Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwioffset1;
72     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
73     int              vdwioffset2;
74     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
75     int              vdwioffset3;
76     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
77     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
78     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
79     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
80     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
81     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
82     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
83     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
90     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
91     __m128i          vfitab;
92     __m128i          ifour       = _mm_set1_epi32(4);
93     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
94     real             *vftab;
95     __m128           dummy_mask,cutoff_mask;
96     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97     __m128           one     = _mm_set1_ps(1.0);
98     __m128           two     = _mm_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm_set1_ps(fr->ic->k_rf);
113     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm_set1_ps(fr->ic->c_rf);
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118
119     vftab            = kernel_data->table_vdw->data;
120     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
121
122     /* Setup water-specific parameters */
123     inr              = nlist->iinr[0];
124     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
125     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
126     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
127     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm_setzero_ps();
168         fiy0             = _mm_setzero_ps();
169         fiz0             = _mm_setzero_ps();
170         fix1             = _mm_setzero_ps();
171         fiy1             = _mm_setzero_ps();
172         fiz1             = _mm_setzero_ps();
173         fix2             = _mm_setzero_ps();
174         fiy2             = _mm_setzero_ps();
175         fiz2             = _mm_setzero_ps();
176         fix3             = _mm_setzero_ps();
177         fiy3             = _mm_setzero_ps();
178         fiz3             = _mm_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm_setzero_ps();
182         vvdwsum          = _mm_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             j_coord_offsetA  = DIM*jnrA;
194             j_coord_offsetB  = DIM*jnrB;
195             j_coord_offsetC  = DIM*jnrC;
196             j_coord_offsetD  = DIM*jnrD;
197
198             /* load j atom coordinates */
199             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                               x+j_coord_offsetC,x+j_coord_offsetD,
201                                               &jx0,&jy0,&jz0);
202
203             /* Calculate displacement vector */
204             dx00             = _mm_sub_ps(ix0,jx0);
205             dy00             = _mm_sub_ps(iy0,jy0);
206             dz00             = _mm_sub_ps(iz0,jz0);
207             dx10             = _mm_sub_ps(ix1,jx0);
208             dy10             = _mm_sub_ps(iy1,jy0);
209             dz10             = _mm_sub_ps(iz1,jz0);
210             dx20             = _mm_sub_ps(ix2,jx0);
211             dy20             = _mm_sub_ps(iy2,jy0);
212             dz20             = _mm_sub_ps(iz2,jz0);
213             dx30             = _mm_sub_ps(ix3,jx0);
214             dy30             = _mm_sub_ps(iy3,jy0);
215             dz30             = _mm_sub_ps(iz3,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
219             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
220             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
221             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
222
223             rinv00           = gmx_mm_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm_invsqrt_ps(rsq20);
226             rinv30           = gmx_mm_invsqrt_ps(rsq30);
227
228             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
230             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
231
232             /* Load parameters for j particles */
233             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
234                                                               charge+jnrC+0,charge+jnrD+0);
235             vdwjidx0A        = 2*vdwtype[jnrA+0];
236             vdwjidx0B        = 2*vdwtype[jnrB+0];
237             vdwjidx0C        = 2*vdwtype[jnrC+0];
238             vdwjidx0D        = 2*vdwtype[jnrD+0];
239
240             fjx0             = _mm_setzero_ps();
241             fjy0             = _mm_setzero_ps();
242             fjz0             = _mm_setzero_ps();
243
244             /**************************
245              * CALCULATE INTERACTIONS *
246              **************************/
247
248             r00              = _mm_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
252                                          vdwparam+vdwioffset0+vdwjidx0B,
253                                          vdwparam+vdwioffset0+vdwjidx0C,
254                                          vdwparam+vdwioffset0+vdwjidx0D,
255                                          &c6_00,&c12_00);
256
257             /* Calculate table index by multiplying r with table scale and truncate to integer */
258             rt               = _mm_mul_ps(r00,vftabscale);
259             vfitab           = _mm_cvttps_epi32(rt);
260 #ifdef __XOP__
261             vfeps            = _mm_frcz_ps(rt);
262 #else
263             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
264 #endif
265             twovfeps         = _mm_add_ps(vfeps,vfeps);
266             vfitab           = _mm_slli_epi32(vfitab,3);
267
268             /* CUBIC SPLINE TABLE DISPERSION */
269             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
270             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
271             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
272             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
