutoff2))
535             {
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq20             = _mm_mul_ps(iq2,jq0);
539
540             /* REACTION-FIELD ELECTROSTATICS */
541             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
542             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
543
544             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm_and_ps(velec,cutoff_mask);
548             velec            = _mm_andnot_ps(dummy_mask,velec);
549             velecsum         = _mm_add_ps(velecsum,velec);
550
551             fscal            = felec;
552
553             fscal            = _mm_and_ps(fscal,cutoff_mask);
554
555             fscal            = _mm_andnot_ps(dummy_mask,fscal);
556
557              /* Update vectorial force */
558             fix2             = _mm_macc_ps(dx20,fscal,fix2);
559             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
560             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
561
562             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
563             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
564             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
565
566             }
567
568             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
569             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
570             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
571             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
572
573             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
574
575             /* Inner loop uses 135 flops */
576         }
577
578         /* End of innermost loop */
579
580         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
581                                               f+i_coord_offset,fshift+i_shift_offset);
582
583         ggid                        = gid[iidx];
584         /* Update potential energies */
585         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
586         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
587
588         /* Increment number of inner iterations */
589         inneriter                  += j_index_end - j_index_start;
590
591         /* Outer loop uses 20 flops */
592     }
593
594     /* Increment number of outer iterations */
595     outeriter        += nri;
596
597     /* Update outer/inner flops */
598
599     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
600 }
601 /*
602  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
603  * Electrostatics interaction: ReactionField
604  * VdW interaction:            LennardJones
605  * Geometry:                   Water3-Particle
606  * Calculate force/pot:        Force
607  */
608 void
609 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
610                     (t_nblist                    * gmx_restrict       nlist,
611                      rvec                        * gmx_restrict          xx,
612                      rvec                        * gmx_restrict          ff,
613                      t_forcerec                  * gmx_restrict          fr,
614                      t_mdatoms                   * gmx_restrict     mdatoms,
615                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
616                      t_nrnb                      * gmx_restrict        nrnb)
617 {
618     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
619      * just 0 for non-waters.
620      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
621      * jnr indices corresponding to data put in the four positions in the SIMD register.
622      */
623     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
624     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
625     int              jnrA,jnrB,jnrC,jnrD;
626     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
627     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
628     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
629     real             rcutoff_scalar;
630     real             *shiftvec,*fshift,*x,*f;
631     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
632     real             scratch[4*DIM];
633     __m128           fscal,rcutoff,rcutoff2,jidxall;
634     int              vdwioffset0;
635     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
636     int              vdwioffset1;
637     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
638     int              vdwioffset2;
639     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
640     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
641     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
642     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
643     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
644     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
645     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
646     real             *charge;
647     int              nvdwtype;
648     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
649     int              *vdwtype;
650     real             *vdwparam;
651     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
652     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
653     __m128           dummy_mask,cutoff_mask;
