Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = _mm_set1_ps(fr->epsfac);
114     charge           = mdatoms->chargeA;
115     krf              = _mm_set1_ps(fr->ic->k_rf);
116     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
117     crf              = _mm_set1_ps(fr->ic->c_rf);
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
126
127     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
128     rvdw             = _mm_set1_ps(fr->rvdw);
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     for(iidx=0;iidx<4*DIM;iidx++)
141     {
142         scratch[iidx] = 0.0;
143     }
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162         fix0             = _mm_setzero_ps();
163         fiy0             = _mm_setzero_ps();
164         fiz0             = _mm_setzero_ps();
165
166         /* Load parameters for i particles */
167         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
169
170         /* Reset potential sums */
171         velecsum         = _mm_setzero_ps();
172         vvdwsum          = _mm_setzero_ps();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190                                               x+j_coord_offsetC,x+j_coord_offsetD,
191                                               &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm_sub_ps(ix0,jx0);
195             dy00             = _mm_sub_ps(iy0,jy0);
196             dz00             = _mm_sub_ps(iz0,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
200
201             rinv00           = gmx_mm_invsqrt_ps(rsq00);
202
203             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
204
205             /* Load parameters for j particles */
206             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
207                                                               charge+jnrC+0,charge+jnrD+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212
213             /**************************
214              * CALCULATE INTERACTIONS *
215              **************************/
216
217             if (gmx_mm_any_lt(rsq00,rcutoff2))
218             {
219
220             /* Compute parameters for interactions between i and j atoms */
221             qq00             = _mm_mul_ps(iq0,jq0);
222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,
224                                          vdwparam+vdwioffset0+vdwjidx0C,
225                                          vdwparam+vdwioffset0+vdwjidx0D,
226                                          &c6_00,&c12_00);
227
228             /* REACTION-FIELD ELECTROSTATICS */
229             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
230             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
235             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
236             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
237             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
238                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
239             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
240
241             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
242
243             /* Update potential sum for this i atom from the interaction with this j atom. */
244             velec            = _mm_and_ps(velec,cutoff_mask);
245             velecsum         = _mm_add_ps(velecsum,velec);
246             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
247             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
248
249             fscal            = _mm_add_ps(felec,fvdw);
250
251             fscal            = _mm_and_ps(fscal,cutoff_mask);
252
253              /* Update vectorial force */
254             fix0             = _mm_macc_ps(dx00,fscal,fix0);
255             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
256             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
257
258             fjptrA             = f+j_coord_offsetA;
259             fjptrB             = f+j_coord_offsetB;
260             fjptrC             = f+j_coord_offsetC;
261             fjptrD             = f+j_coord_offsetD;
262             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
263                                                    _mm_mul_ps(dx00,fscal),
264                                                    _mm_mul_ps(dy00,fscal),
265                                                    _mm_mul_ps(dz00,fscal));
266
267             }
268
269             /* Inner loop uses 57 flops */
270         }
271
272         if(jidx<j_index_end)
273         {
274
275             /* Get j neighbor index, and coordinate index */
276             jnrlistA         = jjnr[jidx];
277             jnrlistB         = jjnr[jidx+1];
278             jnrlistC         = jjnr[jidx+2];
279             jnrlistD         = jjnr[jidx+3];
280             /* Sign of each element will be negative for non-real atoms.