273             _MM_TRANSPOSE4_PS(Y,F,G,H);
274             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
275             VV               = _mm_macc_ps(vfeps,Fp,Y);
276             vvdw6            = _mm_mul_ps(c6_00,VV);
277             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
278             fvdw6            = _mm_mul_ps(c6_00,FF);
279
280             /* CUBIC SPLINE TABLE REPULSION */
281             vfitab           = _mm_add_epi32(vfitab,ifour);
282             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
284             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
285             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
286             _MM_TRANSPOSE4_PS(Y,F,G,H);
287             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
288             VV               = _mm_macc_ps(vfeps,Fp,Y);
289             vvdw12           = _mm_mul_ps(c12_00,VV);
290             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
291             fvdw12           = _mm_mul_ps(c12_00,FF);
292             vvdw             = _mm_add_ps(vvdw12,vvdw6);
293             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
297
298             fscal            = fvdw;
299
300              /* Update vectorial force */
301             fix0             = _mm_macc_ps(dx00,fscal,fix0);
302             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
303             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
304
305             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
306             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
307             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
308
309             /**************************
310              * CALCULATE INTERACTIONS *
311              **************************/
312
313             if (gmx_mm_any_lt(rsq10,rcutoff2))
314             {
315
316             /* Compute parameters for interactions between i and j atoms */
317             qq10             = _mm_mul_ps(iq1,jq0);
318
319             /* REACTION-FIELD ELECTROSTATICS */
320             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
321             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
322
323             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             velec            = _mm_and_ps(velec,cutoff_mask);
327             velecsum         = _mm_add_ps(velecsum,velec);
328
329             fscal            = felec;
330
331             fscal            = _mm_and_ps(fscal,cutoff_mask);
332
333              /* Update vectorial force */
334             fix1             = _mm_macc_ps(dx10,fscal,fix1);
335             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
336             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
337
338             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
339             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
340             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
341
342             }
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm_any_lt(rsq20,rcutoff2))
349             {
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq20             = _mm_mul_ps(iq2,jq0);
353
354             /* REACTION-FIELD ELECTROSTATICS */
355             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
356             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
357
358             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
359
360             /* Update potential sum for this i atom from the interaction with this j atom. */
361             velec            = _mm_and_ps(velec,cutoff_mask);
362             velecsum         = _mm_add_ps(velecsum,velec);
363
364             fscal            = felec;
365
366             fscal            = _mm_and_ps(fscal,cutoff_mask);
367
368              /* Update vectorial force */
369             fix2             = _mm_macc_ps(dx20,fscal,fix2);
370             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
371             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
372
373             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
374             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
375             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
376
377             }
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             if (gmx_mm_any_lt(rsq30,rcutoff2))
384             {
385
386             /* Compute parameters for interactions between i and j atoms */
387             qq30             = _mm_mul_ps(iq3,jq0);
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
391             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
392
393             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velec            = _mm_and_ps(velec,cutoff_mask);
397             velecsum         = _mm_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             fscal            = _mm_and_ps(fscal,cutoff_mask);
402
403              /* Update vectorial force */
404             fix3             = _mm_macc_ps(dx30,fscal,fix3);
405             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
406             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
407
408             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
409             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
410             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
411
412             }
413
414             fjptrA             = f+j_coord_offsetA;
415             fjptrB             = f+j_coord_offsetB;
416             fjptrC             = f+j_coord_offsetC;
417             fjptrD             = f+j_coord_offsetD;
418
419             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
420
421             /* Inner loop uses 176 flops */
422         }
423
424         if(jidx<j_index_end)
425         {
426
427             /* Get j neighbor index, and coordinate index */
428             jnrlistA         = jjnr[jidx];
429             jnrlistB         = jjnr[jidx+1];
430             jnrlistC         = jjnr[jidx+2];
431             jnrlistD         = jjnr[jidx+3];
432             /* Sign of each element will be negative for non-real atoms.
