Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Water3-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwioffset1;
86     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87     int              vdwioffset2;
88     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
90     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
91     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
92     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
93     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
94     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
95     real             *charge;
96     int              nvdwtype;
97     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
98     int              *vdwtype;
99     real             *vdwparam;
100     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
101     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
102     __m128i          vfitab;
103     __m128i          ifour       = _mm_set1_epi32(4);
104     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
105     real             *vftab;
106     __m128           dummy_mask,cutoff_mask;
107     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108     __m128           one     = _mm_set1_ps(1.0);
109     __m128           two     = _mm_set1_ps(2.0);
110     x                = xx[0];
111     f                = ff[0];
112
113     nri              = nlist->nri;
114     iinr             = nlist->iinr;
115     jindex           = nlist->jindex;
116     jjnr             = nlist->jjnr;
117     shiftidx         = nlist->shift;
118     gid              = nlist->gid;
119     shiftvec         = fr->shift_vec[0];
120     fshift           = fr->fshift[0];
121     facel            = _mm_set1_ps(fr->epsfac);
122     charge           = mdatoms->chargeA;
123     krf              = _mm_set1_ps(fr->ic->k_rf);
124     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
125     crf              = _mm_set1_ps(fr->ic->c_rf);
126     nvdwtype         = fr->ntype;
127     vdwparam         = fr->nbfp;
128     vdwtype          = mdatoms->typeA;
129
130     vftab            = kernel_data->table_vdw->data;
131     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
132
133     /* Setup water-specific parameters */
134     inr              = nlist->iinr[0];
135     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
136     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
137     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
138     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
141     rcutoff_scalar   = fr->rcoulomb;
142     rcutoff          = _mm_set1_ps(rcutoff_scalar);
143     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
144
145     /* Avoid stupid compiler warnings */
146     jnrA = jnrB = jnrC = jnrD = 0;
147     j_coord_offsetA = 0;
148     j_coord_offsetB = 0;
149     j_coord_offsetC = 0;
150     j_coord_offsetD = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm_setzero_ps();
179         fiy0             = _mm_setzero_ps();
180         fiz0             = _mm_setzero_ps();
181         fix1             = _mm_setzero_ps();
182         fiy1             = _mm_setzero_ps();
183         fiz1             = _mm_setzero_ps();
184         fix2             = _mm_setzero_ps();
185         fiy2             = _mm_setzero_ps();
186         fiz2             = _mm_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm_setzero_ps();
190         vvdwsum          = _mm_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                               x+j_coord_offsetC,x+j_coord_offsetD,
209                                               &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm_sub_ps(ix0,jx0);
213             dy00             = _mm_sub_ps(iy0,jy0);
214             dz00             = _mm_sub_ps(iz0,jz0);
215             dx10             = _mm_sub_ps(ix1,jx0);
216             dy10             = _mm_sub_ps(iy1,jy0);
217             dz10             = _mm_sub_ps(iz1,jz0);
218             dx20             = _mm_sub_ps(ix2,jx0);
219             dy20             = _mm_sub_ps(iy2,jy0);
220             dz20             = _mm_sub_ps(iz2,jz0);
221
222             /* Calculate squared distance and things based on it */
223             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
224             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
225             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
226
227             rinv00           = gmx_mm_invsqrt_ps(rsq00);
228             rinv10           = gmx_mm_invsqrt_ps(rsq10);
229             rinv20           = gmx_mm_invsqrt_ps(rsq20);
230
231             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
232             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
233             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
234
235             /* Load parameters for j particles */
236             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
237                                                               charge+jnrC+0,charge+jnrD+0);
238             vdwjidx0A        = 2*vdwtype[jnrA+0];
239             vdwjidx0B        = 2*vdwtype[jnrB+0];
240             vdwjidx0C        = 2*vdwtype[jnrC+0];
241             vdwjidx0D        = 2*vdwtype[jnrD+0];
242
243             fjx0             = _mm_setzero_ps();
244             fjy0             = _mm_setzero_ps();
245             fjz0             = _mm_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             if (gmx_mm_any_lt(rsq00,rcutoff2))
252             {
253
254             r00              = _mm_mul_ps(rsq00,rinv00);
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq00             = _mm_mul_ps(iq0,jq0);
258             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259                                          vdwparam+vdwioffset0+vdwjidx0B,
260                                          vdwparam+vdwioffset0+vdwjidx0C,
261                                          vdwparam+vdwioffset0+vdwjidx0D,
262                                          &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm_mul_ps(r00,vftabscale);
266             vfitab           = _mm_cvttps_epi32(rt);
