Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Water3-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwioffset1;
88     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89     int              vdwioffset2;
90     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
97     real             *charge;
98     int              nvdwtype;
99     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100     int              *vdwtype;
101     real             *vdwparam;
102     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
103     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
104     __m128i          vfitab;
105     __m128i          ifour       = _mm_set1_epi32(4);
106     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
107     real             *vftab;
108     __m128           dummy_mask,cutoff_mask;
109     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
110     __m128           one     = _mm_set1_ps(1.0);
111     __m128           two     = _mm_set1_ps(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm_set1_ps(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     krf              = _mm_set1_ps(fr->ic->k_rf);
126     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
127     crf              = _mm_set1_ps(fr->ic->c_rf);
128     nvdwtype         = fr->ntype;
129     vdwparam         = fr->nbfp;
130     vdwtype          = mdatoms->typeA;
131
132     vftab            = kernel_data->table_vdw->data;
133     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
134
135     /* Setup water-specific parameters */
136     inr              = nlist->iinr[0];
137     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
138     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
143     rcutoff_scalar   = fr->rcoulomb;
144     rcutoff          = _mm_set1_ps(rcutoff_scalar);
145     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
146
147     /* Avoid stupid compiler warnings */
148     jnrA = jnrB = jnrC = jnrD = 0;
149     j_coord_offsetA = 0;
150     j_coord_offsetB = 0;
151     j_coord_offsetC = 0;
152     j_coord_offsetD = 0;
153
154     outeriter        = 0;
155     inneriter        = 0;
156
157     for(iidx=0;iidx<4*DIM;iidx++)
158     {
159         scratch[iidx] = 0.0;
160     }
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
178                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
179
180         fix0             = _mm_setzero_ps();
181         fiy0             = _mm_setzero_ps();
182         fiz0             = _mm_setzero_ps();
183         fix1             = _mm_setzero_ps();
184         fiy1             = _mm_setzero_ps();
185         fiz1             = _mm_setzero_ps();
186         fix2             = _mm_setzero_ps();
187         fiy2             = _mm_setzero_ps();
188         fiz2             = _mm_setzero_ps();
189
190         /* Reset potential sums */
191         velecsum         = _mm_setzero_ps();
192         vvdwsum          = _mm_setzero_ps();
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
196         {
197
198             /* Get j neighbor index, and coordinate index */
199             jnrA             = jjnr[jidx];
200             jnrB             = jjnr[jidx+1];
201             jnrC             = jjnr[jidx+2];
202             jnrD             = jjnr[jidx+3];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207
208             /* load j atom coordinates */
209             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
210                                               x+j_coord_offsetC,x+j_coord_offsetD,
211                                               &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm_sub_ps(ix0,jx0);
215             dy00             = _mm_sub_ps(iy0,jy0);
216             dz00             = _mm_sub_ps(iz0,jz0);
217             dx10             = _mm_sub_ps(ix1,jx0);
218             dy10             = _mm_sub_ps(iy1,jy0);
219             dz10             = _mm_sub_ps(iz1,jz0);
220             dx20             = _mm_sub_ps(ix2,jx0);
221             dy20             = _mm_sub_ps(iy2,jy0);
222             dz20             = _mm_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                               charge+jnrC+0,charge+jnrD+0);
240             vdwjidx0A        = 2*vdwtype[jnrA+0];
241             vdwjidx0B        = 2*vdwtype[jnrB+0];
242             vdwjidx0C        = 2*vdwtype[jnrC+0];
243             vdwjidx0D        = 2*vdwtype[jnrD+0];
244
245             fjx0             = _mm_setzero_ps();
246             fjy0             = _mm_setzero_ps();
247             fjz0             = _mm_setzero_ps();
248
249             /**************************
250              * CALCULATE INTERACTIONS *
251              **************************/
252
253             if (gmx_mm_any_lt(rsq00,rcutoff2))
254             {
255
256             r00              = _mm_mul_ps(rsq00,rinv00);
257
258             /* Compute parameters for interactions between i and j atoms */
259             qq00             = _mm_mul_ps(iq0,jq0);
260             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
261                                          vdwparam+vdwioffset0+vdwjidx0B,
262                                          vdwparam+vdwioffset0+vdwjidx0C,
263                                          vdwparam+vdwioffset0+vdwjidx0D,
264                                          &c6_00,&c12_00);
265
266             /* Calculate table index by multiplying r with table scale and truncate to integer */
267             rt               = _mm_mul_ps(r00,vftabscale);
268             vfitab           = _mm_cvttps_epi32(rt);
269 #ifdef __XOP__
270             vfeps            = _mm_frcz_ps(rt);
271 #else
272             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
273 #endif
274             twovfeps         = _mm_add_ps(vfeps,vfeps);
275             vfitab           = _mm_slli_epi32(vfitab,3);
276