433              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
434              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
435              */
436             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
437             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
438             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
439             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
440             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
441             j_coord_offsetA  = DIM*jnrA;
442             j_coord_offsetB  = DIM*jnrB;
443             j_coord_offsetC  = DIM*jnrC;
444             j_coord_offsetD  = DIM*jnrD;
445
446             /* load j atom coordinates */
447             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
448                                               x+j_coord_offsetC,x+j_coord_offsetD,
449                                               &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm_sub_ps(ix0,jx0);
453             dy00             = _mm_sub_ps(iy0,jy0);
454             dz00             = _mm_sub_ps(iz0,jz0);
455             dx10             = _mm_sub_ps(ix1,jx0);
456             dy10             = _mm_sub_ps(iy1,jy0);
457             dz10             = _mm_sub_ps(iz1,jz0);
458             dx20             = _mm_sub_ps(ix2,jx0);
459             dy20             = _mm_sub_ps(iy2,jy0);
460             dz20             = _mm_sub_ps(iz2,jz0);
461             dx30             = _mm_sub_ps(ix3,jx0);
462             dy30             = _mm_sub_ps(iy3,jy0);
463             dz30             = _mm_sub_ps(iz3,jz0);
464
465             /* Calculate squared distance and things based on it */
466             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
467             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
468             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
469             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
470
471             rinv00           = gmx_mm_invsqrt_ps(rsq00);
472             rinv10           = gmx_mm_invsqrt_ps(rsq10);
473             rinv20           = gmx_mm_invsqrt_ps(rsq20);
474             rinv30           = gmx_mm_invsqrt_ps(rsq30);
475
476             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
477             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
478             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
479
480             /* Load parameters for j particles */
481             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
482                                                               charge+jnrC+0,charge+jnrD+0);
483             vdwjidx0A        = 2*vdwtype[jnrA+0];
484             vdwjidx0B        = 2*vdwtype[jnrB+0];
485             vdwjidx0C        = 2*vdwtype[jnrC+0];
486             vdwjidx0D        = 2*vdwtype[jnrD+0];
487
488             fjx0             = _mm_setzero_ps();
489             fjy0             = _mm_setzero_ps();
490             fjz0             = _mm_setzero_ps();
491
492             /**************************
493              * CALCULATE INTERACTIONS *
494              **************************/
495
496             r00              = _mm_mul_ps(rsq00,rinv00);
497             r00              = _mm_andnot_ps(dummy_mask,r00);
498
499             /* Compute parameters for interactions between i and j atoms */
500             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
501                                          vdwparam+vdwioffset0+vdwjidx0B,
502                                          vdwparam+vdwioffset0+vdwjidx0C,
503                                          vdwparam+vdwioffset0+vdwjidx0D,
504                                          &c6_00,&c12_00);
505
506             /* Calculate table index by multiplying r with table scale and truncate to integer */
507             rt               = _mm_mul_ps(r00,vftabscale);
508             vfitab           = _mm_cvttps_epi32(rt);
509 #ifdef __XOP__
510             vfeps            = _mm_frcz_ps(rt);
511 #else
512             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
513 #endif
514             twovfeps         = _mm_add_ps(vfeps,vfeps);
515             vfitab           = _mm_slli_epi32(vfitab,3);
516
517             /* CUBIC SPLINE TABLE DISPERSION */
518             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
519             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
520             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
521             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
522             _MM_TRANSPOSE4_PS(Y,F,G,H);
523             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
524             VV               = _mm_macc_ps(vfeps,Fp,Y);
525             vvdw6            = _mm_mul_ps(c6_00,VV);
526             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
527             fvdw6            = _mm_mul_ps(c6_00,FF);
528
529             /* CUBIC SPLINE TABLE REPULSION */
530             vfitab           = _mm_add_epi32(vfitab,ifour);
531             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
532             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
533             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
534             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
535             _MM_TRANSPOSE4_PS(Y,F,G,H);
536             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
537             VV               = _mm_macc_ps(vfeps,Fp,Y);
538             vvdw12           = _mm_mul_ps(c12_00,VV);
539             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
540             fvdw12           = _mm_mul_ps(c12_00,FF);
541             vvdw             = _mm_add_ps(vvdw12,vvdw6);
542             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
546             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
547
548             fscal            = fvdw;
549
550             fscal            = _mm_andnot_ps(dummy_mask,fscal);
551
552              /* Update vectorial force */
553             fix0             = _mm_macc_ps(dx00,fscal,fix0);
554             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