267 #ifdef __XOP__
268             vfeps            = _mm_frcz_ps(rt);
269 #else
270             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
271 #endif
272             twovfeps         = _mm_add_ps(vfeps,vfeps);
273             vfitab           = _mm_slli_epi32(vfitab,3);
274
275             /* REACTION-FIELD ELECTROSTATICS */
276             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
277             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
278
279             /* CUBIC SPLINE TABLE DISPERSION */
280             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
284             _MM_TRANSPOSE4_PS(Y,F,G,H);
285             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
286             VV               = _mm_macc_ps(vfeps,Fp,Y);
287             vvdw6            = _mm_mul_ps(c6_00,VV);
288             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
289             fvdw6            = _mm_mul_ps(c6_00,FF);
290
291             /* CUBIC SPLINE TABLE REPULSION */
292             vfitab           = _mm_add_epi32(vfitab,ifour);
293             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
294             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
295             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
296             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
297             _MM_TRANSPOSE4_PS(Y,F,G,H);
298             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
299             VV               = _mm_macc_ps(vfeps,Fp,Y);
300             vvdw12           = _mm_mul_ps(c12_00,VV);
301             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
302             fvdw12           = _mm_mul_ps(c12_00,FF);
303             vvdw             = _mm_add_ps(vvdw12,vvdw6);
304             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
305
306             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velec            = _mm_and_ps(velec,cutoff_mask);
310             velecsum         = _mm_add_ps(velecsum,velec);
311             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
312             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
313
314             fscal            = _mm_add_ps(felec,fvdw);
315
316             fscal            = _mm_and_ps(fscal,cutoff_mask);
317
318              /* Update vectorial force */
319             fix0             = _mm_macc_ps(dx00,fscal,fix0);
320             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
321             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
322
323             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
324             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
325             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
326
327             }
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             if (gmx_mm_any_lt(rsq10,rcutoff2))
334             {
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq10             = _mm_mul_ps(iq1,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
341             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
342
343             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
344
345             /* Update potential sum for this i atom from the interaction with this j atom. */
346             velec            = _mm_and_ps(velec,cutoff_mask);
347             velecsum         = _mm_add_ps(velecsum,velec);
348
349             fscal            = felec;
350
351             fscal            = _mm_and_ps(fscal,cutoff_mask);
352
353              /* Update vectorial force */
354             fix1             = _mm_macc_ps(dx10,fscal,fix1);
355             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
356             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
357
358             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
359             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
360             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
361
362             }
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             if (gmx_mm_any_lt(rsq20,rcutoff2))
369             {
370
371             /* Compute parameters for interactions between i and j atoms */
372             qq20             = _mm_mul_ps(iq2,jq0);
373
374             /* REACTION-FIELD ELECTROSTATICS */
375             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
376             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
377
378             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
379
380             /* Update potential sum for this i atom from the interaction with this j atom. */
381             velec            = _mm_and_ps(velec,cutoff_mask);
382             velecsum         = _mm_add_ps(velecsum,velec);
383
384             fscal            = felec;
385
386             fscal            = _mm_and_ps(fscal,cutoff_mask);
387
388              /* Update vectorial force */
389             fix2             = _mm_macc_ps(dx20,fscal,fix2);
390             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
391             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
392
393             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
394             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
395             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
396
397             }
398
399             fjptrA             = f+j_coord_offsetA;
400             fjptrB             = f+j_coord_offsetB;
401             fjptrC             = f+j_coord_offsetC;
402             fjptrD             = f+j_coord_offsetD;
403
404             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
405
406             /* Inner loop uses 153 flops */
407         }
408
409         if(jidx<j_index_end)
410         {
411
412             /* Get j neighbor index, and coordinate index */
413             jnrlistA         = jjnr[jidx];
414             jnrlistB         = jjnr[jidx+1];
415             jnrlistC         = jjnr[jidx+2];
416             jnrlistD         = jjnr[jidx+3];
417             /* Sign of each element will be negative for non-real atoms.