277             /* REACTION-FIELD ELECTROSTATICS */
278             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
279             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
280
281             /* CUBIC SPLINE TABLE DISPERSION */
282             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
283             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
284             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
285             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
286             _MM_TRANSPOSE4_PS(Y,F,G,H);
287             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
288             VV               = _mm_macc_ps(vfeps,Fp,Y);
289             vvdw6            = _mm_mul_ps(c6_00,VV);
290             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
291             fvdw6            = _mm_mul_ps(c6_00,FF);
292
293             /* CUBIC SPLINE TABLE REPULSION */
294             vfitab           = _mm_add_epi32(vfitab,ifour);
295             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
296             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
297             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
298             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
299             _MM_TRANSPOSE4_PS(Y,F,G,H);
300             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
301             VV               = _mm_macc_ps(vfeps,Fp,Y);
302             vvdw12           = _mm_mul_ps(c12_00,VV);
303             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
304             fvdw12           = _mm_mul_ps(c12_00,FF);
305             vvdw             = _mm_add_ps(vvdw12,vvdw6);
306             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
307
308             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velec            = _mm_and_ps(velec,cutoff_mask);
312             velecsum         = _mm_add_ps(velecsum,velec);
313             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
314             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
315
316             fscal            = _mm_add_ps(felec,fvdw);
317
318             fscal            = _mm_and_ps(fscal,cutoff_mask);
319
320              /* Update vectorial force */
321             fix0             = _mm_macc_ps(dx00,fscal,fix0);
322             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
323             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
324
325             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
326             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
327             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
328
329             }
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             if (gmx_mm_any_lt(rsq10,rcutoff2))
336             {
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq10             = _mm_mul_ps(iq1,jq0);
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
343             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
344
345             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
346
347             /* Update potential sum for this i atom from the interaction with this j atom. */
348             velec            = _mm_and_ps(velec,cutoff_mask);
349             velecsum         = _mm_add_ps(velecsum,velec);
350
351             fscal            = felec;
352
353             fscal            = _mm_and_ps(fscal,cutoff_mask);
354
355              /* Update vectorial force */
356             fix1             = _mm_macc_ps(dx10,fscal,fix1);
357             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
358             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
359
360             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
361             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
362             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
363
364             }
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (gmx_mm_any_lt(rsq20,rcutoff2))
371             {
372
373             /* Compute parameters for interactions between i and j atoms */
374             qq20             = _mm_mul_ps(iq2,jq0);
375
376             /* REACTION-FIELD ELECTROSTATICS */
377             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
378             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
379
380             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm_and_ps(velec,cutoff_mask);
384             velecsum         = _mm_add_ps(velecsum,velec);
385
386             fscal            = felec;
387
388             fscal            = _mm_and_ps(fscal,cutoff_mask);
389
390              /* Update vectorial force */
391             fix2             = _mm_macc_ps(dx20,fscal,fix2);
392             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
393             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
394
395             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
396             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
397             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
398
399             }
400
401             fjptrA             = f+j_coord_offsetA;
402             fjptrB             = f+j_coord_offsetB;
403             fjptrC             = f+j_coord_offsetC;
404             fjptrD             = f+j_coord_offsetD;
405
406             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
407
408             /* Inner loop uses 153 flops */
409         }
410
411         if(jidx<j_index_end)
412         {
413
414             /* Get j neighbor index, and coordinate index */
415             jnrlistA         = jjnr[jidx];
416             jnrlistB         = jjnr[jidx+1];
417             jnrlistC         = jjnr[jidx+2];
418             jnrlistD         = jjnr[jidx+3];
419             /* Sign of each element will be negative for non-real atoms.
