Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128           dummy_mask,cutoff_mask;
105     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106     __m128           one     = _mm_set1_ps(1.0);
107     __m128           two     = _mm_set1_ps(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm_set1_ps(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     krf              = _mm_set1_ps(fr->ic->k_rf);
122     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
123     crf              = _mm_set1_ps(fr->ic->c_rf);
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     /* Setup water-specific parameters */
129     inr              = nlist->iinr[0];
130     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
134
135     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
136     rcutoff_scalar   = fr->rcoulomb;
137     rcutoff          = _mm_set1_ps(rcutoff_scalar);
138     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
139
140     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
141     rvdw             = _mm_set1_ps(fr->rvdw);
142
143     /* Avoid stupid compiler warnings */
144     jnrA = jnrB = jnrC = jnrD = 0;
145     j_coord_offsetA = 0;
146     j_coord_offsetB = 0;
147     j_coord_offsetC = 0;
148     j_coord_offsetD = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
175
176         fix0             = _mm_setzero_ps();
177         fiy0             = _mm_setzero_ps();
178         fiz0             = _mm_setzero_ps();
179         fix1             = _mm_setzero_ps();
180         fiy1             = _mm_setzero_ps();
181         fiz1             = _mm_setzero_ps();
182         fix2             = _mm_setzero_ps();
183         fiy2             = _mm_setzero_ps();
184         fiz2             = _mm_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm_setzero_ps();
188         vvdwsum          = _mm_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             j_coord_offsetA  = DIM*jnrA;
200             j_coord_offsetB  = DIM*jnrB;
201             j_coord_offsetC  = DIM*jnrC;
202             j_coord_offsetD  = DIM*jnrD;
203
204             /* load j atom coordinates */
205             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
206                                               x+j_coord_offsetC,x+j_coord_offsetD,
207                                               &jx0,&jy0,&jz0);
208
209             /* Calculate displacement vector */
210             dx00             = _mm_sub_ps(ix0,jx0);
211             dy00             = _mm_sub_ps(iy0,jy0);
212             dz00             = _mm_sub_ps(iz0,jz0);
213             dx10             = _mm_sub_ps(ix1,jx0);
214             dy10             = _mm_sub_ps(iy1,jy0);
215             dz10             = _mm_sub_ps(iz1,jz0);
216             dx20             = _mm_sub_ps(ix2,jx0);
217             dy20             = _mm_sub_ps(iy2,jy0);
218             dz20             = _mm_sub_ps(iz2,jz0);
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
222             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
223             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
224
225             rinv00           = gmx_mm_invsqrt_ps(rsq00);
226             rinv10           = gmx_mm_invsqrt_ps(rsq10);
227             rinv20           = gmx_mm_invsqrt_ps(rsq20);
228
229             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
230             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
231             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
232
233             /* Load parameters for j particles */
234             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
235                                                               charge+jnrC+0,charge+jnrD+0);
236             vdwjidx0A        = 2*vdwtype[jnrA+0];
237             vdwjidx0B        = 2*vdwtype[jnrB+0];
238             vdwjidx0C        = 2*vdwtype[jnrC+0];
239             vdwjidx0D        = 2*vdwtype[jnrD+0];
240
241             fjx0             = _mm_setzero_ps();
242             fjy0             = _mm_setzero_ps();
243             fjz0             = _mm_setzero_ps();
244
245             /**************************
246              * CALCULATE INTERACTIONS *
247              **************************/
248
249             if (gmx_mm_any_lt(rsq00,rcutoff2))
250             {
251
252             /* Compute parameters for interactions between i and j atoms */
253             qq00             = _mm_mul_ps(iq0,jq0);
254             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255                                          vdwparam+vdwioffset0+vdwjidx0B,
256                                          vdwparam+vdwioffset0+vdwjidx0C,
257                                          vdwparam+vdwioffset0+vdwjidx0D,
258                                          &c6_00,&c12_00);
259
260             /* REACTION-FIELD ELECTROSTATICS */
261             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
262             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
263
264             /* LENNARD-JONES DISPERSION/REPULSION */
265
266             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
268             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
270                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
271             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
272
273             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_ps(velec,cutoff_mask);
277             velecsum         = _mm_add_ps(velecsum,velec);
278             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             fscal            = _mm_and_ps(fscal,cutoff_mask);
284
285              /* Update vectorial force */
286             fix0             = _mm_macc_ps(dx00,fscal,fix0);
287             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
288             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
289
290             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
291             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
292             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
293
294             }
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             if (gmx_mm_any_lt(rsq10,rcutoff2))
301             {
302
303             /* Compute parameters for interactions between i and j atoms */
304             qq10             = _mm_mul_ps(iq1,jq0);
305
306             /* REACTION-FIELD ELECTROSTATICS */
307             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
308             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
309