281              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
282              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
283              */
284             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             j_coord_offsetA  = DIM*jnrA;
290             j_coord_offsetB  = DIM*jnrB;
291             j_coord_offsetC  = DIM*jnrC;
292             j_coord_offsetD  = DIM*jnrD;
293
294             /* load j atom coordinates */
295             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
296                                               x+j_coord_offsetC,x+j_coord_offsetD,
297                                               &jx0,&jy0,&jz0);
298
299             /* Calculate displacement vector */
300             dx00             = _mm_sub_ps(ix0,jx0);
301             dy00             = _mm_sub_ps(iy0,jy0);
302             dz00             = _mm_sub_ps(iz0,jz0);
303
304             /* Calculate squared distance and things based on it */
305             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
306
307             rinv00           = gmx_mm_invsqrt_ps(rsq00);
308
309             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
310
311             /* Load parameters for j particles */
312             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
313                                                               charge+jnrC+0,charge+jnrD+0);
314             vdwjidx0A        = 2*vdwtype[jnrA+0];
315             vdwjidx0B        = 2*vdwtype[jnrB+0];
316             vdwjidx0C        = 2*vdwtype[jnrC+0];
317             vdwjidx0D        = 2*vdwtype[jnrD+0];
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm_any_lt(rsq00,rcutoff2))
324             {
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm_mul_ps(iq0,jq0);
328             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
329                                          vdwparam+vdwioffset0+vdwjidx0B,
330                                          vdwparam+vdwioffset0+vdwjidx0C,
331                                          vdwparam+vdwioffset0+vdwjidx0D,
332                                          &c6_00,&c12_00);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
336             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
337
338             /* LENNARD-JONES DISPERSION/REPULSION */
339
340             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
341             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
342             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
343             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
344                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
345             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
346
347             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
348
349             /* Update potential sum for this i atom from the interaction with this j atom. */
350             velec            = _mm_and_ps(velec,cutoff_mask);
351             velec            = _mm_andnot_ps(dummy_mask,velec);
352             velecsum         = _mm_add_ps(velecsum,velec);
353             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
354             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
355             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
356
357             fscal            = _mm_add_ps(felec,fvdw);
358
359             fscal            = _mm_and_ps(fscal,cutoff_mask);
360
361             fscal            = _mm_andnot_ps(dummy_mask,fscal);
362
363              /* Update vectorial force */
364             fix0             = _mm_macc_ps(dx00,fscal,fix0);
365             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
366             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
367
368             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
369             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
370             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
371             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
372             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
373                                                    _mm_mul_ps(dx00,fscal),
374                                                    _mm_mul_ps(dy00,fscal),
375                                                    _mm_mul_ps(dz00,fscal));
376
377             }
378
379             /* Inner loop uses 57 flops */
380         }
381
382         /* End of innermost loop */
383
384         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
385                                               f+i_coord_offset,fshift+i_shift_offset);
386
387         ggid                        = gid[iidx];
388         /* Update potential energies */
389         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
390         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
391
392         /* Increment number of inner iterations */
393         inneriter                  += j_index_end - j_index_start;
394
395         /* Outer loop uses 9 flops */
396     }
397
398     /* Increment number of outer iterations */
399     outeriter        += nri;
400
401     /* Update outer/inner flops */
402
403     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
404 }
405 /*
406  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_single
407  * Electrostatics interaction: ReactionField
408  * VdW interaction:            LennardJones
409  * Geometry:                   Particle-Particle
410  * Calculate force/pot:        Force
411  */
412 void
413 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_single
414                     (t_nblist                    * gmx_restrict       nlist,
415                      rvec                        * gmx_restrict          xx,
416                      rvec                        * gmx_restrict          ff,
417                      t_forcerec                  * gmx_restrict          fr,
418                      t_mdatoms                   * gmx_restrict     mdatoms,
419                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
420                      t_nrnb                      * gmx_restrict        nrnb)
421 {
422     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
423      * just 0 for non-waters.
424      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
425      * jnr indices corresponding to data put in the four positions in the SIMD register.