420              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
421              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
422              */
423             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
424             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
425             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
426             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
427             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
428             j_coord_offsetA  = DIM*jnrA;
429             j_coord_offsetB  = DIM*jnrB;
430             j_coord_offsetC  = DIM*jnrC;
431             j_coord_offsetD  = DIM*jnrD;
432
433             /* load j atom coordinates */
434             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
435                                               x+j_coord_offsetC,x+j_coord_offsetD,
436                                               &jx0,&jy0,&jz0);
437
438             /* Calculate displacement vector */
439             dx00             = _mm_sub_ps(ix0,jx0);
440             dy00             = _mm_sub_ps(iy0,jy0);
441             dz00             = _mm_sub_ps(iz0,jz0);
442             dx10             = _mm_sub_ps(ix1,jx0);
443             dy10             = _mm_sub_ps(iy1,jy0);
444             dz10             = _mm_sub_ps(iz1,jz0);
445             dx20             = _mm_sub_ps(ix2,jx0);
446             dy20             = _mm_sub_ps(iy2,jy0);
447             dz20             = _mm_sub_ps(iz2,jz0);
448
449             /* Calculate squared distance and things based on it */
450             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
451             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
452             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
453
454             rinv00           = gmx_mm_invsqrt_ps(rsq00);
455             rinv10           = gmx_mm_invsqrt_ps(rsq10);
456             rinv20           = gmx_mm_invsqrt_ps(rsq20);
457
458             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
459             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
460             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
461
462             /* Load parameters for j particles */
463             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
464                                                               charge+jnrC+0,charge+jnrD+0);
465             vdwjidx0A        = 2*vdwtype[jnrA+0];
466             vdwjidx0B        = 2*vdwtype[jnrB+0];
467             vdwjidx0C        = 2*vdwtype[jnrC+0];
468             vdwjidx0D        = 2*vdwtype[jnrD+0];
469
470             fjx0             = _mm_setzero_ps();
471             fjy0             = _mm_setzero_ps();
472             fjz0             = _mm_setzero_ps();
473
474             /**************************
475              * CALCULATE INTERACTIONS *
476              **************************/
477
478             if (gmx_mm_any_lt(rsq00,rcutoff2))
479             {
480
481             r00              = _mm_mul_ps(rsq00,rinv00);
482             r00              = _mm_andnot_ps(dummy_mask,r00);
483
484             /* Compute parameters for interactions between i and j atoms */
485             qq00             = _mm_mul_ps(iq0,jq0);
486             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
487                                          vdwparam+vdwioffset0+vdwjidx0B,
488                                          vdwparam+vdwioffset0+vdwjidx0C,
489                                          vdwparam+vdwioffset0+vdwjidx0D,
490                                          &c6_00,&c12_00);
491
492             /* Calculate table index by multiplying r with table scale and truncate to integer */
493             rt               = _mm_mul_ps(r00,vftabscale);
494             vfitab           = _mm_cvttps_epi32(rt);
495 #ifdef __XOP__
496             vfeps            = _mm_frcz_ps(rt);
497 #else
498             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
499 #endif
500             twovfeps         = _mm_add_ps(vfeps,vfeps);
501             vfitab           = _mm_slli_epi32(vfitab,3);
502
503             /* REACTION-FIELD ELECTROSTATICS */
504             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
505             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
506
507             /* CUBIC SPLINE TABLE DISPERSION */
508             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
509             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
510             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
511             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
512             _MM_TRANSPOSE4_PS(Y,F,G,H);
513             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
514             VV               = _mm_macc_ps(vfeps,Fp,Y);
515             vvdw6            = _mm_mul_ps(c6_00,VV);
516             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
517             fvdw6            = _mm_mul_ps(c6_00,FF);
518
519             /* CUBIC SPLINE TABLE REPULSION */
520             vfitab           = _mm_add_epi32(vfitab,ifour);
521             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
522             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
523             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
524             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
525             _MM_TRANSPOSE4_PS(Y,F,G,H);
526             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
527             VV               = _mm_macc_ps(vfeps,Fp,Y);
528             vvdw12           = _mm_mul_ps(c12_00,VV);
529             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
530             fvdw12           = _mm_mul_ps(c12_00,FF);
531             vvdw             = _mm_add_ps(vvdw12,vvdw6);
532             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
533
534             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm_and_ps(velec,cutoff_mask);
538             velec            = _mm_andnot_ps(dummy_mask,velec);
539             velecsum         = _mm_add_ps(velecsum,velec);