555             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
556
557             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
558             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
559             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm_any_lt(rsq10,rcutoff2))
566             {
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_ps(iq1,jq0);
570
571             /* REACTION-FIELD ELECTROSTATICS */
572             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
573             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
574
575             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm_and_ps(velec,cutoff_mask);
579             velec            = _mm_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm_add_ps(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_and_ps(fscal,cutoff_mask);
585
586             fscal            = _mm_andnot_ps(dummy_mask,fscal);
587
588              /* Update vectorial force */
589             fix1             = _mm_macc_ps(dx10,fscal,fix1);
590             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
591             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
592
593             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
594             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
595             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm_any_lt(rsq20,rcutoff2))
604             {
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq20             = _mm_mul_ps(iq2,jq0);
608
609             /* REACTION-FIELD ELECTROSTATICS */
610             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
611             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
612
613             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm_and_ps(velec,cutoff_mask);
617             velec            = _mm_andnot_ps(dummy_mask,velec);
618             velecsum         = _mm_add_ps(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_and_ps(fscal,cutoff_mask);
623
624             fscal            = _mm_andnot_ps(dummy_mask,fscal);
625
626              /* Update vectorial force */
627             fix2             = _mm_macc_ps(dx20,fscal,fix2);
628             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
629             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
630
631             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
632             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
633             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
634
635             }
636
637             /**************************
638              * CALCULATE INTERACTIONS *
639              **************************/
640
641             if (gmx_mm_any_lt(rsq30,rcutoff2))
642             {
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq30             = _mm_mul_ps(iq3,jq0);
646
647             /* REACTION-FIELD ELECTROSTATICS */
648             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
649             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
650
651             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
652
653             /* Update potential sum for this i atom from the interaction with this j atom. */
654             velec            = _mm_and_ps(velec,cutoff_mask);
655             velec            = _mm_andnot_ps(dummy_mask,velec);
656             velecsum         = _mm_add_ps(velecsum,velec);
657
658             fscal            = felec;
659
660             fscal            = _mm_and_ps(fscal,cutoff_mask);
661
662             fscal            = _mm_andnot_ps(dummy_mask,fscal);
663
664              /* Update vectorial force */
665             fix3             = _mm_macc_ps(dx30,fscal,fix3);
666             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
667             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
668
669             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
670             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
671             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
672
673             }
674
675             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
676             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
677             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
678             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
679
680             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
681
682             /* Inner loop uses 177 flops */
683         }
684
685         /* End of innermost loop */
686
687         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
688                                               f+i_coord_offset,fshift+i_shift_offset);
689
690         ggid                        = gid[iidx];
691         /* Update potential energies */
692         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
693         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 26 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
707 }
708 /*
709  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_single
710  * Electrostatics interaction: ReactionField
711  * VdW interaction:            CubicSplineTable
712  * Geometry:                   Water4-Particle
713  * Calculate force/pot:        Force
714  */
715 void
716 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_single
717                     (t_nblist * gmx_restrict                nlist,
718                      rvec * gmx_restrict                    xx,
719                      rvec * gmx_restrict                    ff,
720                      t_forcerec * gmx_restrict              fr,
721                      t_mdatoms * gmx_restrict               mdatoms,
722                      nb_kernel_data_t * gmx_restrict        kernel_data,
723                      t_nrnb * gmx_restrict                  nrnb)
724 {
725     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
726      * just 0 for non-waters.
727      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
728      * jnr indices corresponding to data put in the four positions in the SIMD register.