310             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
311
312             /* Update potential sum for this i atom from the interaction with this j atom. */
313             velec            = _mm_and_ps(velec,cutoff_mask);
314             velecsum         = _mm_add_ps(velecsum,velec);
315
316             fscal            = felec;
317
318             fscal            = _mm_and_ps(fscal,cutoff_mask);
319
320              /* Update vectorial force */
321             fix1             = _mm_macc_ps(dx10,fscal,fix1);
322             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
323             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
324
325             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
326             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
327             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm_any_lt(rsq20,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq20             = _mm_mul_ps(iq2,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
343             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
344
345             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_ps(velec,cutoff_mask);
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm_and_ps(fscal,cutoff_mask);
354
355              /* Update vectorial force */
356             fix2             = _mm_macc_ps(dx20,fscal,fix2);
357             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
358             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
359
360             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
361             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
362             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
363
364             }
365
366             fjptrA             = f+j_coord_offsetA;
367             fjptrB             = f+j_coord_offsetB;
368             fjptrC             = f+j_coord_offsetC;
369             fjptrD             = f+j_coord_offsetD;
370
371             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
372
373             /* Inner loop uses 135 flops */
374         }
375
376         if(jidx<j_index_end)
377         {
378
379             /* Get j neighbor index, and coordinate index */
380             jnrlistA         = jjnr[jidx];
381             jnrlistB         = jjnr[jidx+1];
382             jnrlistC         = jjnr[jidx+2];
383             jnrlistD         = jjnr[jidx+3];
384             /* Sign of each element will be negative for non-real atoms.
385              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
386              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
387              */
388             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
389             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
390             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
391             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
392             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
393             j_coord_offsetA  = DIM*jnrA;
394             j_coord_offsetB  = DIM*jnrB;
395             j_coord_offsetC  = DIM*jnrC;
396             j_coord_offsetD  = DIM*jnrD;
397
398             /* load j atom coordinates */
399             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
400                                               x+j_coord_offsetC,x+j_coord_offsetD,
401                                               &jx0,&jy0,&jz0);
402
403             /* Calculate displacement vector */
404             dx00             = _mm_sub_ps(ix0,jx0);
405             dy00             = _mm_sub_ps(iy0,jy0);
406             dz00             = _mm_sub_ps(iz0,jz0);
407             dx10             = _mm_sub_ps(ix1,jx0);
408             dy10             = _mm_sub_ps(iy1,jy0);
409             dz10             = _mm_sub_ps(iz1,jz0);
410             dx20             = _mm_sub_ps(ix2,jx0);
411             dy20             = _mm_sub_ps(iy2,jy0);
412             dz20             = _mm_sub_ps(iz2,jz0);
413
414             /* Calculate squared distance and things based on it */
415             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
416             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
417             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
418
419             rinv00           = gmx_mm_invsqrt_ps(rsq00);
420             rinv10           = gmx_mm_invsqrt_ps(rsq10);
421             rinv20           = gmx_mm_invsqrt_ps(rsq20);
422
423             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
424             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
425             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
426
427             /* Load parameters for j particles */
428             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
429                                                               charge+jnrC+0,charge+jnrD+0);
430             vdwjidx0A        = 2*vdwtype[jnrA+0];
431             vdwjidx0B        = 2*vdwtype[jnrB+0];
432             vdwjidx0C        = 2*vdwtype[jnrC+0];
433             vdwjidx0D        = 2*vdwtype[jnrD+0];
434
435             fjx0             = _mm_setzero_ps();
436             fjy0             = _mm_setzero_ps();
437             fjz0             = _mm_setzero_ps();
438
439             /**************************
440              * CALCULATE INTERACTIONS *
441              **************************/
442
443             if (gmx_mm_any_lt(rsq00,rcutoff2))
444             {
445
446             /* Compute parameters for interactions between i and j atoms */
447             qq00             = _mm_mul_ps(iq0,jq0);
448             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
449                                          vdwparam+vdwioffset0+vdwjidx0B,
450                                          vdwparam+vdwioffset0+vdwjidx0C,
451                                          vdwparam+vdwioffset0+vdwjidx0D,
452                                          &c6_00,&c12_00);
453
454             /* REACTION-FIELD ELECTROSTATICS */
455             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
456             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
457
458             /* LENNARD-JONES DISPERSION/REPULSION */
459
460             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
461             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
462             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
463             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
464                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
