422a0f0f1ca18bcac67d64f867438071b8a48f85
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water4-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwioffset3;
90     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
97     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
98     real             *charge;
99     int              nvdwtype;
100     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
101     int              *vdwtype;
102     real             *vdwparam;
103     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
104     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
105     __m128i          vfitab;
106     __m128i          ifour       = _mm_set1_epi32(4);
107     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
108     real             *vftab;
109     __m128           dummy_mask,cutoff_mask;
110     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
111     __m128           one     = _mm_set1_ps(1.0);
112     __m128           two     = _mm_set1_ps(2.0);
113     x                = xx[0];
114     f                = ff[0];
115
116     nri              = nlist->nri;
117     iinr             = nlist->iinr;
118     jindex           = nlist->jindex;
119     jjnr             = nlist->jjnr;
120     shiftidx         = nlist->shift;
121     gid              = nlist->gid;
122     shiftvec         = fr->shift_vec[0];
123     fshift           = fr->fshift[0];
124     facel            = _mm_set1_ps(fr->epsfac);
125     charge           = mdatoms->chargeA;
126     krf              = _mm_set1_ps(fr->ic->k_rf);
127     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
128     crf              = _mm_set1_ps(fr->ic->c_rf);
129     nvdwtype         = fr->ntype;
130     vdwparam         = fr->nbfp;
131     vdwtype          = mdatoms->typeA;
132
133     vftab            = kernel_data->table_vdw->data;
134     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
144     rcutoff_scalar   = fr->rcoulomb;
145     rcutoff          = _mm_set1_ps(rcutoff_scalar);
146     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
147
148     /* Avoid stupid compiler warnings */
149     jnrA = jnrB = jnrC = jnrD = 0;
150     j_coord_offsetA = 0;
151     j_coord_offsetB = 0;
152     j_coord_offsetC = 0;
153     j_coord_offsetD = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm_setzero_ps();
182         fiy0             = _mm_setzero_ps();
183         fiz0             = _mm_setzero_ps();
184         fix1             = _mm_setzero_ps();
185         fiy1             = _mm_setzero_ps();
186         fiz1             = _mm_setzero_ps();
187         fix2             = _mm_setzero_ps();
188         fiy2             = _mm_setzero_ps();
189         fiz2             = _mm_setzero_ps();
190         fix3             = _mm_setzero_ps();
191         fiy3             = _mm_setzero_ps();
192         fiz3             = _mm_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm_setzero_ps();
196         vvdwsum          = _mm_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             j_coord_offsetA  = DIM*jnrA;
208             j_coord_offsetB  = DIM*jnrB;
209             j_coord_offsetC  = DIM*jnrC;
210             j_coord_offsetD  = DIM*jnrD;
211
212             /* load j atom coordinates */
213             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                               x+j_coord_offsetC,x+j_coord_offsetD,
215                                               &jx0,&jy0,&jz0);
216
217             /* Calculate displacement vector */
218             dx00             = _mm_sub_ps(ix0,jx0);
219             dy00             = _mm_sub_ps(iy0,jy0);
220             dz00             = _mm_sub_ps(iz0,jz0);
221             dx10             = _mm_sub_ps(ix1,jx0);
222             dy10             = _mm_sub_ps(iy1,jy0);
223             dz10             = _mm_sub_ps(iz1,jz0);
224             dx20             = _mm_sub_ps(ix2,jx0);
225             dy20             = _mm_sub_ps(iy2,jy0);
226             dz20             = _mm_sub_ps(iz2,jz0);
227             dx30             = _mm_sub_ps(ix3,jx0);
228             dy30             = _mm_sub_ps(iy3,jy0);
229             dz30             = _mm_sub_ps(iz3,jz0);
230
231             /* Calculate squared distance and things based on it */
232             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
233             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
234             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
235             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
236
237             rinv00           = gmx_mm_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm_invsqrt_ps(rsq20);
240             rinv30           = gmx_mm_invsqrt_ps(rsq30);
241
242             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
244             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
245
246             /* Load parameters for j particles */
247             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
248                                                               charge+jnrC+0,charge+jnrD+0);
249             vdwjidx0A        = 2*vdwtype[jnrA+0];
250             vdwjidx0B        = 2*vdwtype[jnrB+0];
251             vdwjidx0C        = 2*vdwtype[jnrC+0];
252             vdwjidx0D        = 2*vdwtype[jnrD+0];
253
254             fjx0             = _mm_setzero_ps();
255             fjy0             = _mm_setzero_ps();
256             fjz0             = _mm_setzero_ps();
257
258             /**************************
259              * CALCULATE INTERACTIONS *
260              **************************/
261
262             r00              = _mm_mul_ps(rsq00,rinv00);
263
264             /* Compute parameters for interactions between i and j atoms */
265             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
266                                          vdwparam+vdwioffset0+vdwjidx0B,
267                                          vdwparam+vdwioffset0+vdwjidx0C,
268                                          vdwparam+vdwioffset0+vdwjidx0D,
269                                          &c6_00,&c12_00);
270
271             /* Calculate table index by multiplying r with table scale and truncate to integer */
272             rt               = _mm_mul_ps(r00,vftabscale);
273             vfitab           = _mm_cvttps_epi32(rt);
274 #ifdef __XOP__
275             vfeps            = _mm_frcz_ps(rt);
276 #else
277             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
278 #endif
279             twovfeps         = _mm_add_ps(vfeps,vfeps);
280             vfitab           = _mm_slli_epi32(vfitab,3);
281
282             /* CUBIC SPLINE TABLE DISPERSION */
283             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
284             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