418              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
419              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
420              */
421             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
422             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
423             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
424             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
425             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
426             j_coord_offsetA  = DIM*jnrA;
427             j_coord_offsetB  = DIM*jnrB;
428             j_coord_offsetC  = DIM*jnrC;
429             j_coord_offsetD  = DIM*jnrD;
430
431             /* load j atom coordinates */
432             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
433                                               x+j_coord_offsetC,x+j_coord_offsetD,
434                                               &jx0,&jy0,&jz0);
435
436             /* Calculate displacement vector */
437             dx00             = _mm_sub_ps(ix0,jx0);
438             dy00             = _mm_sub_ps(iy0,jy0);
439             dz00             = _mm_sub_ps(iz0,jz0);
440             dx10             = _mm_sub_ps(ix1,jx0);
441             dy10             = _mm_sub_ps(iy1,jy0);
442             dz10             = _mm_sub_ps(iz1,jz0);
443             dx20             = _mm_sub_ps(ix2,jx0);
444             dy20             = _mm_sub_ps(iy2,jy0);
445             dz20             = _mm_sub_ps(iz2,jz0);
446
447             /* Calculate squared distance and things based on it */
448             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
449             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
450             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
451
452             rinv00           = gmx_mm_invsqrt_ps(rsq00);
453             rinv10           = gmx_mm_invsqrt_ps(rsq10);
454             rinv20           = gmx_mm_invsqrt_ps(rsq20);
455
456             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
457             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
458             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
459
460             /* Load parameters for j particles */
461             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
462                                                               charge+jnrC+0,charge+jnrD+0);
463             vdwjidx0A        = 2*vdwtype[jnrA+0];
464             vdwjidx0B        = 2*vdwtype[jnrB+0];
465             vdwjidx0C        = 2*vdwtype[jnrC+0];
466             vdwjidx0D        = 2*vdwtype[jnrD+0];
467
468             fjx0             = _mm_setzero_ps();
469             fjy0             = _mm_setzero_ps();
470             fjz0             = _mm_setzero_ps();
471
472             /**************************
473              * CALCULATE INTERACTIONS *
474              **************************/
475
476             if (gmx_mm_any_lt(rsq00,rcutoff2))
477             {
478
479             r00              = _mm_mul_ps(rsq00,rinv00);
480             r00              = _mm_andnot_ps(dummy_mask,r00);
481
482             /* Compute parameters for interactions between i and j atoms */
483             qq00             = _mm_mul_ps(iq0,jq0);
484             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
485                                          vdwparam+vdwioffset0+vdwjidx0B,
486                                          vdwparam+vdwioffset0+vdwjidx0C,
487                                          vdwparam+vdwioffset0+vdwjidx0D,
488                                          &c6_00,&c12_00);
489
490             /* Calculate table index by multiplying r with table scale and truncate to integer */
491             rt               = _mm_mul_ps(r00,vftabscale);
492             vfitab           = _mm_cvttps_epi32(rt);
493 #ifdef __XOP__
494             vfeps            = _mm_frcz_ps(rt);
495 #else
496             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
497 #endif
498             twovfeps         = _mm_add_ps(vfeps,vfeps);
499             vfitab           = _mm_slli_epi32(vfitab,3);
500
501             /* REACTION-FIELD ELECTROSTATICS */
502             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
503             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
504
505             /* CUBIC SPLINE TABLE DISPERSION */
506             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
507             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
508             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
509             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
510             _MM_TRANSPOSE4_PS(Y,F,G,H);
511             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
512             VV               = _mm_macc_ps(vfeps,Fp,Y);
513             vvdw6            = _mm_mul_ps(c6_00,VV);
514             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
515             fvdw6            = _mm_mul_ps(c6_00,FF);
516
517             /* CUBIC SPLINE TABLE REPULSION */
518             vfitab           = _mm_add_epi32(vfitab,ifour);
519             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
520             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
521             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
522             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
523             _MM_TRANSPOSE4_PS(Y,F,G,H);
524             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
525             VV               = _mm_macc_ps(vfeps,Fp,Y);
526             vvdw12           = _mm_mul_ps(c12_00,VV);
527             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
528             fvdw12           = _mm_mul_ps(c12_00,FF);
529             vvdw             = _mm_add_ps(vvdw12,vvdw6);
530             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
531
532             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
533
534             /* Update potential sum for this i atom from the interaction with this j atom. */
535             velec            = _mm_and_ps(velec,cutoff_mask);