465             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
466
467             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
468
469             /* Update potential sum for this i atom from the interaction with this j atom. */
470             velec            = _mm_and_ps(velec,cutoff_mask);
471             velec            = _mm_andnot_ps(dummy_mask,velec);
472             velecsum         = _mm_add_ps(velecsum,velec);
473             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
474             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
475             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
476
477             fscal            = _mm_add_ps(felec,fvdw);
478
479             fscal            = _mm_and_ps(fscal,cutoff_mask);
480
481             fscal            = _mm_andnot_ps(dummy_mask,fscal);
482
483              /* Update vectorial force */
484             fix0             = _mm_macc_ps(dx00,fscal,fix0);
485             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
486             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
487
488             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
489             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
490             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
491
492             }
493
494             /**************************
495              * CALCULATE INTERACTIONS *
496              **************************/
497
498             if (gmx_mm_any_lt(rsq10,rcutoff2))
499             {
500
501             /* Compute parameters for interactions between i and j atoms */
502             qq10             = _mm_mul_ps(iq1,jq0);
503
504             /* REACTION-FIELD ELECTROSTATICS */
505             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
506             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
507
508             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
509
510             /* Update potential sum for this i atom from the interaction with this j atom. */
511             velec            = _mm_and_ps(velec,cutoff_mask);
512             velec            = _mm_andnot_ps(dummy_mask,velec);
513             velecsum         = _mm_add_ps(velecsum,velec);
514
515             fscal            = felec;
516
517             fscal            = _mm_and_ps(fscal,cutoff_mask);
518
519             fscal            = _mm_andnot_ps(dummy_mask,fscal);
520
521              /* Update vectorial force */
522             fix1             = _mm_macc_ps(dx10,fscal,fix1);
523             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
524             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
525
526             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
527             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
528             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (gmx_mm_any_lt(rsq20,rcutoff2))
537             {
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq20             = _mm_mul_ps(iq2,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
544             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
545
546             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
547
548             /* Update potential sum for this i atom from the interaction with this j atom. */
549             velec            = _mm_and_ps(velec,cutoff_mask);
550             velec            = _mm_andnot_ps(dummy_mask,velec);
551             velecsum         = _mm_add_ps(velecsum,velec);
552
553             fscal            = felec;
554
555             fscal            = _mm_and_ps(fscal,cutoff_mask);
556
557             fscal            = _mm_andnot_ps(dummy_mask,fscal);
558
559              /* Update vectorial force */
560             fix2             = _mm_macc_ps(dx20,fscal,fix2);
561             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
562             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
563
564             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
565             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
566             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
567
568             }
569
570             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
571             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
572             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
573             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
574
575             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
576
577             /* Inner loop uses 135 flops */
578         }
579
580         /* End of innermost loop */
581
582         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
583                                               f+i_coord_offset,fshift+i_shift_offset);
584
585         ggid                        = gid[iidx];
586         /* Update potential energies */
587         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
588         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
589
590         /* Increment number of inner iterations */
591         inneriter                  += j_index_end - j_index_start;
592
593         /* Outer loop uses 20 flops */
594     }
595
596     /* Increment number of outer iterations */
597     outeriter        += nri;
598
599     /* Update outer/inner flops */
600
601     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*135);
602 }
603 /*
604  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
605  * Electrostatics interaction: ReactionField
606  * VdW interaction:            LennardJones
607  * Geometry:                   Water3-Particle
608  * Calculate force/pot:        Force
609  */
610 void
611 nb_kernel_ElecRFCut_VdwLJSh_GeomW3P1_F_avx_128_fma_single
612                     (t_nblist                    * gmx_restrict       nlist,
613                      rvec                        * gmx_restrict          xx,
614                      rvec                        * gmx_restrict          ff,
615                      t_forcerec                  * gmx_restrict          fr,
616                      t_mdatoms                   * gmx_restrict     mdatoms,
617                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
618                      t_nrnb                      * gmx_restrict        nrnb)
619 {
620     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
621      * just 0 for non-waters.
622      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
623      * jnr indices corresponding to data put in the four positions in the SIMD register.