285             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
286             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
287             _MM_TRANSPOSE4_PS(Y,F,G,H);
288             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
289             VV               = _mm_macc_ps(vfeps,Fp,Y);
290             vvdw6            = _mm_mul_ps(c6_00,VV);
291             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
292             fvdw6            = _mm_mul_ps(c6_00,FF);
293
294             /* CUBIC SPLINE TABLE REPULSION */
295             vfitab           = _mm_add_epi32(vfitab,ifour);
296             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
297             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
298             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
299             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
300             _MM_TRANSPOSE4_PS(Y,F,G,H);
301             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
302             VV               = _mm_macc_ps(vfeps,Fp,Y);
303             vvdw12           = _mm_mul_ps(c12_00,VV);
304             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
305             fvdw12           = _mm_mul_ps(c12_00,FF);
306             vvdw             = _mm_add_ps(vvdw12,vvdw6);
307             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
311
312             fscal            = fvdw;
313
314              /* Update vectorial force */
315             fix0             = _mm_macc_ps(dx00,fscal,fix0);
316             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
317             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
318
319             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
320             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
321             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
322
323             /**************************
324              * CALCULATE INTERACTIONS *
325              **************************/
326
327             if (gmx_mm_any_lt(rsq10,rcutoff2))
328             {
329
330             /* Compute parameters for interactions between i and j atoms */
331             qq10             = _mm_mul_ps(iq1,jq0);
332
333             /* REACTION-FIELD ELECTROSTATICS */
334             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
335             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
336
337             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
338
339             /* Update potential sum for this i atom from the interaction with this j atom. */
340             velec            = _mm_and_ps(velec,cutoff_mask);
341             velecsum         = _mm_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345             fscal            = _mm_and_ps(fscal,cutoff_mask);
346
347              /* Update vectorial force */
348             fix1             = _mm_macc_ps(dx10,fscal,fix1);
349             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
350             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
351
352             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
353             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
354             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
355
356             }
357
358             /**************************
359              * CALCULATE INTERACTIONS *
360              **************************/
361
362             if (gmx_mm_any_lt(rsq20,rcutoff2))
363             {
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq20             = _mm_mul_ps(iq2,jq0);
367
368             /* REACTION-FIELD ELECTROSTATICS */
369             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
370             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
371
372             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
373
374             /* Update potential sum for this i atom from the interaction with this j atom. */
375             velec            = _mm_and_ps(velec,cutoff_mask);
376             velecsum         = _mm_add_ps(velecsum,velec);
377
378             fscal            = felec;
379
380             fscal            = _mm_and_ps(fscal,cutoff_mask);
381
382              /* Update vectorial force */
383             fix2             = _mm_macc_ps(dx20,fscal,fix2);
384             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
385             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
386
387             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
388             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
389             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
390
391             }
392
393             /**************************
394              * CALCULATE INTERACTIONS *
395              **************************/
396
397             if (gmx_mm_any_lt(rsq30,rcutoff2))
398             {
399
400             /* Compute parameters for interactions between i and j atoms */
401             qq30             = _mm_mul_ps(iq3,jq0);
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
405             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
406
407             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velec            = _mm_and_ps(velec,cutoff_mask);
411             velecsum         = _mm_add_ps(velecsum,velec);
412
413             fscal            = felec;
414
415             fscal            = _mm_and_ps(fscal,cutoff_mask);
416
417              /* Update vectorial force */
418             fix3             = _mm_macc_ps(dx30,fscal,fix3);
419             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
420             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
421
422             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
423             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
424             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
425
426             }
427
428             fjptrA             = f+j_coord_offsetA;
429             fjptrB             = f+j_coord_offsetB;
430             fjptrC             = f+j_coord_offsetC;
431             fjptrD             = f+j_coord_offsetD;
432
433             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
434
435             /* Inner loop uses 176 flops */
436         }
437
438         if(jidx<j_index_end)
439         {
440
441             /* Get j neighbor index, and coordinate index */
442             jnrlistA         = jjnr[jidx];
443             jnrlistB         = jjnr[jidx+1];
444             jnrlistC         = jjnr[jidx+2];
445             jnrlistD         = jjnr[jidx+3];
446             /* Sign of each element will be negative for non-real atoms.
