Added option to gmx nmeig to print ZPE.
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->ic->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff_scalar   = fr->ic->rcoulomb;
121     rcutoff          = _mm_set1_ps(rcutoff_scalar);
122     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
123
124     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
125     rvdw             = _mm_set1_ps(fr->ic->rvdw);
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm_setzero_ps();
160         fiy0             = _mm_setzero_ps();
161         fiz0             = _mm_setzero_ps();
162
163         /* Load parameters for i particles */
164         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
165         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm_setzero_ps();
169         vvdwsum          = _mm_setzero_ps();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187                                               x+j_coord_offsetC,x+j_coord_offsetD,
188                                               &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm_sub_ps(ix0,jx0);
192             dy00             = _mm_sub_ps(iy0,jy0);
193             dz00             = _mm_sub_ps(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198             rinv00           = avx128fma_invsqrt_f(rsq00);
199
200             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
204                                                               charge+jnrC+0,charge+jnrD+0);
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             if (gmx_mm_any_lt(rsq00,rcutoff2))
215             {
216
217             /* Compute parameters for interactions between i and j atoms */
218             qq00             = _mm_mul_ps(iq0,jq0);
219             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
220                                          vdwparam+vdwioffset0+vdwjidx0B,
221                                          vdwparam+vdwioffset0+vdwjidx0C,
222                                          vdwparam+vdwioffset0+vdwjidx0D,
223                                          &c6_00,&c12_00);
224
225             /* REACTION-FIELD ELECTROSTATICS */
226             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
227             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
233             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
234             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
235                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
236             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
237
238             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
239
240             /* Update potential sum for this i atom from the interaction with this j atom. */
241             velec            = _mm_and_ps(velec,cutoff_mask);
242             velecsum         = _mm_add_ps(velecsum,velec);
243             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
244             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
245
246             fscal            = _mm_add_ps(felec,fvdw);
247
248             fscal            = _mm_and_ps(fscal,cutoff_mask);
249
250              /* Update vectorial force */
251             fix0             = _mm_macc_ps(dx00,fscal,fix0);
252             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
253             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
254
255             fjptrA             = f+j_coord_offsetA;
256             fjptrB             = f+j_coord_offsetB;
257             fjptrC             = f+j_coord_offsetC;
258             fjptrD             = f+j_coord_offsetD;
259             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
260                                                    _mm_mul_ps(dx00,fscal),
261                                                    _mm_mul_ps(dy00,fscal),
262                                                    _mm_mul_ps(dz00,fscal));
263
264             }
265
266             /* Inner loop uses 57 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             /* Get j neighbor index, and coordinate index */
273             jnrlistA         = jjnr[jidx];
274             jnrlistB         = jjnr[jidx+1];
275             jnrlistC         = jjnr[jidx+2];
276             jnrlistD         = jjnr[jidx+3];
277             /* Sign of each element will be negative for non-real atoms.