536             velec            = _mm_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm_add_ps(velecsum,velec);
538             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
539             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
540             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
541
542             fscal            = _mm_add_ps(felec,fvdw);
543
544             fscal            = _mm_and_ps(fscal,cutoff_mask);
545
546             fscal            = _mm_andnot_ps(dummy_mask,fscal);
547
548              /* Update vectorial force */
549             fix0             = _mm_macc_ps(dx00,fscal,fix0);
550             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
551             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
552
553             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
554             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
555             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
556
557             }
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm_any_lt(rsq10,rcutoff2))
564             {
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm_mul_ps(iq1,jq0);
568
569             /* REACTION-FIELD ELECTROSTATICS */
570             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
571             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
572
573             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
574
575             /* Update potential sum for this i atom from the interaction with this j atom. */
576             velec            = _mm_and_ps(velec,cutoff_mask);
577             velec            = _mm_andnot_ps(dummy_mask,velec);
578             velecsum         = _mm_add_ps(velecsum,velec);
579
580             fscal            = felec;
581
582             fscal            = _mm_and_ps(fscal,cutoff_mask);
583
584             fscal            = _mm_andnot_ps(dummy_mask,fscal);
585
586              /* Update vectorial force */
587             fix1             = _mm_macc_ps(dx10,fscal,fix1);
588             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
589             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
590
591             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
592             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
593             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
594
595             }
596
597             /**************************
598              * CALCULATE INTERACTIONS *
599              **************************/
600
601             if (gmx_mm_any_lt(rsq20,rcutoff2))
602             {
603
604             /* Compute parameters for interactions between i and j atoms */
605             qq20             = _mm_mul_ps(iq2,jq0);
606
607             /* REACTION-FIELD ELECTROSTATICS */
608             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
609             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
610
611             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             velec            = _mm_and_ps(velec,cutoff_mask);
615             velec            = _mm_andnot_ps(dummy_mask,velec);
616             velecsum         = _mm_add_ps(velecsum,velec);
617
618             fscal            = felec;
619
620             fscal            = _mm_and_ps(fscal,cutoff_mask);
621
622             fscal            = _mm_andnot_ps(dummy_mask,fscal);
623
624              /* Update vectorial force */
625             fix2             = _mm_macc_ps(dx20,fscal,fix2);
626             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
627             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
628
629             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
630             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
631             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
632
633             }
634
635             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
636             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
637             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
638             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
639
640             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
641
642             /* Inner loop uses 154 flops */
643         }
644
645         /* End of innermost loop */
646
647         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
648                                               f+i_coord_offset,fshift+i_shift_offset);
649
650         ggid                        = gid[iidx];
651         /* Update potential energies */
652         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
653         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
654
655         /* Increment number of inner iterations */
656         inneriter                  += j_index_end - j_index_start;
657
658         /* Outer loop uses 20 flops */
659     }
660
661     /* Increment number of outer iterations */
662     outeriter        += nri;
663
664     /* Update outer/inner flops */
665
666     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
667 }
668 /*
669  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_single
670  * Electrostatics interaction: ReactionField
671  * VdW interaction:            CubicSplineTable
672  * Geometry:                   Water3-Particle
673  * Calculate force/pot:        Force
674  */
675 void
676 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_single
677                     (t_nblist                    * gmx_restrict       nlist,
678                      rvec                        * gmx_restrict          xx,
679                      rvec                        * gmx_restrict          ff,
680                      t_forcerec                  * gmx_restrict          fr,
681                      t_mdatoms                   * gmx_restrict     mdatoms,
682                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
683                      t_nrnb                      * gmx_restrict        nrnb)
684 {
685     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
686      * just 0 for non-waters.