447              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
448              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
449              */
450             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
451             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
452             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
453             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
454             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
455             j_coord_offsetA  = DIM*jnrA;
456             j_coord_offsetB  = DIM*jnrB;
457             j_coord_offsetC  = DIM*jnrC;
458             j_coord_offsetD  = DIM*jnrD;
459
460             /* load j atom coordinates */
461             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462                                               x+j_coord_offsetC,x+j_coord_offsetD,
463                                               &jx0,&jy0,&jz0);
464
465             /* Calculate displacement vector */
466             dx00             = _mm_sub_ps(ix0,jx0);
467             dy00             = _mm_sub_ps(iy0,jy0);
468             dz00             = _mm_sub_ps(iz0,jz0);
469             dx10             = _mm_sub_ps(ix1,jx0);
470             dy10             = _mm_sub_ps(iy1,jy0);
471             dz10             = _mm_sub_ps(iz1,jz0);
472             dx20             = _mm_sub_ps(ix2,jx0);
473             dy20             = _mm_sub_ps(iy2,jy0);
474             dz20             = _mm_sub_ps(iz2,jz0);
475             dx30             = _mm_sub_ps(ix3,jx0);
476             dy30             = _mm_sub_ps(iy3,jy0);
477             dz30             = _mm_sub_ps(iz3,jz0);
478
479             /* Calculate squared distance and things based on it */
480             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
482             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
483             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
484
485             rinv00           = gmx_mm_invsqrt_ps(rsq00);
486             rinv10           = gmx_mm_invsqrt_ps(rsq10);
487             rinv20           = gmx_mm_invsqrt_ps(rsq20);
488             rinv30           = gmx_mm_invsqrt_ps(rsq30);
489
490             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
491             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
492             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
493
494             /* Load parameters for j particles */
495             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
496                                                               charge+jnrC+0,charge+jnrD+0);
497             vdwjidx0A        = 2*vdwtype[jnrA+0];
498             vdwjidx0B        = 2*vdwtype[jnrB+0];
499             vdwjidx0C        = 2*vdwtype[jnrC+0];
500             vdwjidx0D        = 2*vdwtype[jnrD+0];
501
502             fjx0             = _mm_setzero_ps();
503             fjy0             = _mm_setzero_ps();
504             fjz0             = _mm_setzero_ps();
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             r00              = _mm_mul_ps(rsq00,rinv00);
511             r00              = _mm_andnot_ps(dummy_mask,r00);
512
513             /* Compute parameters for interactions between i and j atoms */
514             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
515                                          vdwparam+vdwioffset0+vdwjidx0B,
516                                          vdwparam+vdwioffset0+vdwjidx0C,
517                                          vdwparam+vdwioffset0+vdwjidx0D,
518                                          &c6_00,&c12_00);
519
520             /* Calculate table index by multiplying r with table scale and truncate to integer */
521             rt               = _mm_mul_ps(r00,vftabscale);
522             vfitab           = _mm_cvttps_epi32(rt);
523 #ifdef __XOP__
524             vfeps            = _mm_frcz_ps(rt);
525 #else
526             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
527 #endif
528             twovfeps         = _mm_add_ps(vfeps,vfeps);
529             vfitab           = _mm_slli_epi32(vfitab,3);
530
531             /* CUBIC SPLINE TABLE DISPERSION */
532             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
533             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
534             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
535             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
536             _MM_TRANSPOSE4_PS(Y,F,G,H);
537             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
538             VV               = _mm_macc_ps(vfeps,Fp,Y);
539             vvdw6            = _mm_mul_ps(c6_00,VV);
540             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
541             fvdw6            = _mm_mul_ps(c6_00,FF);
542
543             /* CUBIC SPLINE TABLE REPULSION */
544             vfitab           = _mm_add_epi32(vfitab,ifour);
545             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
546             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
547             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
548             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
549             _MM_TRANSPOSE4_PS(Y,F,G,H);
550             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
551             VV               = _mm_macc_ps(vfeps,Fp,Y);
552             vvdw12           = _mm_mul_ps(c12_00,VV);
553             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
554             fvdw12           = _mm_mul_ps(c12_00,FF);
555             vvdw             = _mm_add_ps(vvdw12,vvdw6);
556             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
560             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
561
562             fscal            = fvdw;
563
564             fscal            = _mm_andnot_ps(dummy_mask,fscal);
565
566              /* Update vectorial force */
567             fix0             = _mm_macc_ps(dx00,fscal,fix0);
568             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
569             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
570
571             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
572             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
573             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
574
575             /**************************
576              * CALCULATE INTERACTIONS *
577              **************************/
578
579             if (gmx_mm_any_lt(rsq10,rcutoff2))
580             {
581