426      */
427     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
428     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
429     int              jnrA,jnrB,jnrC,jnrD;
430     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
431     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
432     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
433     real             rcutoff_scalar;
434     real             *shiftvec,*fshift,*x,*f;
435     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
436     real             scratch[4*DIM];
437     __m128           fscal,rcutoff,rcutoff2,jidxall;
438     int              vdwioffset0;
439     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
440     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
441     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
442     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
443     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
444     real             *charge;
445     int              nvdwtype;
446     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
447     int              *vdwtype;
448     real             *vdwparam;
449     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
450     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
451     __m128           dummy_mask,cutoff_mask;
452     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
453     __m128           one     = _mm_set1_ps(1.0);
454     __m128           two     = _mm_set1_ps(2.0);
455     x                = xx[0];
456     f                = ff[0];
457
458     nri              = nlist->nri;
459     iinr             = nlist->iinr;
460     jindex           = nlist->jindex;
461     jjnr             = nlist->jjnr;
462     shiftidx         = nlist->shift;
463     gid              = nlist->gid;
464     shiftvec         = fr->shift_vec[0];
465     fshift           = fr->fshift[0];
466     facel            = _mm_set1_ps(fr->epsfac);
467     charge           = mdatoms->chargeA;
468     krf              = _mm_set1_ps(fr->ic->k_rf);
469     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
470     crf              = _mm_set1_ps(fr->ic->c_rf);
471     nvdwtype         = fr->ntype;
472     vdwparam         = fr->nbfp;
473     vdwtype          = mdatoms->typeA;
474
475     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
476     rcutoff_scalar   = fr->rcoulomb;
477     rcutoff          = _mm_set1_ps(rcutoff_scalar);
478     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
479
480     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
481     rvdw             = _mm_set1_ps(fr->rvdw);
482
483     /* Avoid stupid compiler warnings */
484     jnrA = jnrB = jnrC = jnrD = 0;
485     j_coord_offsetA = 0;
486     j_coord_offsetB = 0;
487     j_coord_offsetC = 0;
488     j_coord_offsetD = 0;
489
490     outeriter        = 0;
491     inneriter        = 0;
492
493     for(iidx=0;iidx<4*DIM;iidx++)
494     {
495         scratch[iidx] = 0.0;
496     }
497
498     /* Start outer loop over neighborlists */
499     for(iidx=0; iidx<nri; iidx++)
500     {
501         /* Load shift vector for this list */
502         i_shift_offset   = DIM*shiftidx[iidx];
503
504         /* Load limits for loop over neighbors */
505         j_index_start    = jindex[iidx];
506         j_index_end      = jindex[iidx+1];
507
508         /* Get outer coordinate index */
509         inr              = iinr[iidx];
510         i_coord_offset   = DIM*inr;
511
512         /* Load i particle coords and add shift vector */
513         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
514
515         fix0             = _mm_setzero_ps();
516         fiy0             = _mm_setzero_ps();
517         fiz0             = _mm_setzero_ps();
518
519         /* Load parameters for i particles */
520         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
521         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             jnrC             = jjnr[jidx+2];
531             jnrD             = jjnr[jidx+3];
532             j_coord_offsetA  = DIM*jnrA;
533             j_coord_offsetB  = DIM*jnrB;
534             j_coord_offsetC  = DIM*jnrC;
535             j_coord_offsetD  = DIM*jnrD;
536
537             /* load j atom coordinates */
538             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
539                                               x+j_coord_offsetC,x+j_coord_offsetD,
540                                               &jx0,&jy0,&jz0);
541
542             /* Calculate displacement vector */
543             dx00             = _mm_sub_ps(ix0,jx0);
544             dy00             = _mm_sub_ps(iy0,jy0);
545             dz00             = _mm_sub_ps(iz0,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
549
550             rinv00           = gmx_mm_invsqrt_ps(rsq00);
551
552             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
553
554             /* Load parameters for j particles */
555             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
556                                                               charge+jnrC+0,charge+jnrD+0);
557             vdwjidx0A        = 2*vdwtype[jnrA+0];
558             vdwjidx0B        = 2*vdwtype[jnrB+0];
559             vdwjidx0C        = 2*vdwtype[jnrC+0];
560             vdwjidx0D        = 2*vdwtype[jnrD+0];
561
562             /**************************
563              * CALCULATE INTERACTIONS *
564              **************************/
565
566             if (gmx_mm_any_lt(rsq00,rcutoff2))
567             {
568
569             /* Compute parameters for interactions between i and j atoms */
570             qq00             = _mm_mul_ps(iq0,jq0);
571             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
572                                          vdwparam+vdwioffset0+vdwjidx0B,
573                                          vdwparam+vdwioffset0+vdwjidx0C,
574                                          vdwparam+vdwioffset0+vdwjidx0D,
575                                          &c6_00,&c12_00);
576
577             /* REACTION-FIELD ELECTROSTATICS */
578             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
579
580             /* LENNARD-JONES DISPERSION/REPULSION */
581
582             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
583             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
584
585             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
586
587             fscal            = _mm_add_ps(felec,fvdw);
588
589             fscal            = _mm_and_ps(fscal,cutoff_mask);
590
591              /* Update vectorial force */
592             fix0             = _mm_macc_ps(dx00,fscal,fix0);
593             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
594             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
595
596             fjptrA             = f+j_coord_offsetA;
597             fjptrB             = f+j_coord_offsetB;
598             fjptrC             = f+j_coord_offsetC;
599             fjptrD             = f+j_coord_offsetD;
600             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
601                                                    _mm_mul_ps(dx00,fscal),
602                                                    _mm_mul_ps(dy00,fscal),
603                                                    _mm_mul_ps(dz00,fscal));
604
605             }
606
607             /* Inner loop uses 40 flops */
608         }
609
610         if(jidx<j_index_end)
611         {
612
613             /* Get j neighbor index, and coordinate index */
614             jnrlistA         = jjnr[jidx];
615             jnrlistB         = jjnr[jidx+1];
616             jnrlistC         = jjnr[jidx+2];
617             jnrlistD         = jjnr[jidx+3];
618             /* Sign of each element will be negative for non-real atoms.