654     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
655     __m128           one     = _mm_set1_ps(1.0);
656     __m128           two     = _mm_set1_ps(2.0);
657     x                = xx[0];
658     f                = ff[0];
659
660     nri              = nlist->nri;
661     iinr             = nlist->iinr;
662     jindex           = nlist->jindex;
663     jjnr             = nlist->jjnr;
664     shiftidx         = nlist->shift;
665     gid              = nlist->gid;
666     shiftvec         = fr->shift_vec[0];
667     fshift           = fr->fshift[0];
668     facel            = _mm_set1_ps(fr->epsfac);
669     charge           = mdatoms->chargeA;
670     krf              = _mm_set1_ps(fr->ic->k_rf);
671     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
672     crf              = _mm_set1_ps(fr->ic->c_rf);
673     nvdwtype         = fr->ntype;
674     vdwparam         = fr->nbfp;
675     vdwtype          = mdatoms->typeA;
676
677     /* Setup water-specific parameters */
678     inr              = nlist->iinr[0];
679     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
680     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
681     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
682     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
683
684     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
685     rcutoff_scalar   = fr->rcoulomb;
686     rcutoff          = _mm_set1_ps(rcutoff_scalar);
687     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
688
689     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
690     rvdw             = _mm_set1_ps(fr->rvdw);
691
692     /* Avoid stupid compiler warnings */
693     jnrA = jnrB = jnrC = jnrD = 0;
694     j_coord_offsetA = 0;
695     j_coord_offsetB = 0;
696     j_coord_offsetC = 0;
697     j_coord_offsetD = 0;
698
699     outeriter        = 0;
700     inneriter        = 0;
701
702     for(iidx=0;iidx<4*DIM;iidx++)
703     {
704         scratch[iidx] = 0.0;
705     }
706
707     /* Start outer loop over neighborlists */
708     for(iidx=0; iidx<nri; iidx++)
709     {
710         /* Load shift vector for this list */
711         i_shift_offset   = DIM*shiftidx[iidx];
712
713         /* Load limits for loop over neighbors */
714         j_index_start    = jindex[iidx];
715         j_index_end      = jindex[iidx+1];
716
717         /* Get outer coordinate index */
718         inr              = iinr[iidx];
719         i_coord_offset   = DIM*inr;
720
721         /* Load i particle coords and add shift vector */
722         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
723                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
724
725         fix0             = _mm_setzero_ps();
726         fiy0             = _mm_setzero_ps();
727         fiz0             = _mm_setzero_ps();
728         fix1             = _mm_setzero_ps();
729         fiy1             = _mm_setzero_ps();
730         fiz1             = _mm_setzero_ps();
731         fix2             = _mm_setzero_ps();
732         fiy2             = _mm_setzero_ps();
733         fiz2             = _mm_setzero_ps();
734
735         /* Start inner kernel loop */
736         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
737         {
738
739             /* Get j neighbor index, and coordinate index */
740             jnrA             = jjnr[jidx];
741             jnrB             = jjnr[jidx+1];
742             jnrC             = jjnr[jidx+2];
743             jnrD             = jjnr[jidx+3];
744             j_coord_offsetA  = DIM*jnrA;
745             j_coord_offsetB  = DIM*jnrB;
746             j_coord_offsetC  = DIM*jnrC;
747             j_coord_offsetD  = DIM*jnrD;
748
749             /* load j atom coordinates */
750             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
751                                               x+j_coord_offsetC,x+j_coord_offsetD,
752                                               &jx0,&jy0,&jz0);
753
754             /* Calculate displacement vector */
755             dx00             = _mm_sub_ps(ix0,jx0);
756             dy00             = _mm_sub_ps(iy0,jy0);
757             dz00             = _mm_sub_ps(iz0,jz0);
758             dx10             = _mm_sub_ps(ix1,jx0);
759             dy10             = _mm_sub_ps(iy1,jy0);
760             dz10             = _mm_sub_ps(iz1,jz0);
761             dx20             = _mm_sub_ps(ix2,jx0);
762             dy20             = _mm_sub_ps(iy2,jy0);
763             dz20             = _mm_sub_ps(iz2,jz0);
764
765             /* Calculate squared distance and things based on it */
766             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
767             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
768             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
769
770             rinv00           = gmx_mm_invsqrt_ps(rsq00);
771             rinv10           = gmx_mm_invsqrt_ps(rsq10);
772             rinv20           = gmx_mm_invsqrt_ps(rsq20);
773
774             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
775             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
776             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
777
778             /* Load parameters for j particles */
779             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