624      */
625     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
626     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
627     int              jnrA,jnrB,jnrC,jnrD;
628     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
629     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
630     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
631     real             rcutoff_scalar;
632     real             *shiftvec,*fshift,*x,*f;
633     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
634     real             scratch[4*DIM];
635     __m128           fscal,rcutoff,rcutoff2,jidxall;
636     int              vdwioffset0;
637     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
638     int              vdwioffset1;
639     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
640     int              vdwioffset2;
641     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
642     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
643     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
644     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
645     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
646     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
647     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
648     real             *charge;
649     int              nvdwtype;
650     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
651     int              *vdwtype;
652     real             *vdwparam;
653     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
654     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
655     __m128           dummy_mask,cutoff_mask;
656     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
657     __m128           one     = _mm_set1_ps(1.0);
658     __m128           two     = _mm_set1_ps(2.0);
659     x                = xx[0];
660     f                = ff[0];
661
662     nri              = nlist->nri;
663     iinr             = nlist->iinr;
664     jindex           = nlist->jindex;
665     jjnr             = nlist->jjnr;
666     shiftidx         = nlist->shift;
667     gid              = nlist->gid;
668     shiftvec         = fr->shift_vec[0];
669     fshift           = fr->fshift[0];
670     facel            = _mm_set1_ps(fr->epsfac);
671     charge           = mdatoms->chargeA;
672     krf              = _mm_set1_ps(fr->ic->k_rf);
673     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
674     crf              = _mm_set1_ps(fr->ic->c_rf);
675     nvdwtype         = fr->ntype;
676     vdwparam         = fr->nbfp;
677     vdwtype          = mdatoms->typeA;
678
679     /* Setup water-specific parameters */
680     inr              = nlist->iinr[0];
681     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
682     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
683     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
684     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
685
686     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
687     rcutoff_scalar   = fr->rcoulomb;
688     rcutoff          = _mm_set1_ps(rcutoff_scalar);
689     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
690
691     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
692     rvdw             = _mm_set1_ps(fr->rvdw);
693
694     /* Avoid stupid compiler warnings */
695     jnrA = jnrB = jnrC = jnrD = 0;
696     j_coord_offsetA = 0;
697     j_coord_offsetB = 0;
698     j_coord_offsetC = 0;
699     j_coord_offsetD = 0;
700
701     outeriter        = 0;
702     inneriter        = 0;
703
704     for(iidx=0;iidx<4*DIM;iidx++)
705     {
706         scratch[iidx] = 0.0;
707     }
708
709     /* Start outer loop over neighborlists */
710     for(iidx=0; iidx<nri; iidx++)
711     {
712         /* Load shift vector for this list */
713         i_shift_offset   = DIM*shiftidx[iidx];
714
715         /* Load limits for loop over neighbors */
716         j_index_start    = jindex[iidx];
717         j_index_end      = jindex[iidx+1];
718
719         /* Get outer coordinate index */
720         inr              = iinr[iidx];
721         i_coord_offset   = DIM*inr;
722
723         /* Load i particle coords and add shift vector */
724         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
725                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
726
727         fix0             = _mm_setzero_ps();
728         fiy0             = _mm_setzero_ps();
729         fiz0             = _mm_setzero_ps();
730         fix1             = _mm_setzero_ps();
731         fiy1             = _mm_setzero_ps();
732         fiz1             = _mm_setzero_ps();
733         fix2             = _mm_setzero_ps();
734         fiy2             = _mm_setzero_ps();
735         fiz2             = _mm_setzero_ps();
736
737         /* Start inner kernel loop */
738         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
739         {
740
741             /* Get j neighbor index, and coordinate index */
742             jnrA             = jjnr[jidx];
743             jnrB             = jjnr[jidx+1];
744             jnrC             = jjnr[jidx+2];
745             jnrD             = jjnr[jidx+3];
746             j_coord_offsetA  = DIM*jnrA;
747             j_coord_offsetB  = DIM*jnrB;
748             j_coord_offsetC  = DIM*jnrC;
749             j_coord_offsetD  = DIM*jnrD;
750
751             /* load j atom coordinates */
752             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
753                                               x+j_coord_offsetC,x+j_coord_offsetD,
754                                               &jx0,&jy0,&jz0);
755
756             /* Calculate displacement vector */
757             dx00             = _mm_sub_ps(ix0,jx0);
758             dy00             = _mm_sub_ps(iy0,jy0);
759             dz00             = _mm_sub_ps(iz0,jz0);
760             dx10             = _mm_sub_ps(ix1,jx0);
761             dy10             = _mm_sub_ps(iy1,jy0);
762             dz10             = _mm_sub_ps(iz1,jz0);
763             dx20             = _mm_sub_ps(ix2,jx0);