729      */
730     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
731     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
732     int              jnrA,jnrB,jnrC,jnrD;
733     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
734     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
735     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
736     real             rcutoff_scalar;
737     real             *shiftvec,*fshift,*x,*f;
738     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
739     real             scratch[4*DIM];
740     __m128           fscal,rcutoff,rcutoff2,jidxall;
741     int              vdwioffset0;
742     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
743     int              vdwioffset1;
744     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
745     int              vdwioffset2;
746     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
747     int              vdwioffset3;
748     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
749     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
750     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
751     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
752     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
753     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
754     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
755     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
756     real             *charge;
757     int              nvdwtype;
758     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
759     int              *vdwtype;
760     real             *vdwparam;
761     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
762     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
763     __m128i          vfitab;
764     __m128i          ifour       = _mm_set1_epi32(4);
765     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
766     real             *vftab;
767     __m128           dummy_mask,cutoff_mask;
768     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
769     __m128           one     = _mm_set1_ps(1.0);
770     __m128           two     = _mm_set1_ps(2.0);
771     x                = xx[0];
772     f                = ff[0];
773
774     nri              = nlist->nri;
775     iinr             = nlist->iinr;
776     jindex           = nlist->jindex;
777     jjnr             = nlist->jjnr;
778     shiftidx         = nlist->shift;
779     gid              = nlist->gid;
780     shiftvec         = fr->shift_vec[0];
781     fshift           = fr->fshift[0];
782     facel            = _mm_set1_ps(fr->epsfac);
783     charge           = mdatoms->chargeA;
784     krf              = _mm_set1_ps(fr->ic->k_rf);
785     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
786     crf              = _mm_set1_ps(fr->ic->c_rf);
787     nvdwtype         = fr->ntype;
788     vdwparam         = fr->nbfp;
789     vdwtype          = mdatoms->typeA;
790
791     vftab            = kernel_data->table_vdw->data;
792     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
793
794     /* Setup water-specific parameters */
795     inr              = nlist->iinr[0];
796     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
797     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
798     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
799     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
800
801     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
802     rcutoff_scalar   = fr->rcoulomb;
803     rcutoff          = _mm_set1_ps(rcutoff_scalar);
804     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
805
806     /* Avoid stupid compiler warnings */
807     jnrA = jnrB = jnrC = jnrD = 0;
808     j_coord_offsetA = 0;
809     j_coord_offsetB = 0;
810     j_coord_offsetC = 0;
811     j_coord_offsetD = 0;
812
813     outeriter        = 0;
814     inneriter        = 0;
815
816     for(iidx=0;iidx<4*DIM;iidx++)
817     {
818         scratch[iidx] = 0.0;
819     }
820
821     /* Start outer loop over neighborlists */
822     for(iidx=0; iidx<nri; iidx++)
823     {
824         /* Load shift vector for this list */
825         i_shift_offset   = DIM*shiftidx[iidx];
826
827         /* Load limits for loop over neighbors */
828         j_index_start    = jindex[iidx];
829         j_index_end      = jindex[iidx+1];
830
831         /* Get outer coordinate index */
832         inr              = iinr[iidx];
833         i_coord_offset   = DIM*inr;
834
835         /* Load i particle coords and add shift vector */
836         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
837                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
838
839         fix0             = _mm_setzero_ps();
840         fiy0             = _mm_setzero_ps();
841         fiz0             = _mm_setzero_ps();
842         fix1             = _mm_setzero_ps();
843         fiy1             = _mm_setzero_ps();
844         fiz1             = _mm_setzero_ps();
845         fix2             = _mm_setzero_ps();
846         fiy2             = _mm_setzero_ps();
847         fiz2             = _mm_setzero_ps();
848         fix3             = _mm_setzero_ps();
849         fiy3             = _mm_setzero_ps();
850         fiz3             = _mm_setzero_ps();
851
852         /* Start inner kernel loop */
853         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
854         {
855
856             /* Get j neighbor index, and coordinate index */
857             jnrA             = jjnr[jidx];
858             jnrB             = jjnr[jidx+1];
859             jnrC             = jjnr[jidx+2];
860             jnrD             = jjnr[jidx+3];
861             j_coord_offsetA  = DIM*jnrA;
862             j_coord_offsetB  = DIM*jnrB;
863             j_coord_offsetC  = DIM*jnrC;
864             j_coord_offsetD  = DIM*jnrD;
865
866             /* load j atom coordinates */
867             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
868                                               x+j_coord_offsetC,x+j_coord_offsetD,
869                                               &jx0,&jy0,&jz0);
870
871             /* Calculate displacement vector */
872             dx00             = _mm_sub_ps(ix0,jx0);
873             dy00             = _mm_sub_ps(iy0,jy0);
874             dz00             = _mm_sub_ps(iz0,jz0);
875             dx10             = _mm_sub_ps(ix1,jx0);
876             dy10             = _mm_sub_ps(iy1,jy0);
877             dz10             = _mm_sub_ps(iz1,jz0);
878             dx20             = _mm_sub_ps(ix2,jx0);