687      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
688      * jnr indices corresponding to data put in the four positions in the SIMD register.
689      */
690     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
691     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
692     int              jnrA,jnrB,jnrC,jnrD;
693     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
694     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
695     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
696     real             rcutoff_scalar;
697     real             *shiftvec,*fshift,*x,*f;
698     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
699     real             scratch[4*DIM];
700     __m128           fscal,rcutoff,rcutoff2,jidxall;
701     int              vdwioffset0;
702     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
703     int              vdwioffset1;
704     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
705     int              vdwioffset2;
706     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
707     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
708     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
709     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
710     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
711     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
712     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
713     real             *charge;
714     int              nvdwtype;
715     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
716     int              *vdwtype;
717     real             *vdwparam;
718     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
719     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
720     __m128i          vfitab;
721     __m128i          ifour       = _mm_set1_epi32(4);
722     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
723     real             *vftab;
724     __m128           dummy_mask,cutoff_mask;
725     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
726     __m128           one     = _mm_set1_ps(1.0);
727     __m128           two     = _mm_set1_ps(2.0);
728     x                = xx[0];
729     f                = ff[0];
730
731     nri              = nlist->nri;
732     iinr             = nlist->iinr;
733     jindex           = nlist->jindex;
734     jjnr             = nlist->jjnr;
735     shiftidx         = nlist->shift;
736     gid              = nlist->gid;
737     shiftvec         = fr->shift_vec[0];
738     fshift           = fr->fshift[0];
739     facel            = _mm_set1_ps(fr->epsfac);
740     charge           = mdatoms->chargeA;
741     krf              = _mm_set1_ps(fr->ic->k_rf);
742     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
743     crf              = _mm_set1_ps(fr->ic->c_rf);
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     vftab            = kernel_data->table_vdw->data;
749     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
750
751     /* Setup water-specific parameters */
752     inr              = nlist->iinr[0];
753     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
754     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
755     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
756     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
757
758     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
759     rcutoff_scalar   = fr->rcoulomb;
760     rcutoff          = _mm_set1_ps(rcutoff_scalar);
761     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
762
763     /* Avoid stupid compiler warnings */
764     jnrA = jnrB = jnrC = jnrD = 0;
765     j_coord_offsetA = 0;
766     j_coord_offsetB = 0;
767     j_coord_offsetC = 0;
768     j_coord_offsetD = 0;
769
770     outeriter        = 0;
771     inneriter        = 0;
772
773     for(iidx=0;iidx<4*DIM;iidx++)
774     {
775         scratch[iidx] = 0.0;
776     }
777
778     /* Start outer loop over neighborlists */
779     for(iidx=0; iidx<nri; iidx++)
780     {
781         /* Load shift vector for this list */
782         i_shift_offset   = DIM*shiftidx[iidx];
783
784         /* Load limits for loop over neighbors */
785         j_index_start    = jindex[iidx];
786         j_index_end      = jindex[iidx+1];
787
788         /* Get outer coordinate index */
789         inr              = iinr[iidx];
790         i_coord_offset   = DIM*inr;
791
792         /* Load i particle coords and add shift vector */
793         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
794                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
795
796         fix0             = _mm_setzero_ps();
797         fiy0             = _mm_setzero_ps();
798         fiz0             = _mm_setzero_ps();
799         fix1             = _mm_setzero_ps();
800         fiy1             = _mm_setzero_ps();
801         fiz1             = _mm_setzero_ps();
802         fix2             = _mm_setzero_ps();
803         fiy2             = _mm_setzero_ps();
804         fiz2             = _mm_setzero_ps();
805
806         /* Start inner kernel loop */
807         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
808         {
809
810             /* Get j neighbor index, and coordinate index */
811             jnrA             = jjnr[jidx];
812             jnrB             = jjnr[jidx+1];
813             jnrC             = jjnr[jidx+2];
814             jnrD             = jjnr[jidx+3];
815             j_coord_offsetA  = DIM*jnrA;
816             j_coord_offsetB  = DIM*jnrB;
817             j_coord_offsetC  = DIM*jnrC;
818             j_coord_offsetD  = DIM*jnrD;
819
820             /* load j atom coordinates */
821             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
822                                               x+j_coord_offsetC,x+j_coord_offsetD,
823                                               &jx0,&jy0,&jz0);
824