540             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
541             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
542             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
543
544             fscal            = _mm_add_ps(felec,fvdw);
545
546             fscal            = _mm_and_ps(fscal,cutoff_mask);
547
548             fscal            = _mm_andnot_ps(dummy_mask,fscal);
549
550              /* Update vectorial force */
551             fix0             = _mm_macc_ps(dx00,fscal,fix0);
552             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
553             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
554
555             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
556             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
557             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
558
559             }
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             if (gmx_mm_any_lt(rsq10,rcutoff2))
566             {
567
568             /* Compute parameters for interactions between i and j atoms */
569             qq10             = _mm_mul_ps(iq1,jq0);
570
571             /* REACTION-FIELD ELECTROSTATICS */
572             velec            = _mm_mul_ps(qq10,_mm_sub_ps(_mm_macc_ps(krf,rsq10,rinv10),crf));
573             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
574
575             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm_and_ps(velec,cutoff_mask);
579             velec            = _mm_andnot_ps(dummy_mask,velec);
580             velecsum         = _mm_add_ps(velecsum,velec);
581
582             fscal            = felec;
583
584             fscal            = _mm_and_ps(fscal,cutoff_mask);
585
586             fscal            = _mm_andnot_ps(dummy_mask,fscal);
587
588              /* Update vectorial force */
589             fix1             = _mm_macc_ps(dx10,fscal,fix1);
590             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
591             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
592
593             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
594             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
595             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (gmx_mm_any_lt(rsq20,rcutoff2))
604             {
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq20             = _mm_mul_ps(iq2,jq0);
608
609             /* REACTION-FIELD ELECTROSTATICS */
610             velec            = _mm_mul_ps(qq20,_mm_sub_ps(_mm_macc_ps(krf,rsq20,rinv20),crf));
611             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
612
613             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
614
615             /* Update potential sum for this i atom from the interaction with this j atom. */
616             velec            = _mm_and_ps(velec,cutoff_mask);
617             velec            = _mm_andnot_ps(dummy_mask,velec);
618             velecsum         = _mm_add_ps(velecsum,velec);
619
620             fscal            = felec;
621
622             fscal            = _mm_and_ps(fscal,cutoff_mask);
623
624             fscal            = _mm_andnot_ps(dummy_mask,fscal);
625
626              /* Update vectorial force */
627             fix2             = _mm_macc_ps(dx20,fscal,fix2);
628             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
629             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
630
631             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
632             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
633             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
634
635             }
636
637             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
638             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
639             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
640             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
641
642             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
643
644             /* Inner loop uses 154 flops */
645         }
646
647         /* End of innermost loop */
648
649         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
650                                               f+i_coord_offset,fshift+i_shift_offset);
651
652         ggid                        = gid[iidx];
653         /* Update potential energies */
654         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
655         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
656
657         /* Increment number of inner iterations */
658         inneriter                  += j_index_end - j_index_start;
659
660         /* Outer loop uses 20 flops */
661     }
662
663     /* Increment number of outer iterations */
664     outeriter        += nri;
665
666     /* Update outer/inner flops */
667
668     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*154);
669 }
670 /*
671  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_single
672  * Electrostatics interaction: ReactionField
673  * VdW interaction:            CubicSplineTable
674  * Geometry:                   Water3-Particle
675  * Calculate force/pot:        Force
676  */
677 void
678 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_128_fma_single
679                     (t_nblist                    * gmx_restrict       nlist,
680                      rvec                        * gmx_restrict          xx,
681                      rvec                        * gmx_restrict          ff,
682                      t_forcerec                  * gmx_restrict          fr,
683                      t_mdatoms                   * gmx_restrict     mdatoms,
684                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
685                      t_nrnb                      * gmx_restrict        nrnb)
686 {
687     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
688      * just 0 for non-waters.
689      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
690      * jnr indices corresponding to data put in the four positions in the SIMD register.