879             dy20             = _mm_sub_ps(iy2,jy0);
880             dz20             = _mm_sub_ps(iz2,jz0);
881             dx30             = _mm_sub_ps(ix3,jx0);
882             dy30             = _mm_sub_ps(iy3,jy0);
883             dz30             = _mm_sub_ps(iz3,jz0);
884
885             /* Calculate squared distance and things based on it */
886             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
887             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
888             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
889             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
890
891             rinv00           = gmx_mm_invsqrt_ps(rsq00);
892             rinv10           = gmx_mm_invsqrt_ps(rsq10);
893             rinv20           = gmx_mm_invsqrt_ps(rsq20);
894             rinv30           = gmx_mm_invsqrt_ps(rsq30);
895
896             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
897             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
898             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
899
900             /* Load parameters for j particles */
901             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
902                                                               charge+jnrC+0,charge+jnrD+0);
903             vdwjidx0A        = 2*vdwtype[jnrA+0];
904             vdwjidx0B        = 2*vdwtype[jnrB+0];
905             vdwjidx0C        = 2*vdwtype[jnrC+0];
906             vdwjidx0D        = 2*vdwtype[jnrD+0];
907
908             fjx0             = _mm_setzero_ps();
909             fjy0             = _mm_setzero_ps();
910             fjz0             = _mm_setzero_ps();
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             r00              = _mm_mul_ps(rsq00,rinv00);
917
918             /* Compute parameters for interactions between i and j atoms */
919             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
920                                          vdwparam+vdwioffset0+vdwjidx0B,
921                                          vdwparam+vdwioffset0+vdwjidx0C,
922                                          vdwparam+vdwioffset0+vdwjidx0D,
923                                          &c6_00,&c12_00);
924
925             /* Calculate table index by multiplying r with table scale and truncate to integer */
926             rt               = _mm_mul_ps(r00,vftabscale);
927             vfitab           = _mm_cvttps_epi32(rt);
928 #ifdef __XOP__
929             vfeps            = _mm_frcz_ps(rt);
930 #else
931             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
932 #endif
933             twovfeps         = _mm_add_ps(vfeps,vfeps);
934             vfitab           = _mm_slli_epi32(vfitab,3);
935
936             /* CUBIC SPLINE TABLE DISPERSION */
937             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
938             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
939             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
940             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
941             _MM_TRANSPOSE4_PS(Y,F,G,H);
942             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
943             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
944             fvdw6            = _mm_mul_ps(c6_00,FF);
945
946             /* CUBIC SPLINE TABLE REPULSION */
947             vfitab           = _mm_add_epi32(vfitab,ifour);
948             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
949             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
950             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
951             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
952             _MM_TRANSPOSE4_PS(Y,F,G,H);
953             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
954             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
955             fvdw12           = _mm_mul_ps(c12_00,FF);
956             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
957
958             fscal            = fvdw;
959
960              /* Update vectorial force */
961             fix0             = _mm_macc_ps(dx00,fscal,fix0);
962             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
963             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
964
965             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
966             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
967             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
968
969             /**************************
970              * CALCULATE INTERACTIONS *
971              **************************/
972
973             if (gmx_mm_any_lt(rsq10,rcutoff2))
974             {
975
976             /* Compute parameters for interactions between i and j atoms */
977             qq10             = _mm_mul_ps(iq1,jq0);
978
979             /* REACTION-FIELD ELECTROSTATICS */
980             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
981
982             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
983
984             fscal            = felec;
985
986             fscal            = _mm_and_ps(fscal,cutoff_mask);
987
988              /* Update vectorial force */
989             fix1             = _mm_macc_ps(dx10,fscal,fix1);
990             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
991             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
992
993             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
994             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
995             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
996
997             }
998
999             /**************************
1000              * CALCULATE INTERACTIONS *
1001              **************************/
1002
1003             if (gmx_mm_any_lt(rsq20,rcutoff2))
1004             {
1005
1006             /* Compute parameters for interactions between i and j atoms */
1007             qq20             = _mm_mul_ps(iq2,jq0);
1008
1009             /* REACTION-FIELD ELECTROSTATICS */
1010             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1011
1012             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1013
1014             fscal            = felec;
1015
1016             fscal            = _mm_and_ps(fscal,cutoff_mask);
1017
1018              /* Update vectorial force */