619              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
620              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
621              */
622             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
623             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
624             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
625             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
626             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
627             j_coord_offsetA  = DIM*jnrA;
628             j_coord_offsetB  = DIM*jnrB;
629             j_coord_offsetC  = DIM*jnrC;
630             j_coord_offsetD  = DIM*jnrD;
631
632             /* load j atom coordinates */
633             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
634                                               x+j_coord_offsetC,x+j_coord_offsetD,
635                                               &jx0,&jy0,&jz0);
636
637             /* Calculate displacement vector */
638             dx00             = _mm_sub_ps(ix0,jx0);
639             dy00             = _mm_sub_ps(iy0,jy0);
640             dz00             = _mm_sub_ps(iz0,jz0);
641
642             /* Calculate squared distance and things based on it */
643             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
644
645             rinv00           = gmx_mm_invsqrt_ps(rsq00);
646
647             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
648
649             /* Load parameters for j particles */
650             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
651                                                               charge+jnrC+0,charge+jnrD+0);
652             vdwjidx0A        = 2*vdwtype[jnrA+0];
653             vdwjidx0B        = 2*vdwtype[jnrB+0];
654             vdwjidx0C        = 2*vdwtype[jnrC+0];
655             vdwjidx0D        = 2*vdwtype[jnrD+0];
656
657             /**************************
658              * CALCULATE INTERACTIONS *
659              **************************/
660
661             if (gmx_mm_any_lt(rsq00,rcutoff2))
662             {
663
664             /* Compute parameters for interactions between i and j atoms */
665             qq00             = _mm_mul_ps(iq0,jq0);
666             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
667                                          vdwparam+vdwioffset0+vdwjidx0B,
668                                          vdwparam+vdwioffset0+vdwjidx0C,
669                                          vdwparam+vdwioffset0+vdwjidx0D,
670                                          &c6_00,&c12_00);
671
672             /* REACTION-FIELD ELECTROSTATICS */
673             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
674
675             /* LENNARD-JONES DISPERSION/REPULSION */
676
677             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
678             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
679
680             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
681
682             fscal            = _mm_add_ps(felec,fvdw);
683
684             fscal            = _mm_and_ps(fscal,cutoff_mask);
685
686             fscal            = _mm_andnot_ps(dummy_mask,fscal);
687
688              /* Update vectorial force */
689             fix0             = _mm_macc_ps(dx00,fscal,fix0);
690             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
691             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
692
693             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
694             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
695             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
696             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
697             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
698                                                    _mm_mul_ps(dx00,fscal),
699                                                    _mm_mul_ps(dy00,fscal),
700                                                    _mm_mul_ps(dz00,fscal));
701
702             }
703
704             /* Inner loop uses 40 flops */
705         }
706
707         /* End of innermost loop */
708
709         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
710                                               f+i_coord_offset,fshift+i_shift_offset);
711
712         /* Increment number of inner iterations */
713         inneriter                  += j_index_end - j_index_start;
714
715         /* Outer loop uses 7 flops */
716     }
717
718     /* Increment number of outer iterations */
719     outeriter        += nri;
720
721     /* Update outer/inner flops */
722
723     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*40);
724 }