691      */
692     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
693     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
694     int              jnrA,jnrB,jnrC,jnrD;
695     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
696     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
697     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
698     real             rcutoff_scalar;
699     real             *shiftvec,*fshift,*x,*f;
700     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
701     real             scratch[4*DIM];
702     __m128           fscal,rcutoff,rcutoff2,jidxall;
703     int              vdwioffset0;
704     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705     int              vdwioffset1;
706     __m128           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707     int              vdwioffset2;
708     __m128           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
710     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
711     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
712     __m128           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
713     __m128           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
714     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
715     real             *charge;
716     int              nvdwtype;
717     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
718     int              *vdwtype;
719     real             *vdwparam;
720     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
721     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
722     __m128i          vfitab;
723     __m128i          ifour       = _mm_set1_epi32(4);
724     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
725     real             *vftab;
726     __m128           dummy_mask,cutoff_mask;
727     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
728     __m128           one     = _mm_set1_ps(1.0);
729     __m128           two     = _mm_set1_ps(2.0);
730     x                = xx[0];
731     f                = ff[0];
732
733     nri              = nlist->nri;
734     iinr             = nlist->iinr;
735     jindex           = nlist->jindex;
736     jjnr             = nlist->jjnr;
737     shiftidx         = nlist->shift;
738     gid              = nlist->gid;
739     shiftvec         = fr->shift_vec[0];
740     fshift           = fr->fshift[0];
741     facel            = _mm_set1_ps(fr->epsfac);
742     charge           = mdatoms->chargeA;
743     krf              = _mm_set1_ps(fr->ic->k_rf);
744     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
745     crf              = _mm_set1_ps(fr->ic->c_rf);
746     nvdwtype         = fr->ntype;
747     vdwparam         = fr->nbfp;
748     vdwtype          = mdatoms->typeA;
749
750     vftab            = kernel_data->table_vdw->data;
751     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
752
753     /* Setup water-specific parameters */
754     inr              = nlist->iinr[0];
755     iq0              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
756     iq1              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
757     iq2              = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
758     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
759
760     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
761     rcutoff_scalar   = fr->rcoulomb;
762     rcutoff          = _mm_set1_ps(rcutoff_scalar);
763     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
764
765     /* Avoid stupid compiler warnings */
766     jnrA = jnrB = jnrC = jnrD = 0;
767     j_coord_offsetA = 0;
768     j_coord_offsetB = 0;
769     j_coord_offsetC = 0;
770     j_coord_offsetD = 0;
771
772     outeriter        = 0;
773     inneriter        = 0;
774
775     for(iidx=0;iidx<4*DIM;iidx++)
776     {
777         scratch[iidx] = 0.0;
778     }
779
780     /* Start outer loop over neighborlists */
781     for(iidx=0; iidx<nri; iidx++)
782     {
783         /* Load shift vector for this list */
784         i_shift_offset   = DIM*shiftidx[iidx];
785
786         /* Load limits for loop over neighbors */
787         j_index_start    = jindex[iidx];
788         j_index_end      = jindex[iidx+1];
789
790         /* Get outer coordinate index */
791         inr              = iinr[iidx];
792         i_coord_offset   = DIM*inr;
793
794         /* Load i particle coords and add shift vector */
795         gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
796                                                  &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
797
798         fix0             = _mm_setzero_ps();
799         fiy0             = _mm_setzero_ps();
800         fiz0             = _mm_setzero_ps();
801         fix1             = _mm_setzero_ps();
802         fiy1             = _mm_setzero_ps();
803         fiz1             = _mm_setzero_ps();
804         fix2             = _mm_setzero_ps();
805         fiy2             = _mm_setzero_ps();
806         fiz2             = _mm_setzero_ps();
807
808         /* Start inner kernel loop */
809         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
810         {
811
812             /* Get j neighbor index, and coordinate index */
813             jnrA             = jjnr[jidx];
814             jnrB             = jjnr[jidx+1];
815             jnrC             = jjnr[jidx+2];
816             jnrD             = jjnr[jidx+3];
817             j_coord_offsetA  = DIM*jnrA;
818             j_coord_offsetB  = DIM*jnrB;
819             j_coord_offsetC  = DIM*jnrC;
820             j_coord_offsetD  = DIM*jnrD;
821
822             /* load j atom coordinates */
823             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
824                                               x+j_coord_offsetC,x+j_coord_offsetD,
825                                               &jx0,&jy0,&jz0);
826
827             /* Calculate displacement vector */
828             dx00             = _mm_sub_ps(ix0,jx0);
829             dy00             = _mm_sub_ps(iy0,jy0);
830             dz00             = _mm_sub_ps(iz0,jz0);
831             dx10             = _mm_sub_ps(ix1,jx0);
832             dy10             = _mm_sub_ps(iy1,jy0);
833             dz10             = _mm_sub_ps(iz1,jz0);
834             dx20             = _mm_sub_ps(ix2,jx0);
835             dy20             = _mm_sub_ps(iy2,jy0);
836             dz20             = _mm_sub_ps(iz2,jz0);
837
838             /* Calculate squared distance and things based on it */
839             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
840             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
841             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
842
843             rinv00           = gmx_mm_invsqrt_ps(rsq00);
844             rinv10           = gmx_mm_invsqrt_ps(rsq10);
845             rinv20           = gmx_mm_invsqrt_ps(rsq20);
846
847             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