780                                                               charge+jnrC+0,charge+jnrD+0);
781             vdwjidx0A        = 2*vdwtype[jnrA+0];
782             vdwjidx0B        = 2*vdwtype[jnrB+0];
783             vdwjidx0C        = 2*vdwtype[jnrC+0];
784             vdwjidx0D        = 2*vdwtype[jnrD+0];
785
786             fjx0             = _mm_setzero_ps();
787             fjy0             = _mm_setzero_ps();
788             fjz0             = _mm_setzero_ps();
789
790             /**************************
791              * CALCULATE INTERACTIONS *
792              **************************/
793
794             if (gmx_mm_any_lt(rsq00,rcutoff2))
795             {
796
797             /* Compute parameters for interactions between i and j atoms */
798             qq00             = _mm_mul_ps(iq0,jq0);
799             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
800                                          vdwparam+vdwioffset0+vdwjidx0B,
801                                          vdwparam+vdwioffset0+vdwjidx0C,
802                                          vdwparam+vdwioffset0+vdwjidx0D,
803                                          &c6_00,&c12_00);
804
805             /* REACTION-FIELD ELECTROSTATICS */
806             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
807
808             /* LENNARD-JONES DISPERSION/REPULSION */
809
810             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
811             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
812
813             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
814
815             fscal            = _mm_add_ps(felec,fvdw);
816
817             fscal            = _mm_and_ps(fscal,cutoff_mask);
818
819              /* Update vectorial force */
820             fix0             = _mm_macc_ps(dx00,fscal,fix0);
821             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
822             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
823
824             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
825             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
826             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
827
828             }
829
830             /**************************
831              * CALCULATE INTERACTIONS *
832              **************************/
833
834             if (gmx_mm_any_lt(rsq10,rcutoff2))
835             {
836
837             /* Compute parameters for interactions between i and j atoms */
838             qq10             = _mm_mul_ps(iq1,jq0);
839
840             /* REACTION-FIELD ELECTROSTATICS */
841             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
842
843             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
844
845             fscal            = felec;
846
847             fscal            = _mm_and_ps(fscal,cutoff_mask);
848
849              /* Update vectorial force */
850             fix1             = _mm_macc_ps(dx10,fscal,fix1);
851             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
852             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
853
854             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
855             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
856             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
857
858             }
859
860             /**************************
861              * CALCULATE INTERACTIONS *
862              **************************/
863
864             if (gmx_mm_any_lt(rsq20,rcutoff2))
865             {
866
867             /* Compute parameters for interactions between i and j atoms */
868             qq20             = _mm_mul_ps(iq2,jq0);
869
870             /* REACTION-FIELD ELECTROSTATICS */
871             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
872
873             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
874
875             fscal            = felec;
876
877             fscal            = _mm_and_ps(fscal,cutoff_mask);
878
879              /* Update vectorial force */
880             fix2             = _mm_macc_ps(dx20,fscal,fix2);
881             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
882             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
883
884             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
885             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
886             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
887
888             }
889
890             fjptrA             = f+j_coord_offsetA;
891             fjptrB             = f+j_coord_offsetB;
892             fjptrC             = f+j_coord_offsetC;
893             fjptrD             = f+j_coord_offsetD;
894
895             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
896
897             /* Inner loop uses 106 flops */
898         }
899
900         if(jidx<j_index_end)
901         {
902
903             /* Get j neighbor index, and coordinate index */
904             jnrlistA         = jjnr[jidx];
905             jnrlistB         = jjnr[jidx+1];
906             jnrlistC         = jjnr[jidx+2];
907             jnrlistD         = jjnr[jidx+3];
908             /* Sign of each element will be negative for non-real atoms.