278              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
279              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
280              */
281             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
282             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
283             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
284             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
285             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
286             j_coord_offsetA  = DIM*jnrA;
287             j_coord_offsetB  = DIM*jnrB;
288             j_coord_offsetC  = DIM*jnrC;
289             j_coord_offsetD  = DIM*jnrD;
290
291             /* load j atom coordinates */
292             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
293                                               x+j_coord_offsetC,x+j_coord_offsetD,
294                                               &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm_sub_ps(ix0,jx0);
298             dy00             = _mm_sub_ps(iy0,jy0);
299             dz00             = _mm_sub_ps(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
303
304             rinv00           = avx128fma_invsqrt_f(rsq00);
305
306             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
310                                                               charge+jnrC+0,charge+jnrD+0);
311             vdwjidx0A        = 2*vdwtype[jnrA+0];
312             vdwjidx0B        = 2*vdwtype[jnrB+0];
313             vdwjidx0C        = 2*vdwtype[jnrC+0];
314             vdwjidx0D        = 2*vdwtype[jnrD+0];
315
316             /**************************
317              * CALCULATE INTERACTIONS *
318              **************************/
319
320             if (gmx_mm_any_lt(rsq00,rcutoff2))
321             {
322
323             /* Compute parameters for interactions between i and j atoms */
324             qq00             = _mm_mul_ps(iq0,jq0);
325             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
326                                          vdwparam+vdwioffset0+vdwjidx0B,
327                                          vdwparam+vdwioffset0+vdwjidx0C,
328                                          vdwparam+vdwioffset0+vdwjidx0D,
329                                          &c6_00,&c12_00);
330
331             /* REACTION-FIELD ELECTROSTATICS */
332             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
333             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
334
335             /* LENNARD-JONES DISPERSION/REPULSION */
336
337             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
338             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
339             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
340             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
341                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
342             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
343
344             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
345
346             /* Update potential sum for this i atom from the interaction with this j atom. */
347             velec            = _mm_and_ps(velec,cutoff_mask);
348             velec            = _mm_andnot_ps(dummy_mask,velec);
349             velecsum         = _mm_add_ps(velecsum,velec);
350             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
351             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
352             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
353
354             fscal            = _mm_add_ps(felec,fvdw);
355
356             fscal            = _mm_and_ps(fscal,cutoff_mask);
357
358             fscal            = _mm_andnot_ps(dummy_mask,fscal);
359
360              /* Update vectorial force */
361             fix0             = _mm_macc_ps(dx00,fscal,fix0);
362             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
363             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
364
365             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
366             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
367             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
368             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
369             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
370                                                    _mm_mul_ps(dx00,fscal),
371                                                    _mm_mul_ps(dy00,fscal),
372                                                    _mm_mul_ps(dz00,fscal));
373
374             }
375
376             /* Inner loop uses 57 flops */
377         }
378
379         /* End of innermost loop */
380
381         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
382                                               f+i_coord_offset,fshift+i_shift_offset);
383
384         ggid                        = gid[iidx];
385         /* Update potential energies */
386         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
387         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
388
389         /* Increment number of inner iterations */
390         inneriter                  += j_index_end - j_index_start;
391
392         /* Outer loop uses 9 flops */
393     }
394
395     /* Increment number of outer iterations */
396     outeriter        += nri;
397
398     /* Update outer/inner flops */
399
400     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*57);
401 }
402 /*
403  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_single
404  * Electrostatics interaction: ReactionField
405  * VdW interaction:            LennardJones
406  * Geometry:                   Particle-Particle
407  * Calculate force/pot:        Force
408  */
409 void
410 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_128_fma_single
411                     (t_nblist                    * gmx_restrict       nlist,
412                      rvec                        * gmx_restrict          xx,
413                      rvec                        * gmx_restrict          ff,
414                      struct t_forcerec           * gmx_restrict          fr,
415                      t_mdatoms                   * gmx_restrict     mdatoms,
416                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
417                      t_nrnb                      * gmx_restrict        nrnb)
418 {
419     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
420      * just 0 for non-waters.
421      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
422      * jnr indices corresponding to data put in the four positions in the SIMD register.