848             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
849             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
850
851             /* Load parameters for j particles */
852             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
853                                                               charge+jnrC+0,charge+jnrD+0);
854             vdwjidx0A        = 2*vdwtype[jnrA+0];
855             vdwjidx0B        = 2*vdwtype[jnrB+0];
856             vdwjidx0C        = 2*vdwtype[jnrC+0];
857             vdwjidx0D        = 2*vdwtype[jnrD+0];
858
859             fjx0             = _mm_setzero_ps();
860             fjy0             = _mm_setzero_ps();
861             fjz0             = _mm_setzero_ps();
862
863             /**************************
864              * CALCULATE INTERACTIONS *
865              **************************/
866
867             if (gmx_mm_any_lt(rsq00,rcutoff2))
868             {
869
870             r00              = _mm_mul_ps(rsq00,rinv00);
871
872             /* Compute parameters for interactions between i and j atoms */
873             qq00             = _mm_mul_ps(iq0,jq0);
874             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
875                                          vdwparam+vdwioffset0+vdwjidx0B,
876                                          vdwparam+vdwioffset0+vdwjidx0C,
877                                          vdwparam+vdwioffset0+vdwjidx0D,
878                                          &c6_00,&c12_00);
879
880             /* Calculate table index by multiplying r with table scale and truncate to integer */
881             rt               = _mm_mul_ps(r00,vftabscale);
882             vfitab           = _mm_cvttps_epi32(rt);
883 #ifdef __XOP__
884             vfeps            = _mm_frcz_ps(rt);
885 #else
886             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
887 #endif
888             twovfeps         = _mm_add_ps(vfeps,vfeps);
889             vfitab           = _mm_slli_epi32(vfitab,3);
890
891             /* REACTION-FIELD ELECTROSTATICS */
892             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
893
894             /* CUBIC SPLINE TABLE DISPERSION */
895             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
896             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
897             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
898             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
899             _MM_TRANSPOSE4_PS(Y,F,G,H);
900             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
901             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
902             fvdw6            = _mm_mul_ps(c6_00,FF);
903
904             /* CUBIC SPLINE TABLE REPULSION */
905             vfitab           = _mm_add_epi32(vfitab,ifour);
906             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
907             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
908             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
909             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
910             _MM_TRANSPOSE4_PS(Y,F,G,H);
911             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
912             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
913             fvdw12           = _mm_mul_ps(c12_00,FF);
914             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
915
916             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
917
918             fscal            = _mm_add_ps(felec,fvdw);
919
920             fscal            = _mm_and_ps(fscal,cutoff_mask);
921
922              /* Update vectorial force */
923             fix0             = _mm_macc_ps(dx00,fscal,fix0);
924             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
925             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
926
927             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
928             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
929             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
930
931             }
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             if (gmx_mm_any_lt(rsq10,rcutoff2))
938             {
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm_mul_ps(iq1,jq0);
942
943             /* REACTION-FIELD ELECTROSTATICS */
944             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
945
946             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
947
948             fscal            = felec;
949
950             fscal            = _mm_and_ps(fscal,cutoff_mask);
951
952              /* Update vectorial force */
953             fix1             = _mm_macc_ps(dx10,fscal,fix1);
954             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
955             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
956
957             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
958             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
959             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
960
961             }
962
963             /**************************
964              * CALCULATE INTERACTIONS *
965              **************************/
966
967             if (gmx_mm_any_lt(rsq20,rcutoff2))
968             {
969
970             /* Compute parameters for interactions between i and j atoms */
971             qq20             = _mm_mul_ps(iq2,jq0);
972
973             /* REACTION-FIELD ELECTROSTATICS */
974             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
975
976             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
977
978             fscal            = felec;
979
980             fscal            = _mm_and_ps(fscal,cutoff_mask);
981
982              /* Update vectorial force */
983             fix2             = _mm_macc_ps(dx20,fscal,fix2);
984             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
985             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
986
987             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
988             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
989             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
990
991             }
992
993             fjptrA             = f+j_coord_offsetA;
994             fjptrB             = f+j_coord_offsetB;
995             fjptrC             = f+j_coord_offsetC;
996             fjptrD             = f+j_coord_offsetD;
997
998             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
999
1000             /* Inner loop uses 126 flops */
1001         }
1002
1003         if(jidx<j_index_end)
1004         {
1005
1006             /* Get j neighbor index, and coordinate index */
1007             jnrlistA         = jjnr[jidx];
1008             jnrlistB         = jjnr[jidx+1];
1009             jnrlistC         = jjnr[jidx+2];
1010             jnrlistD         = jjnr[jidx+3];
1011             /* Sign of each element will be negative for non-real atoms.