909              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
910              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
911              */
912             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
913             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
914             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
915             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
916             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
917             j_coord_offsetA  = DIM*jnrA;
918             j_coord_offsetB  = DIM*jnrB;
919             j_coord_offsetC  = DIM*jnrC;
920             j_coord_offsetD  = DIM*jnrD;
921
922             /* load j atom coordinates */
923             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
924                                               x+j_coord_offsetC,x+j_coord_offsetD,
925                                               &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _mm_sub_ps(ix0,jx0);
929             dy00             = _mm_sub_ps(iy0,jy0);
930             dz00             = _mm_sub_ps(iz0,jz0);
931             dx10             = _mm_sub_ps(ix1,jx0);
932             dy10             = _mm_sub_ps(iy1,jy0);
933             dz10             = _mm_sub_ps(iz1,jz0);
934             dx20             = _mm_sub_ps(ix2,jx0);
935             dy20             = _mm_sub_ps(iy2,jy0);
936             dz20             = _mm_sub_ps(iz2,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
940             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
941             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
942
943             rinv00           = gmx_mm_invsqrt_ps(rsq00);
944             rinv10           = gmx_mm_invsqrt_ps(rsq10);
945             rinv20           = gmx_mm_invsqrt_ps(rsq20);
946
947             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
948             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
949             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
950
951             /* Load parameters for j particles */
952             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
953                                                               charge+jnrC+0,charge+jnrD+0);
954             vdwjidx0A        = 2*vdwtype[jnrA+0];
955             vdwjidx0B        = 2*vdwtype[jnrB+0];
956             vdwjidx0C        = 2*vdwtype[jnrC+0];
957             vdwjidx0D        = 2*vdwtype[jnrD+0];
958
959             fjx0             = _mm_setzero_ps();
960             fjy0             = _mm_setzero_ps();
961             fjz0             = _mm_setzero_ps();
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             if (gmx_mm_any_lt(rsq00,rcutoff2))
968             {
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq00             = _mm_mul_ps(iq0,jq0);
972             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
973                                          vdwparam+vdwioffset0+vdwjidx0B,
974                                          vdwparam+vdwioffset0+vdwjidx0C,
975                                          vdwparam+vdwioffset0+vdwjidx0D,
976                                          &c6_00,&c12_00);
977
978             /* REACTION-FIELD ELECTROSTATICS */
979             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
980
981             /* LENNARD-JONES DISPERSION/REPULSION */
982
983             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
984             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
985
986             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
987
988             fscal            = _mm_add_ps(felec,fvdw);
989
990             fscal            = _mm_and_ps(fscal,cutoff_mask);
991
992             fscal            = _mm_andnot_ps(dummy_mask,fscal);
993
994              /* Update vectorial force */
995             fix0             = _mm_macc_ps(dx00,fscal,fix0);
996             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
997             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
998
999             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1000             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1001             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1002
1003             }
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             if (gmx_mm_any_lt(rsq10,rcutoff2))
1010             {
1011
1012             /* Compute parameters for interactions between i and j atoms */
1013             qq10             = _mm_mul_ps(iq1,jq0);
1014
1015             /* REACTION-FIELD ELECTROSTATICS */
1016             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1017
1018             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1019
1020             fscal            = felec;
1021
1022             fscal            = _mm_and_ps(fscal,cutoff_mask);
1023
1024             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1025
1026              /* Update vectorial force */
1027             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1028             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1029             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1030
1031             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1032             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1033             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1034
1035             }
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             if (gmx_mm_any_lt(rsq20,rcutoff2))
1042             {
1043
1044             /* Compute parameters for interactions between i and j atoms */
1045             qq20             = _mm_mul_ps(iq2,jq0);
1046
1047             /* REACTION-FIELD ELECTROSTATICS */
1048             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1049
1050             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1051
1052             fscal            = felec;
1053
1054             fscal            = _mm_and_ps(fscal,cutoff_mask);
1055
1056             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1057
1058              /* Update vectorial force */
1059             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1060             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1061             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1062
1063             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1064             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1065             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1066
1067             }
1068
1069             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1070             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1071             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1072             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1073
1074             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1075
1076             /* Inner loop uses 106 flops */
1077         }
1078
1079         /* End of innermost loop */
1080
1081         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1082                                               f+i_coord_offset,fshift+i_shift_offset);
1083
1084         /* Increment number of inner iterations */
1085         inneriter                  += j_index_end - j_index_start;
1086
1087         /* Outer loop uses 18 flops */
1088     }
1089
1090     /* Increment number of outer iterations */
1091     outeriter        += nri;
1092
1093     /* Update outer/inner flops */
1094
1095     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*106);
1096 }