423      */
424     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
425     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
426     int              jnrA,jnrB,jnrC,jnrD;
427     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
428     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
429     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
430     real             rcutoff_scalar;
431     real             *shiftvec,*fshift,*x,*f;
432     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
433     real             scratch[4*DIM];
434     __m128           fscal,rcutoff,rcutoff2,jidxall;
435     int              vdwioffset0;
436     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
438     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
439     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
440     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
441     real             *charge;
442     int              nvdwtype;
443     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
444     int              *vdwtype;
445     real             *vdwparam;
446     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
447     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
448     __m128           dummy_mask,cutoff_mask;
449     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
450     __m128           one     = _mm_set1_ps(1.0);
451     __m128           two     = _mm_set1_ps(2.0);
452     x                = xx[0];
453     f                = ff[0];
454
455     nri              = nlist->nri;
456     iinr             = nlist->iinr;
457     jindex           = nlist->jindex;
458     jjnr             = nlist->jjnr;
459     shiftidx         = nlist->shift;
460     gid              = nlist->gid;
461     shiftvec         = fr->shift_vec[0];
462     fshift           = fr->fshift[0];
463     facel            = _mm_set1_ps(fr->ic->epsfac);
464     charge           = mdatoms->chargeA;
465     krf              = _mm_set1_ps(fr->ic->k_rf);
466     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
467     crf              = _mm_set1_ps(fr->ic->c_rf);
468     nvdwtype         = fr->ntype;
469     vdwparam         = fr->nbfp;
470     vdwtype          = mdatoms->typeA;
471
472     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
473     rcutoff_scalar   = fr->ic->rcoulomb;
474     rcutoff          = _mm_set1_ps(rcutoff_scalar);
475     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
476
477     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
478     rvdw             = _mm_set1_ps(fr->ic->rvdw);
479
480     /* Avoid stupid compiler warnings */
481     jnrA = jnrB = jnrC = jnrD = 0;
482     j_coord_offsetA = 0;
483     j_coord_offsetB = 0;
484     j_coord_offsetC = 0;
485     j_coord_offsetD = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     for(iidx=0;iidx<4*DIM;iidx++)
491     {
492         scratch[iidx] = 0.0;
493     }
494
495     /* Start outer loop over neighborlists */
496     for(iidx=0; iidx<nri; iidx++)
497     {
498         /* Load shift vector for this list */
499         i_shift_offset   = DIM*shiftidx[iidx];
500
501         /* Load limits for loop over neighbors */
502         j_index_start    = jindex[iidx];
503         j_index_end      = jindex[iidx+1];
504
505         /* Get outer coordinate index */
506         inr              = iinr[iidx];
507         i_coord_offset   = DIM*inr;
508
509         /* Load i particle coords and add shift vector */
510         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
511
512         fix0             = _mm_setzero_ps();
513         fiy0             = _mm_setzero_ps();
514         fiz0             = _mm_setzero_ps();
515
516         /* Load parameters for i particles */
517         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
518         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
519
520         /* Start inner kernel loop */
521         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrA             = jjnr[jidx];
526             jnrB             = jjnr[jidx+1];
527             jnrC             = jjnr[jidx+2];
528             jnrD             = jjnr[jidx+3];
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531             j_coord_offsetC  = DIM*jnrC;
532             j_coord_offsetD  = DIM*jnrD;
533
534             /* load j atom coordinates */
535             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
536                                               x+j_coord_offsetC,x+j_coord_offsetD,
537                                               &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm_sub_ps(ix0,jx0);
541             dy00             = _mm_sub_ps(iy0,jy0);
542             dz00             = _mm_sub_ps(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
546
547             rinv00           = avx128fma_invsqrt_f(rsq00);
548
549             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
553                                                               charge+jnrC+0,charge+jnrD+0);
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555             vdwjidx0B        = 2*vdwtype[jnrB+0];
556             vdwjidx0C        = 2*vdwtype[jnrC+0];
557             vdwjidx0D        = 2*vdwtype[jnrD+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm_any_lt(rsq00,rcutoff2))
564             {
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq00             = _mm_mul_ps(iq0,jq0);
568             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
569                                          vdwparam+vdwioffset0+vdwjidx0B,
570                                          vdwparam+vdwioffset0+vdwjidx0C,
571                                          vdwparam+vdwioffset0+vdwjidx0D,
572                                          &c6_00,&c12_00);
573
574             /* REACTION-FIELD ELECTROSTATICS */
575             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
580             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
581
582             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
583
584             fscal            = _mm_add_ps(felec,fvdw);
585
586             fscal            = _mm_and_ps(fscal,cutoff_mask);
587
588              /* Update vectorial force */
589             fix0             = _mm_macc_ps(dx00,fscal,fix0);
590             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
591             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
592
593             fjptrA             = f+j_coord_offsetA;
594             fjptrB             = f+j_coord_offsetB;
595             fjptrC             = f+j_coord_offsetC;
596             fjptrD             = f+j_coord_offsetD;
597             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
598                                                    _mm_mul_ps(dx00,fscal),
599                                                    _mm_mul_ps(dy00,fscal),
600                                                    _mm_mul_ps(dz00,fscal));
601
602             }
603
604             /* Inner loop uses 40 flops */
605         }
606
607         if(jidx<j_index_end)
608         {
609
610             /* Get j neighbor index, and coordinate index */
611             jnrlistA         = jjnr[jidx];
612             jnrlistB         = jjnr[jidx+1];
613             jnrlistC         = jjnr[jidx+2];
614             jnrlistD         = jjnr[jidx+3];
615             /* Sign of each element will be negative for non-real atoms.