1012              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1013              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1014              */
1015             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1016             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1017             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1018             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1019             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1020             j_coord_offsetA  = DIM*jnrA;
1021             j_coord_offsetB  = DIM*jnrB;
1022             j_coord_offsetC  = DIM*jnrC;
1023             j_coord_offsetD  = DIM*jnrD;
1024
1025             /* load j atom coordinates */
1026             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1027                                               x+j_coord_offsetC,x+j_coord_offsetD,
1028                                               &jx0,&jy0,&jz0);
1029
1030             /* Calculate displacement vector */
1031             dx00             = _mm_sub_ps(ix0,jx0);
1032             dy00             = _mm_sub_ps(iy0,jy0);
1033             dz00             = _mm_sub_ps(iz0,jz0);
1034             dx10             = _mm_sub_ps(ix1,jx0);
1035             dy10             = _mm_sub_ps(iy1,jy0);
1036             dz10             = _mm_sub_ps(iz1,jz0);
1037             dx20             = _mm_sub_ps(ix2,jx0);
1038             dy20             = _mm_sub_ps(iy2,jy0);
1039             dz20             = _mm_sub_ps(iz2,jz0);
1040
1041             /* Calculate squared distance and things based on it */
1042             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1043             rsq10            = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1044             rsq20            = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1045
1046             rinv00           = gmx_mm_invsqrt_ps(rsq00);
1047             rinv10           = gmx_mm_invsqrt_ps(rsq10);
1048             rinv20           = gmx_mm_invsqrt_ps(rsq20);
1049
1050             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
1051             rinvsq10         = _mm_mul_ps(rinv10,rinv10);
1052             rinvsq20         = _mm_mul_ps(rinv20,rinv20);
1053
1054             /* Load parameters for j particles */
1055             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1056                                                               charge+jnrC+0,charge+jnrD+0);
1057             vdwjidx0A        = 2*vdwtype[jnrA+0];
1058             vdwjidx0B        = 2*vdwtype[jnrB+0];
1059             vdwjidx0C        = 2*vdwtype[jnrC+0];
1060             vdwjidx0D        = 2*vdwtype[jnrD+0];
1061
1062             fjx0             = _mm_setzero_ps();
1063             fjy0             = _mm_setzero_ps();
1064             fjz0             = _mm_setzero_ps();
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             if (gmx_mm_any_lt(rsq00,rcutoff2))
1071             {
1072
1073             r00              = _mm_mul_ps(rsq00,rinv00);
1074             r00              = _mm_andnot_ps(dummy_mask,r00);
1075
1076             /* Compute parameters for interactions between i and j atoms */
1077             qq00             = _mm_mul_ps(iq0,jq0);
1078             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1079                                          vdwparam+vdwioffset0+vdwjidx0B,
1080                                          vdwparam+vdwioffset0+vdwjidx0C,
1081                                          vdwparam+vdwioffset0+vdwjidx0D,
1082                                          &c6_00,&c12_00);
1083
1084             /* Calculate table index by multiplying r with table scale and truncate to integer */
1085             rt               = _mm_mul_ps(r00,vftabscale);
1086             vfitab           = _mm_cvttps_epi32(rt);
1087 #ifdef __XOP__
1088             vfeps            = _mm_frcz_ps(rt);
1089 #else
1090             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
1091 #endif
1092             twovfeps         = _mm_add_ps(vfeps,vfeps);
1093             vfitab           = _mm_slli_epi32(vfitab,3);
1094
1095             /* REACTION-FIELD ELECTROSTATICS */
1096             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
1097
1098             /* CUBIC SPLINE TABLE DISPERSION */
1099             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1100             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1101             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1102             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1103             _MM_TRANSPOSE4_PS(Y,F,G,H);
1104             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1105             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1106             fvdw6            = _mm_mul_ps(c6_00,FF);
1107
1108             /* CUBIC SPLINE TABLE REPULSION */