764             dy20             = _mm_sub_ps(iy2,jy0);
765             dz20             = _mm_sub_ps(iz2,jz0);
766
767             /* Calculate squared distance and things based on it */
768             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
769             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
770             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
771
772             rinv00           = gmx_mm_invsqrt_ps(rsq00);
773             rinv10           = gmx_mm_invsqrt_ps(rsq10);
774             rinv20           = gmx_mm_invsqrt_ps(rsq20);
775
776             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
777             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
778             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
779
780             /* Load parameters for j particles */
781             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
782                                                               charge+jnrC+0,charge+jnrD+0);
783             vdwjidx0A        = 2*vdwtype[jnrA+0];
784             vdwjidx0B        = 2*vdwtype[jnrB+0];
785             vdwjidx0C        = 2*vdwtype[jnrC+0];
786             vdwjidx0D        = 2*vdwtype[jnrD+0];
787
788             fjx0             = _mm_setzero_ps();
789             fjy0             = _mm_setzero_ps();
790             fjz0             = _mm_setzero_ps();
791
792             /**************************
793              * CALCULATE INTERACTIONS *
794              **************************/
795
796             if (gmx_mm_any_lt(rsq00,rcutoff2))
797             {
798
799             /* Compute parameters for interactions between i and j atoms */
800             qq00             = _mm_mul_ps(iq0,jq0);
801             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
802                                          vdwparam+vdwioffset0+vdwjidx0B,
803                                          vdwparam+vdwioffset0+vdwjidx0C,
804                                          vdwparam+vdwioffset0+vdwjidx0D,
805                                          &c6_00,&c12_00);
806
807             /* REACTION-FIELD ELECTROSTATICS */
808             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
809
810             /* LENNARD-JONES DISPERSION/REPULSION */
811
812             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
813             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
814
815             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
816
817             fscal            = _mm_add_ps(felec,fvdw);
818
819             fscal            = _mm_and_ps(fscal,cutoff_mask);
820
821              /* Update vectorial force */
822             fix0             = _mm_macc_ps(dx00,fscal,fix0);
823             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
824             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
825
826             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
827             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
828             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
829
830             }
831
832             /**************************
833              * CALCULATE INTERACTIONS *
834              **************************/
835
836             if (gmx_mm_any_lt(rsq10,rcutoff2))
837             {
838
839             /* Compute parameters for interactions between i and j atoms */
840             qq10             = _mm_mul_ps(iq1,jq0);
841
842             /* REACTION-FIELD ELECTROSTATICS */
843             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
844
845             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
846
847             fscal            = felec;
848
849             fscal            = _mm_and_ps(fscal,cutoff_mask);
850
851              /* Update vectorial force */
852             fix1             = _mm_macc_ps(dx10,fscal,fix1);
853             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
854             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
855
856             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
857             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
858             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
859
860             }
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             if (gmx_mm_any_lt(rsq20,rcutoff2))
867             {
868
869             /* Compute parameters for interactions between i and j atoms */
870             qq20             = _mm_mul_ps(iq2,jq0);
871
872             /* REACTION-FIELD ELECTROSTATICS */
873             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
874
875             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
876
877             fscal            = felec;
878
879             fscal            = _mm_and_ps(fscal,cutoff_mask);
880
881              /* Update vectorial force */
882             fix2             = _mm_macc_ps(dx20,fscal,fix2);
883             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
884             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
885
886             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
887             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
888             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
889
890             }
891
892             fjptrA             = f+j_coord_offsetA;
893             fjptrB             = f+j_coord_offsetB;
894             fjptrC             = f+j_coord_offsetC;
895             fjptrD             = f+j_coord_offsetD;
896
897             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
898
899             /* Inner loop uses 106 flops */
900         }
901
902         if(jidx<j_index_end)
903         {
904
905             /* Get j neighbor index, and coordinate index */
906             jnrlistA         = jjnr[jidx];
907             jnrlistB         = jjnr[jidx+1];
908             jnrlistC         = jjnr[jidx+2];
909             jnrlistD         = jjnr[jidx+3];
910             /* Sign of each element will be negative for non-real atoms.