616              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
617              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
618              */
619             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
620             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
621             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
622             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
623             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
624             j_coord_offsetA  = DIM*jnrA;
625             j_coord_offsetB  = DIM*jnrB;
626             j_coord_offsetC  = DIM*jnrC;
627             j_coord_offsetD  = DIM*jnrD;
628
629             /* load j atom coordinates */
630             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
631                                               x+j_coord_offsetC,x+j_coord_offsetD,
632                                               &jx0,&jy0,&jz0);
633
634             /* Calculate displacement vector */
635             dx00             = _mm_sub_ps(ix0,jx0);
636             dy00             = _mm_sub_ps(iy0,jy0);
637             dz00             = _mm_sub_ps(iz0,jz0);
638
639             /* Calculate squared distance and things based on it */
640             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
641
642             rinv00           = avx128fma_invsqrt_f(rsq00);
643
644             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
645
646             /* Load parameters for j particles */
647             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
648                                                               charge+jnrC+0,charge+jnrD+0);
649             vdwjidx0A        = 2*vdwtype[jnrA+0];
650             vdwjidx0B        = 2*vdwtype[jnrB+0];
651             vdwjidx0C        = 2*vdwtype[jnrC+0];
652             vdwjidx0D        = 2*vdwtype[jnrD+0];
653
654             /**************************
655              * CALCULATE INTERACTIONS *
656              **************************/
657
658             if (gmx_mm_any_lt(rsq00,rcutoff2))
659             {
660
661             /* Compute parameters for interactions between i and j atoms */
662             qq00             = _mm_mul_ps(iq0,jq0);
663             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
664                                          vdwparam+vdwioffset0+vdwjidx0B,
665                                          vdwparam+vdwioffset0+vdwjidx0C,
666                                          vdwparam+vdwioffset0+vdwjidx0D,
667                                          &c6_00,&c12_00);
668
669             /* REACTION-FIELD ELECTROSTATICS */
670             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
671
672             /* LENNARD-JONES DISPERSION/REPULSION */
673
674             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
675             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
676
677             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
678
679             fscal            = _mm_add_ps(felec,fvdw);
680
681             fscal            = _mm_and_ps(fscal,cutoff_mask);
682
683             fscal            = _mm_andnot_ps(dummy_mask,fscal);
684
685              /* Update vectorial force */
686             fix0             = _mm_macc_ps(dx00,fscal,fix0);
687             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
688             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
689
690             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
691             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
692             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
693             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
694             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
695                                                    _mm_mul_ps(dx00,fscal),
696                                                    _mm_mul_ps(dy00,fscal),
697                                                    _mm_mul_ps(dz00,fscal));
698
699             }
700
701             /* Inner loop uses 40 flops */
702         }
703
704         /* End of innermost loop */
705
706         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
707                                               f+i_coord_offset,fshift+i_shift_offset);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 7 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*40);
721 }