582             /* Compute parameters for interactions between i and j atoms */
583             qq10             = _mm_mul_ps(iq1,jq0);
584
585             /* REACTION-FIELD ELECTROSTATICS */
586             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
587             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
588
589             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
590
591             /* Update potential sum for this i atom from the interaction with this j atom. */
592             velec            = _mm_and_ps(velec,cutoff_mask);
593             velec            = _mm_andnot_ps(dummy_mask,velec);
594             velecsum         = _mm_add_ps(velecsum,velec);
595
596             fscal            = felec;
597
598             fscal            = _mm_and_ps(fscal,cutoff_mask);
599
600             fscal            = _mm_andnot_ps(dummy_mask,fscal);
601
602              /* Update vectorial force */
603             fix1             = _mm_macc_ps(dx10,fscal,fix1);
604             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
605             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
606
607             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
608             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
609             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
610
611             }
612
613             /**************************
614              * CALCULATE INTERACTIONS *
615              **************************/
616
617             if (gmx_mm_any_lt(rsq20,rcutoff2))
618             {
619
620             /* Compute parameters for interactions between i and j atoms */
621             qq20             = _mm_mul_ps(iq2,jq0);
622
623             /* REACTION-FIELD ELECTROSTATICS */
624             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
625             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
626
627             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
628
629             /* Update potential sum for this i atom from the interaction with this j atom. */
630             velec            = _mm_and_ps(velec,cutoff_mask);
631             velec            = _mm_andnot_ps(dummy_mask,velec);
632             velecsum         = _mm_add_ps(velecsum,velec);
633
634             fscal            = felec;
635
636             fscal            = _mm_and_ps(fscal,cutoff_mask);
637
638             fscal            = _mm_andnot_ps(dummy_mask,fscal);
639
640              /* Update vectorial force */
641             fix2             = _mm_macc_ps(dx20,fscal,fix2);
642             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
643             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
644
645             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
646             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
647             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
648
649             }
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             if (gmx_mm_any_lt(rsq30,rcutoff2))
656             {
657
658             /* Compute parameters for interactions between i and j atoms */
659             qq30             = _mm_mul_ps(iq3,jq0);
660
661             /* REACTION-FIELD ELECTROSTATICS */
662             velec            = _mm_mul_ps(qq30,_mm_sub_ps(_mm_macc_ps(krf,rsq30,rinv30),crf));
663             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
664
665             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             velec            = _mm_and_ps(velec,cutoff_mask);
669             velec            = _mm_andnot_ps(dummy_mask,velec);
670             velecsum         = _mm_add_ps(velecsum,velec);
671
672             fscal            = felec;
673
674             fscal            = _mm_and_ps(fscal,cutoff_mask);
675
676             fscal            = _mm_andnot_ps(dummy_mask,fscal);
677
678              /* Update vectorial force */
679             fix3             = _mm_macc_ps(dx30,fscal,fix3);
680             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
681             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
682
683             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
684             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
685             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
686
687             }
688
689             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
690             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
691             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
692             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
693
694             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
695
696             /* Inner loop uses 177 flops */
697         }
698
699         /* End of innermost loop */
700
701         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
702                                               f+i_coord_offset,fshift+i_shift_offset);
703
704         ggid                        = gid[iidx];
705         /* Update potential energies */
706         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
707         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
708
709         /* Increment number of inner iterations */
710         inneriter                  += j_index_end - j_index_start;
711
712         /* Outer loop uses 26 flops */
713     }
714
715     /* Increment number of outer iterations */
716     outeriter        += nri;
717
718     /* Update outer/inner flops */
719
720     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*177);
721 }
722 /*
723  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_single
724  * Electrostatics interaction: ReactionField
725  * VdW interaction:            CubicSplineTable
726  * Geometry:                   Water4-Particle
727  * Calculate force/pot:        Force
728  */
729 void
730 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_avx_128_fma_single
731                     (t_nblist                    * gmx_restrict       nlist,
732                      rvec                        * gmx_restrict          xx,
733                      rvec                        * gmx_restrict          ff,
734                      t_forcerec                  * gmx_restrict          fr,
735                      t_mdatoms                   * gmx_restrict     mdatoms,
736                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
737                      t_nrnb                      * gmx_restrict        nrnb)
738 {
739     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
740      * just 0 for non-waters.