1109             vfitab           = _mm_add_epi32(vfitab,ifour);
1110             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
1111             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
1112             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
1113             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
1114             _MM_TRANSPOSE4_PS(Y,F,G,H);
1115             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
1116             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
1117             fvdw12           = _mm_mul_ps(c12_00,FF);
1118             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1119
1120             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
1121
1122             fscal            = _mm_add_ps(felec,fvdw);
1123
1124             fscal            = _mm_and_ps(fscal,cutoff_mask);
1125
1126             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1127
1128              /* Update vectorial force */
1129             fix0             = _mm_macc_ps(dx00,fscal,fix0);
1130             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
1131             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
1132
1133             fjx0             = _mm_macc_ps(dx00,fscal,fjx0);
1134             fjy0             = _mm_macc_ps(dy00,fscal,fjy0);
1135             fjz0             = _mm_macc_ps(dz00,fscal,fjz0);
1136
1137             }
1138
1139             /**************************
1140              * CALCULATE INTERACTIONS *
1141              **************************/
1142
1143             if (gmx_mm_any_lt(rsq10,rcutoff2))
1144             {
1145
1146             /* Compute parameters for interactions between i and j atoms */
1147             qq10             = _mm_mul_ps(iq1,jq0);
1148
1149             /* REACTION-FIELD ELECTROSTATICS */
1150             felec            = _mm_mul_ps(qq10,_mm_msub_ps(rinv10,rinvsq10,krf2));
1151
1152             cutoff_mask      = _mm_cmplt_ps(rsq10,rcutoff2);
1153
1154             fscal            = felec;
1155
1156             fscal            = _mm_and_ps(fscal,cutoff_mask);
1157
1158             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1159
1160              /* Update vectorial force */
1161             fix1             = _mm_macc_ps(dx10,fscal,fix1);
1162             fiy1             = _mm_macc_ps(dy10,fscal,fiy1);
1163             fiz1             = _mm_macc_ps(dz10,fscal,fiz1);
1164
1165             fjx0             = _mm_macc_ps(dx10,fscal,fjx0);
1166             fjy0             = _mm_macc_ps(dy10,fscal,fjy0);
1167             fjz0             = _mm_macc_ps(dz10,fscal,fjz0);
1168
1169             }
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             if (gmx_mm_any_lt(rsq20,rcutoff2))
1176             {
1177
1178             /* Compute parameters for interactions between i and j atoms */
1179             qq20             = _mm_mul_ps(iq2,jq0);
1180
1181             /* REACTION-FIELD ELECTROSTATICS */
1182             felec            = _mm_mul_ps(qq20,_mm_msub_ps(rinv20,rinvsq20,krf2));
1183
1184             cutoff_mask      = _mm_cmplt_ps(rsq20,rcutoff2);
1185
1186             fscal            = felec;
1187
1188             fscal            = _mm_and_ps(fscal,cutoff_mask);
1189
1190             fscal            = _mm_andnot_ps(dummy_mask,fscal);
1191
1192              /* Update vectorial force */
1193             fix2             = _mm_macc_ps(dx20,fscal,fix2);
1194             fiy2             = _mm_macc_ps(dy20,fscal,fiy2);
1195             fiz2             = _mm_macc_ps(dz20,fscal,fiz2);
1196
1197             fjx0             = _mm_macc_ps(dx20,fscal,fjx0);
1198             fjy0             = _mm_macc_ps(dy20,fscal,fjy0);
1199             fjz0             = _mm_macc_ps(dz20,fscal,fjz0);
1200
1201             }
1202
1203             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1204             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1205             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1206             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1207
1208             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1209
1210             /* Inner loop uses 127 flops */
1211         }
1212
1213         /* End of innermost loop */
1214
1215         gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1216                                               f+i_coord_offset,fshift+i_shift_offset);
1217
1218         /* Increment number of inner iterations */
1219         inneriter                  += j_index_end - j_index_start;
1220
1221         /* Outer loop uses 18 flops */
1222     }
1223
1224     /* Increment number of outer iterations */
1225     outeriter        += nri;
1226
1227     /* Update outer/inner flops */
1228
1229     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*127);
1230 }