1019             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1020             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1021             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1022
1023             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1024             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1025             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1026
1027             }
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             if (gmx_mm_any_lt(rsq30,rcutoff2))
1034             {
1035
1036             /* Compute parameters for interactions between i and j atoms */
1037             qq30             = _mm_mul_ps(iq3,jq0);
1038
1039             /* REACTION-FIELD ELECTROSTATICS */
1040             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1041
1042             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1043
1044             fscal            = felec;
1045
1046             fscal            = _mm_and_ps(fscal,cutoff_mask);
1047
1048              /* Update vectorial force */
1049             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1050             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1051             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1052
1053             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1054             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1055             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1056
1057             }
1058
1059             fjptrA             = f+j_coord_offsetA;
1060             fjptrB             = f+j_coord_offsetB;
1061             fjptrC             = f+j_coord_offsetC;
1062             fjptrD             = f+j_coord_offsetD;
1063
1064             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1065
1066             /* Inner loop uses 150 flops */
1067         }
1068
1069         if(jidx<j_index_end)
1070         {
1071
1072             /* Get j neighbor index, and coordinate index */
1073             jnrlistA         = jjnr[jidx];
1074             jnrlistB         = jjnr[jidx+1];
1075             jnrlistC         = jjnr[jidx+2];
1076             jnrlistD         = jjnr[jidx+3];
1077             /* Sign of each element will be negative for non-real atoms.
1078              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1079              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1080              */
1081             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1082             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1083             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1084             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1085             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1086             j_coord_offsetA  = DIM*jnrA;
1087             j_coord_offsetB  = DIM*jnrB;
1088             j_coord_offsetC  = DIM*jnrC;
1089             j_coord_offsetD  = DIM*jnrD;
1090
1091             /* load j atom coordinates */
1092             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1093                                               x+j_coord_offsetC,x+j_coord_offsetD,
1094                                               &jx0,&jy0,&jz0);
1095
1096             /* Calculate displacement vector */
1097             dx00             = _mm_sub_ps(ix0,jx0);
1098             dy00             = _mm_sub_ps(iy0,jy0);
1099             dz00             = _mm_sub_ps(iz0,jz0);
1100             dx10             = _mm_sub_ps(ix1,jx0);
1101             dy10             = _mm_sub_ps(iy1,jy0);
1102             dz10             = _mm_sub_ps(iz1,jz0);
1103             dx20             = _mm_sub_ps(ix2,jx0);
1104             dy20             = _mm_sub_ps(iy2,jy0);
1105             dz20             = _mm_sub_ps(iz2,jz0);
1106             dx30             = _mm_sub_ps(ix3,jx0);
1107             dy30             = _mm_sub_ps(iy3,jy0);
1108             dz30             = _mm_sub_ps(iz3,jz0);
1109
1110             /* Calculate squared distance and things based on it */
1111             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1112             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1113             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1114             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1115
1116             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1117             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1118             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1119             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1120
1121             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1122             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1123             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1124
1125             /* Load parameters for j particles */
1126             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1127                                                               charge+jnrC+0,charge+jnrD+0);
1128             vdwjidx0A        = 2*vdwtype[jnrA+0];
1129             vdwjidx0B        = 2*vdwtype[jnrB+0];
1130             vdwjidx0C        = 2*vdwtype[jnrC+0];
1131             vdwjidx0D        = 2*vdwtype[jnrD+0];
1132
1133             fjx0             = _mm_setzero_ps();
1134             fjy0             = _mm_setzero_ps();
1135             fjz0             = _mm_setzero_ps();
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             r00              = _mm_mul_ps(rsq00,rinv00);
1142             r00              = _mm_andnot_ps(dummy_mask,r00);
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1146                                          vdwparam+vdwioffset0+vdwjidx0B,
1147                                          vdwparam+vdwioffset0+vdwjidx0C,
1148                                          vdwparam+vdwioffset0+vdwjidx0D,
1149                                          &c6_00,&c12_00);
1150
1151             /* Calculate table index by multiplying r with table scale and truncate to integer */
1152             rt               = _mm_mul_ps(r00,vftabscale);
1153             vfitab           = _mm_cvttps_epi32(rt);
1154 #ifdef __XOP__
1155             vfeps            = _mm_frcz_ps(rt);
1156 #else
1157             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1158 #endif
1159             twovfeps         = _mm_add_ps(vfeps,vfeps);
1160             vfitab           = _mm_slli_epi32(vfitab,3);
1161
1162             /* CUBIC SPLINE TABLE DISPERSION */