741      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
742      * jnr indices corresponding to data put in the four positions in the SIMD register.
743      */
744     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
745     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
746     int              jnrA,jnrB,jnrC,jnrD;
747     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
748     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
749     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
750     real             rcutoff_scalar;
751     real             *shiftvec,*fshift,*x,*f;
752     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
753     real             scratch[4*DIM];
754     __m128           fscal,rcutoff,rcutoff2,jidxall;
755     int              vdwioffset0;
756     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
757     int              vdwioffset1;
758     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
759     int              vdwioffset2;
760     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
761     int              vdwioffset3;
762     __m128           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
763     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
764     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
765     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
766     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
767     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
768     __m128           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
769     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
770     real             *charge;
771     int              nvdwtype;
772     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
773     int              *vdwtype;
774     real             *vdwparam;
775     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
776     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
777     __m128i          vfitab;
778     __m128i          ifour       = _mm_set1_epi32(4);
779     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
780     real             *vftab;
781     __m128           dummy_mask,cutoff_mask;
782     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
783     __m128           one     = _mm_set1_ps(1.0);
784     __m128           two     = _mm_set1_ps(2.0);
785     x                = xx[0];
786     f                = ff[0];
787
788     nri              = nlist->nri;
789     iinr             = nlist->iinr;
790     jindex           = nlist->jindex;
791     jjnr             = nlist->jjnr;
792     shiftidx         = nlist->shift;
793     gid              = nlist->gid;
794     shiftvec         = fr->shift_vec[0];
795     fshift           = fr->fshift[0];
796     facel            = _mm_set1_ps(fr->epsfac);
797     charge           = mdatoms->chargeA;
798     krf              = _mm_set1_ps(fr->ic->k_rf);
799     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
800     crf              = _mm_set1_ps(fr->ic->c_rf);
801     nvdwtype         = fr->ntype;
802     vdwparam         = fr->nbfp;
803     vdwtype          = mdatoms->typeA;
804
805     vftab            = kernel_data->table_vdw->data;
806     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
807
808     /* Setup water-specific parameters */
809     inr              = nlist->iinr[0];
810     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
811     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
812     iq3              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
813     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
814
815     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
816     rcutoff_scalar   = fr->rcoulomb;
817     rcutoff          = _mm_set1_ps(rcutoff_scalar);
818     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
819
820     /* Avoid stupid compiler warnings */
821     jnrA = jnrB = jnrC = jnrD = 0;
822     j_coord_offsetA = 0;
823     j_coord_offsetB = 0;
824     j_coord_offsetC = 0;
825     j_coord_offsetD = 0;
826
827     outeriter        = 0;
828     inneriter        = 0;
829
830     for(iidx=0;iidx<4*DIM;iidx++)
831     {
832         scratch[iidx] = 0.0;
833     }
834
835     /* Start outer loop over neighborlists */
836     for(iidx=0; iidx<nri; iidx++)
837     {
838         /* Load shift vector for this list */
839         i_shift_offset   = DIM*shiftidx[iidx];
840
841         /* Load limits for loop over neighbors */
842         j_index_start    = jindex[iidx];
843         j_index_end      = jindex[iidx+1];
844
845         /* Get outer coordinate index */
846         inr              = iinr[iidx];
847         i_coord_offset   = DIM*inr;
848
849         /* Load i particle coords and add shift vector */
850         gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
851                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
852
853         fix0             = _mm_setzero_ps();
854         fiy0             = _mm_setzero_ps();
855         fiz0             = _mm_setzero_ps();
856         fix1             = _mm_setzero_ps();
857         fiy1             = _mm_setzero_ps();
858         fiz1             = _mm_setzero_ps();
859         fix2             = _mm_setzero_ps();
860         fiy2             = _mm_setzero_ps();
861         fiz2             = _mm_setzero_ps();
862         fix3             = _mm_setzero_ps();
863         fiy3             = _mm_setzero_ps();
864         fiz3             = _mm_setzero_ps();
865
866         /* Start inner kernel loop */
867         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
868         {
869
870             /* Get j neighbor index, and coordinate index */
871             jnrA             = jjnr[jidx];
872             jnrB             = jjnr[jidx+1];
873             jnrC             = jjnr[jidx+2];
874             jnrD             = jjnr[jidx+3];
875             j_coord_offsetA  = DIM*jnrA;
876             j_coord_offsetB  = DIM*jnrB;
877             j_coord_offsetC  = DIM*jnrC;
878             j_coord_offsetD  = DIM*jnrD;
879
880             /* load j atom coordinates */
881             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
882                                               x+j_coord_offsetC,x+j_coord_offsetD,
883                                               &jx0,&jy0,&jz0);
884
885             /* Calculate displacement vector */
886             dx00             = _mm_sub_ps(ix0,jx0);
887             dy00             = _mm_sub_ps(iy0,jy0);
888             dz00             = _mm_sub_ps(iz0,jz0);
889             dx10             = _mm_sub_ps(ix1,jx0);
890             dy10             = _mm_sub_ps(iy1,jy0);