825             /* Calculate displacement vector */
826             dx00             = _mm_sub_ps(ix0,jx0);
827             dy00             = _mm_sub_ps(iy0,jy0);
828             dz00             = _mm_sub_ps(iz0,jz0);
829             dx10             = _mm_sub_ps(ix1,jx0);
830             dy10             = _mm_sub_ps(iy1,jy0);
831             dz10             = _mm_sub_ps(iz1,jz0);
832             dx20             = _mm_sub_ps(ix2,jx0);
833             dy20             = _mm_sub_ps(iy2,jy0);
834             dz20             = _mm_sub_ps(iz2,jz0);
835
836             /* Calculate squared distance and things based on it */
837             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
838             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
839             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
840
841             rinv00           = gmx_mm_invsqrt_ps(rsq00);
842             rinv10           = gmx_mm_invsqrt_ps(rsq10);
843             rinv20           = gmx_mm_invsqrt_ps(rsq20);
844
845             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
846             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
847             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
848
849             /* Load parameters for j particles */
850             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
851                                                               charge+jnrC+0,charge+jnrD+0);
852             vdwjidx0A        = 2*vdwtype[jnrA+0];
853             vdwjidx0B        = 2*vdwtype[jnrB+0];
854             vdwjidx0C        = 2*vdwtype[jnrC+0];
855             vdwjidx0D        = 2*vdwtype[jnrD+0];
856
857             fjx0             = _mm_setzero_ps();
858             fjy0             = _mm_setzero_ps();
859             fjz0             = _mm_setzero_ps();
860
861             /**************************
862              * CALCULATE INTERACTIONS *
863              **************************/
864
865             if (gmx_mm_any_lt(rsq00,rcutoff2))
866             {
867
868             r00              = _mm_mul_ps(rsq00,rinv00);
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq00             = _mm_mul_ps(iq0,jq0);
872             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
873                                          vdwparam+vdwioffset0+vdwjidx0B,
874                                          vdwparam+vdwioffset0+vdwjidx0C,
875                                          vdwparam+vdwioffset0+vdwjidx0D,
876                                          &c6_00,&c12_00);
877
878             /* Calculate table index by multiplying r with table scale and truncate to integer */
879             rt               = _mm_mul_ps(r00,vftabscale);
880             vfitab           = _mm_cvttps_epi32(rt);
881 #ifdef __XOP__
882             vfeps            = _mm_frcz_ps(rt);
883 #else
884             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
885 #endif
886             twovfeps         = _mm_add_ps(vfeps,vfeps);
887             vfitab           = _mm_slli_epi32(vfitab,3);
888
889             /* REACTION-FIELD ELECTROSTATICS */
890             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
891
892             /* CUBIC SPLINE TABLE DISPERSION */
893             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
894             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
895             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
896             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
897             _MM_TRANSPOSE4_PS(Y,F,G,H);
898             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
899             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
900             fvdw6            = _mm_mul_ps(c6_00,FF);
901
902             /* CUBIC SPLINE TABLE REPULSION */
903             vfitab           = _mm_add_epi32(vfitab,ifour);
904             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
905             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
906             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
907             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
908             _MM_TRANSPOSE4_PS(Y,F,G,H);
909             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
910             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
911             fvdw12           = _mm_mul_ps(c12_00,FF);
912             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
913
914             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
915
916             fscal            = _mm_add_ps(felec,fvdw);
917
918             fscal            = _mm_and_ps(fscal,cutoff_mask);
919
920              /* Update vectorial force */
921             fix0             = _mm_macc_ps(dx00,fscal,fix0);
922             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
923             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
924
925             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
926             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
927             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
928
929             }
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             if (gmx_mm_any_lt(rsq10,rcutoff2))
936             {
937
938             /* Compute parameters for interactions between i and j atoms */
939             qq10             = _mm_mul_ps(iq1,jq0);
940
941             /* REACTION-FIELD ELECTROSTATICS */
942             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
943
944             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
945
946             fscal            = felec;
947
948             fscal            = _mm_and_ps(fscal,cutoff_mask);
949
950              /* Update vectorial force */
951             fix1             = _mm_macc_ps(dx10,fscal,fix1);