1163             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1164             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1165             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1166             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1167             _MM_TRANSPOSE4_PS(Y,F,G,H);
1168             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1169             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1170             fvdw6            = _mm_mul_ps(c6_00,FF);
1171
1172             /* CUBIC SPLINE TABLE REPULSION */
1173             vfitab           = _mm_add_epi32(vfitab,ifour);
1174             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1175             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1176             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1177             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1178             _MM_TRANSPOSE4_PS(Y,F,G,H);
1179             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1180             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1181             fvdw12           = _mm_mul_ps(c12_00,FF);
1182             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1183
1184             fscal            = fvdw;
1185
1186             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1187
1188              /* Update vectorial force */
1189             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1190             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1191             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1192
1193             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1194             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1195             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1196
1197             /**************************
1198              * CALCULATE INTERACTIONS *
1199              **************************/
1200
1201             if (gmx_mm_any_lt(rsq10,rcutoff2))
1202             {
1203
1204             /* Compute parameters for interactions between i and j atoms */
1205             qq10             = _mm_mul_ps(iq1,jq0);
1206
1207             /* REACTION-FIELD ELECTROSTATICS */
1208             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1209
1210             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1211
1212             fscal            = felec;
1213
1214             fscal            = _mm_and_ps(fscal,cutoff_mask);
1215
1216             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1217
1218              /* Update vectorial force */
1219             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1220             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1221             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1222
1223             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1224             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1225             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1226
1227             }
1228
1229             /**************************
1230              * CALCULATE INTERACTIONS *
1231              **************************/
1232
1233             if (gmx_mm_any_lt(rsq20,rcutoff2))
1234             {
1235
1236             /* Compute parameters for interactions between i and j atoms */
1237             qq20             = _mm_mul_ps(iq2,jq0);
1238
1239             /* REACTION-FIELD ELECTROSTATICS */
1240             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1241
1242             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1243
1244             fscal            = felec;
1245
1246             fscal            = _mm_and_ps(fscal,cutoff_mask);
1247
1248             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1249
1250              /* Update vectorial force */
1251             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1252             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1253             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1254
1255             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1256             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1257             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1258
1259             }
1260
1261             /**************************
1262              * CALCULATE INTERACTIONS *
1263              **************************/
1264
1265             if (gmx_mm_any_lt(rsq30,rcutoff2))
1266             {
1267
1268             /* Compute parameters for interactions between i and j atoms */
1269             qq30             = _mm_mul_ps(iq3,jq0);
1270
1271             /* REACTION-FIELD ELECTROSTATICS */
1272             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1273
1274             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1275
1276             fscal            = felec;
1277
1278             fscal            = _mm_and_ps(fscal,cutoff_mask);
1279
1280             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1281
1282              /* Update vectorial force */
1283             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1284             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1285             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1286
1287             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1288             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1289             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1290
1291             }
1292
1293             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1294             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1295             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1296             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1297
1298             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1299
1300             /* Inner loop uses 151 flops */
1301         }
1302
1303         /* End of innermost loop */
1304
1305         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1306                                               f+i_coord_offset,fshift+i_shift_offset);
1307
1308         /* Increment number of inner iterations */
1309         inneriter                  += j_index_end - j_index_start;
1310
1311         /* Outer loop uses 24 flops */
1312     }
1313
1314     /* Increment number of outer iterations */
1315     outeriter        += nri;
1316
1317     /* Update outer/inner flops */
1318
1319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*151);
1320 }