891             dz10             = _mm_sub_ps(iz1,jz0);
892             dx20             = _mm_sub_ps(ix2,jx0);
893             dy20             = _mm_sub_ps(iy2,jy0);
894             dz20             = _mm_sub_ps(iz2,jz0);
895             dx30             = _mm_sub_ps(ix3,jx0);
896             dy30             = _mm_sub_ps(iy3,jy0);
897             dz30             = _mm_sub_ps(iz3,jz0);
898
899             /* Calculate squared distance and things based on it */
900             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
901             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
902             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
903             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
904
905             rinv00           = gmx_mm_invsqrt_ps(rsq00);
906             rinv10           = gmx_mm_invsqrt_ps(rsq10);
907             rinv20           = gmx_mm_invsqrt_ps(rsq20);
908             rinv30           = gmx_mm_invsqrt_ps(rsq30);
909
910             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
911             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
912             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
913
914             /* Load parameters for j particles */
915             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
916                                                               charge+jnrC+0,charge+jnrD+0);
917             vdwjidx0A        = 2*vdwtype[jnrA+0];
918             vdwjidx0B        = 2*vdwtype[jnrB+0];
919             vdwjidx0C        = 2*vdwtype[jnrC+0];
920             vdwjidx0D        = 2*vdwtype[jnrD+0];
921
922             fjx0             = _mm_setzero_ps();
923             fjy0             = _mm_setzero_ps();
924             fjz0             = _mm_setzero_ps();
925
926             /**************************
927              * CALCULATE INTERACTIONS *
928              **************************/
929
930             r00              = _mm_mul_ps(rsq00,rinv00);
931
932             /* Compute parameters for interactions between i and j atoms */
933             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
934                                          vdwparam+vdwioffset0+vdwjidx0B,
935                                          vdwparam+vdwioffset0+vdwjidx0C,
936                                          vdwparam+vdwioffset0+vdwjidx0D,
937                                          &c6_00,&c12_00);
938
939             /* Calculate table index by multiplying r with table scale and truncate to integer */
940             rt               = _mm_mul_ps(r00,vftabscale);
941             vfitab           = _mm_cvttps_epi32(rt);
942 #ifdef __XOP__
943             vfeps            = _mm_frcz_ps(rt);
944 #else
945             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
946 #endif
947             twovfeps         = _mm_add_ps(vfeps,vfeps);
948             vfitab           = _mm_slli_epi32(vfitab,3);
949
950             /* CUBIC SPLINE TABLE DISPERSION */
951             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
952             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
953             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
954             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
955             _MM_TRANSPOSE4_PS(Y,F,G,H);
956             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
957             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
958             fvdw6            = _mm_mul_ps(c6_00,FF);
959
960             /* CUBIC SPLINE TABLE REPULSION */
961             vfitab           = _mm_add_epi32(vfitab,ifour);
962             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
963             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
964             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
965             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
966             _MM_TRANSPOSE4_PS(Y,F,G,H);
967             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
968             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
969             fvdw12           = _mm_mul_ps(c12_00,FF);
970             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
971
972             fscal            = fvdw;
973
974              /* Update vectorial force */
975             fix0             = _mm_macc_ps(dx00,fscal,fix0);
976             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
977             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
978
979             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
980             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
981             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             if (gmx_mm_any_lt(rsq10,rcutoff2))
988             {
989
990             /* Compute parameters for interactions between i and j atoms */
991             qq10             = _mm_mul_ps(iq1,jq0);
992
993             /* REACTION-FIELD ELECTROSTATICS */
994             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
995
996             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
997
998             fscal            = felec;
999
1000             fscal            = _mm_and_ps(fscal,cutoff_mask);
1001
1002              /* Update vectorial force */
1003             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1004             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1005             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1006
1007             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1008             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1009             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1010
1011             }
1012
1013             /**************************
1014              * CALCULATE INTERACTIONS *
1015              **************************/
1016
1017             if (gmx_mm_any_lt(rsq20,rcutoff2))
1018             {
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq20             = _mm_mul_ps(iq2,jq0);
1022
1023             /* REACTION-FIELD ELECTROSTATICS */
1024             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1025
1026             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1027
1028             fscal            = felec;
1029
1030             fscal            = _mm_and_ps(fscal,cutoff_mask);
1031
1032              /* Update vectorial force */
1033             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1034             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1035             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1036