952             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
953             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
954
955             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
956             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
957             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
958
959             }
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             if (gmx_mm_any_lt(rsq20,rcutoff2))
966             {
967
968             /* Compute parameters for interactions between i and j atoms */
969             qq20             = _mm_mul_ps(iq2,jq0);
970
971             /* REACTION-FIELD ELECTROSTATICS */
972             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
973
974             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
975
976             fscal            = felec;
977
978             fscal            = _mm_and_ps(fscal,cutoff_mask);
979
980              /* Update vectorial force */
981             fix2             = _mm_macc_ps(dx20,fscal,fix2);
982             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
983             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
984
985             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
986             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
987             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
988
989             }
990
991             fjptrA             = f+j_coord_offsetA;
992             fjptrB             = f+j_coord_offsetB;
993             fjptrC             = f+j_coord_offsetC;
994             fjptrD             = f+j_coord_offsetD;
995
996             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
997
998             /* Inner loop uses 126 flops */
999         }
1000
1001         if(jidx<j_index_end)
1002         {
1003
1004             /* Get j neighbor index, and coordinate index */
1005             jnrlistA         = jjnr[jidx];
1006             jnrlistB         = jjnr[jidx+1];
1007             jnrlistC         = jjnr[jidx+2];
1008             jnrlistD         = jjnr[jidx+3];
1009             /* Sign of each element will be negative for non-real atoms.
1010              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1011              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1012              */
1013             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1014             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1015             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1016             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1017             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1018             j_coord_offsetA  = DIM*jnrA;
1019             j_coord_offsetB  = DIM*jnrB;
1020             j_coord_offsetC  = DIM*jnrC;
1021             j_coord_offsetD  = DIM*jnrD;
1022
1023             /* load j atom coordinates */
1024             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1025                                               x+j_coord_offsetC,x+j_coord_offsetD,
1026                                               &jx0,&jy0,&jz0);
1027
1028             /* Calculate displacement vector */
1029             dx00             = _mm_sub_ps(ix0,jx0);
1030             dy00             = _mm_sub_ps(iy0,jy0);
1031             dz00             = _mm_sub_ps(iz0,jz0);
1032             dx10             = _mm_sub_ps(ix1,jx0);
1033             dy10             = _mm_sub_ps(iy1,jy0);
1034             dz10             = _mm_sub_ps(iz1,jz0);
1035             dx20             = _mm_sub_ps(ix2,jx0);
1036             dy20             = _mm_sub_ps(iy2,jy0);
1037             dz20             = _mm_sub_ps(iz2,jz0);
1038
1039             /* Calculate squared distance and things based on it */
1040             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1041             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1042             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1043
1044             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1045             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1046             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1047
1048             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1049             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1050             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1051
1052             /* Load parameters for j particles */
1053             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1054                                                               charge+jnrC+0,charge+jnrD+0);
1055             vdwjidx0A        = 2*vdwtype[jnrA+0];
1056             vdwjidx0B        = 2*vdwtype[jnrB+0];
1057             vdwjidx0C        = 2*vdwtype[jnrC+0];
1058             vdwjidx0D        = 2*vdwtype[jnrD+0];
1059
1060             fjx0             = _mm_setzero_ps();
1061             fjy0             = _mm_setzero_ps();
1062             fjz0             = _mm_setzero_ps();
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm_any_lt(rsq00,rcutoff2))
1069             {
1070
1071             r00              = _mm_mul_ps(rsq00,rinv00);
1072             r00              = _mm_andnot_ps(dummy_mask,r00);
1073
1074             /* Compute parameters for interactions between i and j atoms */
1075             qq00             = _mm_mul_ps(iq0,jq0);
1076             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1077                                          vdwparam+vdwioffset0+vdwjidx0B,
1078                                          vdwparam+vdwioffset0+vdwjidx0C,
1079                                          vdwparam+vdwioffset0+vdwjidx0D,
1080                                          &c6_00,&c12_00);
1081
1082             /* Calculate table index by multiplying r with table scale and truncate to integer */