911              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
912              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
913              */
914             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
915             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
916             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
917             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
918             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923
924             /* load j atom coordinates */
925             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
926                                               x+j_coord_offsetC,x+j_coord_offsetD,
927                                               &jx0,&jy0,&jz0);
928
929             /* Calculate displacement vector */
930             dx00             = _mm_sub_ps(ix0,jx0);
931             dy00             = _mm_sub_ps(iy0,jy0);
932             dz00             = _mm_sub_ps(iz0,jz0);
933             dx10             = _mm_sub_ps(ix1,jx0);
934             dy10             = _mm_sub_ps(iy1,jy0);
935             dz10             = _mm_sub_ps(iz1,jz0);
936             dx20             = _mm_sub_ps(ix2,jx0);
937             dy20             = _mm_sub_ps(iy2,jy0);
938             dz20             = _mm_sub_ps(iz2,jz0);
939
940             /* Calculate squared distance and things based on it */
941             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
942             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
943             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
944
945             rinv00           = gmx_mm_invsqrt_ps(rsq00);
946             rinv10           = gmx_mm_invsqrt_ps(rsq10);
947             rinv20           = gmx_mm_invsqrt_ps(rsq20);
948
949             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
950             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
951             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
952
953             /* Load parameters for j particles */
954             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
955                                                               charge+jnrC+0,charge+jnrD+0);
956             vdwjidx0A        = 2*vdwtype[jnrA+0];
957             vdwjidx0B        = 2*vdwtype[jnrB+0];
958             vdwjidx0C        = 2*vdwtype[jnrC+0];
959             vdwjidx0D        = 2*vdwtype[jnrD+0];
960
961             fjx0             = _mm_setzero_ps();
962             fjy0             = _mm_setzero_ps();
963             fjz0             = _mm_setzero_ps();
964
965             /**************************
966              * CALCULATE INTERACTIONS *
967              **************************/
968
969             if (gmx_mm_any_lt(rsq00,rcutoff2))
970             {
971
972             /* Compute parameters for interactions between i and j atoms */
973             qq00             = _mm_mul_ps(iq0,jq0);
974             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
975                                          vdwparam+vdwioffset0+vdwjidx0B,
976                                          vdwparam+vdwioffset0+vdwjidx0C,
977                                          vdwparam+vdwioffset0+vdwjidx0D,
978                                          &c6_00,&c12_00);
979
980             /* REACTION-FIELD ELECTROSTATICS */
981             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
982
983             /* LENNARD-JONES DISPERSION/REPULSION */
984
985             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
986             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
987
988             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
989
990             fscal            = _mm_add_ps(felec,fvdw);
991
992             fscal            = _mm_and_ps(fscal,cutoff_mask);
993
994             fscal            = _mm_andnot_ps(dummy_mask,fscal);
995
996              /* Update vectorial force */
997             fix0             = _mm_macc_ps(dx00,fscal,fix0);
998             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
999             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1000
1001             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1002             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1003             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1004
1005             }
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             if (gmx_mm_any_lt(rsq10,rcutoff2))
1012             {
1013
1014             /* Compute parameters for interactions between i and j atoms */
1015             qq10             = _mm_mul_ps(iq1,jq0);
1016
1017             /* REACTION-FIELD ELECTROSTATICS */
1018             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1019
1020             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1021
1022             fscal            = felec;
1023
1024             fscal            = _mm_and_ps(fscal,cutoff_mask);
1025
1026             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1027
1028              /* Update vectorial force */
1029             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1030             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1031             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1032
1033             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1034             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1035             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1036
1037             }
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             if (gmx_mm_any_lt(rsq20,rcutoff2))
1044             {
1045
1046             /* Compute parameters for interactions between i and j atoms */
1047             qq20             = _mm_mul_ps(iq2,jq0);
1048
1049             /* REACTION-FIELD ELECTROSTATICS */
1050             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1051
1052             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1053
1054             fscal            = felec;
1055
1056             fscal            = _mm_and_ps(fscal,cutoff_mask);
1057
1058             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1059
1060              /* Update vectorial force */
1061             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1062             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1063             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1064
1065             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1066             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1067             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1068
1069             }
1070
1071             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1072             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1073             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1074             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1075
1076             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1077
1078             /* Inner loop uses 106 flops */
1079         }
1080
1081         /* End of innermost loop */
1082
1083         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1084                                               f+i_coord_offset,fshift+i_shift_offset);
1085
1086         /* Increment number of inner iterations */
1087         inneriter                  += j_index_end - j_index_start;
1088
1089         /* Outer loop uses 18 flops */
1090     }
1091
1092     /* Increment number of outer iterations */
1093     outeriter        += nri;
1094
1095     /* Update outer/inner flops */
1096
1097     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*106);
1098 }