1037             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1038             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1039             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1040
1041             }
1042
1043             /**************************
1044              * CALCULATE INTERACTIONS *
1045              **************************/
1046
1047             if (gmx_mm_any_lt(rsq30,rcutoff2))
1048             {
1049
1050             /* Compute parameters for interactions between i and j atoms */
1051             qq30             = _mm_mul_ps(iq3,jq0);
1052
1053             /* REACTION-FIELD ELECTROSTATICS */
1054             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1055
1056             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1057
1058             fscal            = felec;
1059
1060             fscal            = _mm_and_ps(fscal,cutoff_mask);
1061
1062              /* Update vectorial force */
1063             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1064             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1065             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1066
1067             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1068             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1069             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1070
1071             }
1072
1073             fjptrA             = f+j_coord_offsetA;
1074             fjptrB             = f+j_coord_offsetB;
1075             fjptrC             = f+j_coord_offsetC;
1076             fjptrD             = f+j_coord_offsetD;
1077
1078             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1079
1080             /* Inner loop uses 150 flops */
1081         }
1082
1083         if(jidx<j_index_end)
1084         {
1085
1086             /* Get j neighbor index, and coordinate index */
1087             jnrlistA         = jjnr[jidx];
1088             jnrlistB         = jjnr[jidx+1];
1089             jnrlistC         = jjnr[jidx+2];
1090             jnrlistD         = jjnr[jidx+3];
1091             /* Sign of each element will be negative for non-real atoms.
1092              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1093              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1094              */
1095             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1096             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1097             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1098             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1099             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1100             j_coord_offsetA  = DIM*jnrA;
1101             j_coord_offsetB  = DIM*jnrB;
1102             j_coord_offsetC  = DIM*jnrC;
1103             j_coord_offsetD  = DIM*jnrD;
1104
1105             /* load j atom coordinates */
1106             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1107                                               x+j_coord_offsetC,x+j_coord_offsetD,
1108                                               &jx0,&jy0,&jz0);
1109
1110             /* Calculate displacement vector */
1111             dx00             = _mm_sub_ps(ix0,jx0);
1112             dy00             = _mm_sub_ps(iy0,jy0);
1113             dz00             = _mm_sub_ps(iz0,jz0);
1114             dx10             = _mm_sub_ps(ix1,jx0);
1115             dy10             = _mm_sub_ps(iy1,jy0);
1116             dz10             = _mm_sub_ps(iz1,jz0);
1117             dx20             = _mm_sub_ps(ix2,jx0);
1118             dy20             = _mm_sub_ps(iy2,jy0);
1119             dz20             = _mm_sub_ps(iz2,jz0);
1120             dx30             = _mm_sub_ps(ix3,jx0);
1121             dy30             = _mm_sub_ps(iy3,jy0);
1122             dz30             = _mm_sub_ps(iz3,jz0);
1123
1124             /* Calculate squared distance and things based on it */
1125             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1126             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1127             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1128             rsq30            = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1129
1130             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1131             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1132             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1133             rinv30           = gmx_mm_invsqrt_ps(rsq30);
1134
1135             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1136             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1137             rinvsq30         = _mm_mul_ps(rinv30,rinv30);
1138
1139             /* Load parameters for j particles */
1140             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1141                                                               charge+jnrC+0,charge+jnrD+0);
1142             vdwjidx0A        = 2*vdwtype[jnrA+0];
1143             vdwjidx0B        = 2*vdwtype[jnrB+0];
1144             vdwjidx0C        = 2*vdwtype[jnrC+0];
1145             vdwjidx0D        = 2*vdwtype[jnrD+0];
1146
1147             fjx0             = _mm_setzero_ps();
1148             fjy0             = _mm_setzero_ps();
1149             fjz0             = _mm_setzero_ps();
1150
1151             /**************************
1152              * CALCULATE INTERACTIONS *
1153              **************************/
1154
1155             r00              = _mm_mul_ps(rsq00,rinv00);
1156             r00              = _mm_andnot_ps(dummy_mask,r00);
1157
1158             /* Compute parameters for interactions between i and j atoms */
1159             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1160                                          vdwparam+vdwioffset0+vdwjidx0B,
1161                                          vdwparam+vdwioffset0+vdwjidx0C,
1162                                          vdwparam+vdwioffset0+vdwjidx0D,
1163                                          &c6_00,&c12_00);
1164
1165             /* Calculate table index by multiplying r with table scale and truncate to integer */
1166             rt               = _mm_mul_ps(r00,vftabscale);
1167             vfitab           = _mm_cvttps_epi32(rt);
1168 #ifdef __XOP__
1169             vfeps            = _mm_frcz_ps(rt);
1170 #else
1171             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1172 #endif
1173             twovfeps         = _mm_add_ps(vfeps,vfeps);
1174             vfitab           = _mm_slli_epi32(vfitab,3);
1175