1083             rt               = _mm_mul_ps(r00,vftabscale);
1084             vfitab           = _mm_cvttps_epi32(rt);
1085 #ifdef __XOP__
1086             vfeps            = _mm_frcz_ps(rt);
1087 #else
1088             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1089 #endif
1090             twovfeps         = _mm_add_ps(vfeps,vfeps);
1091             vfitab           = _mm_slli_epi32(vfitab,3);
1092
1093             /* REACTION-FIELD ELECTROSTATICS */
1094             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1095
1096             /* CUBIC SPLINE TABLE DISPERSION */
1097             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1098             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1099             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1100             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1101             _MM_TRANSPOSE4_PS(Y,F,G,H);
1102             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1103             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1104             fvdw6            = _mm_mul_ps(c6_00,FF);
1105
1106             /* CUBIC SPLINE TABLE REPULSION */
1107             vfitab           = _mm_add_epi32(vfitab,ifour);
1108             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1109             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1110             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1111             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1112             _MM_TRANSPOSE4_PS(Y,F,G,H);
1113             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1114             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1115             fvdw12           = _mm_mul_ps(c12_00,FF);
1116             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1117
1118             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1119
1120             fscal            = _mm_add_ps(felec,fvdw);
1121
1122             fscal            = _mm_and_ps(fscal,cutoff_mask);
1123
1124             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1125
1126              /* Update vectorial force */
1127             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1128             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1129             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1130
1131             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1132             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1133             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1134
1135             }
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             if (gmx_mm_any_lt(rsq10,rcutoff2))
1142             {
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq10             = _mm_mul_ps(iq1,jq0);
1146
1147             /* REACTION-FIELD ELECTROSTATICS */
1148             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1149
1150             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1151
1152             fscal            = felec;
1153
1154             fscal            = _mm_and_ps(fscal,cutoff_mask);
1155
1156             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1157
1158              /* Update vectorial force */
1159             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1160             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1161             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1162
1163             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1164             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1165             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1166
1167             }
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             if (gmx_mm_any_lt(rsq20,rcutoff2))
1174             {
1175
1176             /* Compute parameters for interactions between i and j atoms */
1177             qq20             = _mm_mul_ps(iq2,jq0);
1178
1179             /* REACTION-FIELD ELECTROSTATICS */
1180             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1181
1182             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1183
1184             fscal            = felec;
1185
1186             fscal            = _mm_and_ps(fscal,cutoff_mask);
1187
1188             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1189
1190              /* Update vectorial force */
1191             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1192             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1193             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1194
1195             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1196             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1197             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1198
1199             }
1200
1201             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1202             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1203             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1204             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1205
1206             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1207
1208             /* Inner loop uses 127 flops */
1209         }
1210
1211         /* End of innermost loop */
1212
1213         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1214                                               f+i_coord_offset,fshift+i_shift_offset);
1215
1216         /* Increment number of inner iterations */
1217         inneriter                  += j_index_end - j_index_start;
1218
1219         /* Outer loop uses 18 flops */
1220     }
1221
1222     /* Increment number of outer iterations */
1223     outeriter        += nri;
1224
1225     /* Update outer/inner flops */
1226
1227     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1228 }