1176             /* CUBIC SPLINE TABLE DISPERSION */
1177             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1178             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1179             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1180             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1181             _MM_TRANSPOSE4_PS(Y,F,G,H);
1182             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1183             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1184             fvdw6            = _mm_mul_ps(c6_00,FF);
1185
1186             /* CUBIC SPLINE TABLE REPULSION */
1187             vfitab           = _mm_add_epi32(vfitab,ifour);
1188             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1189             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1190             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1191             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1192             _MM_TRANSPOSE4_PS(Y,F,G,H);
1193             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1194             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1195             fvdw12           = _mm_mul_ps(c12_00,FF);
1196             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1197
1198             fscal            = fvdw;
1199
1200             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1201
1202              /* Update vectorial force */
1203             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1204             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1205             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1206
1207             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1208             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1209             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1210
1211             /**************************
1212              * CALCULATE INTERACTIONS *
1213              **************************/
1214
1215             if (gmx_mm_any_lt(rsq10,rcutoff2))
1216             {
1217
1218             /* Compute parameters for interactions between i and j atoms */
1219             qq10             = _mm_mul_ps(iq1,jq0);
1220
1221             /* REACTION-FIELD ELECTROSTATICS */
1222             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1223
1224             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1225
1226             fscal            = felec;
1227
1228             fscal            = _mm_and_ps(fscal,cutoff_mask);
1229
1230             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1231
1232              /* Update vectorial force */
1233             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1234             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1235             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1236
1237             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1238             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1239             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1240
1241             }
1242
1243             /**************************
1244              * CALCULATE INTERACTIONS *
1245              **************************/
1246
1247             if (gmx_mm_any_lt(rsq20,rcutoff2))
1248             {
1249
1250             /* Compute parameters for interactions between i and j atoms */
1251             qq20             = _mm_mul_ps(iq2,jq0);
1252
1253             /* REACTION-FIELD ELECTROSTATICS */
1254             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1255
1256             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1257
1258             fscal            = felec;
1259
1260             fscal            = _mm_and_ps(fscal,cutoff_mask);
1261
1262             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1263
1264              /* Update vectorial force */
1265             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1266             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1267             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1268
1269             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1270             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1271             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1272
1273             }
1274
1275             /**************************
1276              * CALCULATE INTERACTIONS *
1277              **************************/
1278
1279             if (gmx_mm_any_lt(rsq30,rcutoff2))
1280             {
1281
1282             /* Compute parameters for interactions between i and j atoms */
1283             qq30             = _mm_mul_ps(iq3,jq0);
1284
1285             /* REACTION-FIELD ELECTROSTATICS */
1286             felec            = _mm_mul_ps(qq30,_mm_msub_ps(rinv30,rinvsq30,krf2));
1287
1288             cutoff_mask      = _mm_cmplt_ps(rsq30,rcutoff2);
1289
1290             fscal            = felec;
1291
1292             fscal            = _mm_and_ps(fscal,cutoff_mask);
1293
1294             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1295
1296              /* Update vectorial force */
1297             fix3             = _mm_macc_ps(dx30,fscal,fix3);
1298             fiy3             = _mm_macc_ps(dy30,fscal,fiy3);
1299             fiz3             = _mm_macc_ps(dz30,fscal,fiz3);
1300
1301             fjx0             = _mm_macc_ps(dx30,fscal,fjx0);
1302             fjy0             = _mm_macc_ps(dy30,fscal,fjy0);
1303             fjz0             = _mm_macc_ps(dz30,fscal,fjz0);
1304
1305             }
1306
1307             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1308             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1309             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1310             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1311
1312             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1313
1314             /* Inner loop uses 151 flops */
1315         }
1316
1317         /* End of innermost loop */
1318
1319         gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1320                                               f+i_coord_offset,fshift+i_shift_offset);
1321
1322         /* Increment number of inner iterations */
1323         inneriter                  += j_index_end - j_index_start;
1324
1325         /* Outer loop uses 24 flops */
1326     }
1327
1328     /* Increment number of outer iterations */
1329     outeriter        += nri;
1330
1331     /* Update outer/inner flops */
1332
1333     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*151);
1334 }