Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
88     real             *charge;
89     int              nvdwtype;
90     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
91     int              *vdwtype;
92     real             *vdwparam;
93     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
94     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
95     __m128i          vfitab;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
98     real             *vftab;
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm_set1_ps(fr->ic->epsfac);
115     charge           = mdatoms->chargeA;
116     krf              = _mm_set1_ps(fr->ic->k_rf);
117     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
118     crf              = _mm_set1_ps(fr->ic->c_rf);
119     nvdwtype         = fr->ntype;
120     vdwparam         = fr->nbfp;
121     vdwtype          = mdatoms->typeA;
122
123     vftab            = kernel_data->table_vdw->data;
124     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff_scalar   = fr->ic->rcoulomb;
128     rcutoff          = _mm_set1_ps(rcutoff_scalar);
129     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
130
131     /* Avoid stupid compiler warnings */
132     jnrA = jnrB = jnrC = jnrD = 0;
133     j_coord_offsetA = 0;
134     j_coord_offsetB = 0;
135     j_coord_offsetC = 0;
136     j_coord_offsetD = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
162
163         fix0             = _mm_setzero_ps();
164         fiy0             = _mm_setzero_ps();
165         fiz0             = _mm_setzero_ps();
166
167         /* Load parameters for i particles */
168         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
169         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
170
171         /* Reset potential sums */
172         velecsum         = _mm_setzero_ps();
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_ps(ix0,jx0);
196             dy00             = _mm_sub_ps(iy0,jy0);
197             dz00             = _mm_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = avx128fma_invsqrt_f(rsq00);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
208                                                               charge+jnrC+0,charge+jnrD+0);
209             vdwjidx0A        = 2*vdwtype[jnrA+0];
210             vdwjidx0B        = 2*vdwtype[jnrB+0];
211             vdwjidx0C        = 2*vdwtype[jnrC+0];
212             vdwjidx0D        = 2*vdwtype[jnrD+0];
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             if (gmx_mm_any_lt(rsq00,rcutoff2))
219             {
220
221             r00              = _mm_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm_mul_ps(iq0,jq0);
225             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
226                                          vdwparam+vdwioffset0+vdwjidx0B,
227                                          vdwparam+vdwioffset0+vdwjidx0C,
228                                          vdwparam+vdwioffset0+vdwjidx0D,
229                                          &c6_00,&c12_00);
230
231             /* Calculate table index by multiplying r with table scale and truncate to integer */
232             rt               = _mm_mul_ps(r00,vftabscale);
233             vfitab           = _mm_cvttps_epi32(rt);
234 #ifdef __XOP__
235             vfeps            = _mm_frcz_ps(rt);
236 #else
237             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
238 #endif
239             twovfeps         = _mm_add_ps(vfeps,vfeps);
240             vfitab           = _mm_slli_epi32(vfitab,3);
241
242             /* REACTION-FIELD ELECTROSTATICS */
243             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
244             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
245
246             /* CUBIC SPLINE TABLE DISPERSION */
247             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
248             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
249             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
250             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
251             _MM_TRANSPOSE4_PS(Y,F,G,H);
252             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
253             VV               = _mm_macc_ps(vfeps,Fp,Y);
254             vvdw6            = _mm_mul_ps(c6_00,VV);
255             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
256             fvdw6            = _mm_mul_ps(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
264             _MM_TRANSPOSE4_PS(Y,F,G,H);
265             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
266             VV               = _mm_macc_ps(vfeps,Fp,Y);
267             vvdw12           = _mm_mul_ps(c12_00,VV);
268             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
269             fvdw12           = _mm_mul_ps(c12_00,FF);
270             vvdw             = _mm_add_ps(vvdw12,vvdw6);
271             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
272
273             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             velec            = _mm_and_ps(velec,cutoff_mask);
277             velecsum         = _mm_add_ps(velecsum,velec);
278             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
279             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
280
281             fscal            = _mm_add_ps(felec,fvdw);
282
283             fscal            = _mm_and_ps(fscal,cutoff_mask);
284
285              /* Update vectorial force */
286             fix0             = _mm_macc_ps(dx00,fscal,fix0);
287             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
288             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
295                                                    _mm_mul_ps(dx00,fscal),
296                                                    _mm_mul_ps(dy00,fscal),
297                                                    _mm_mul_ps(dz00,fscal));
298
299             }
300
301             /* Inner loop uses 75 flops */
302         }
303
304         if(jidx<j_index_end)
305         {
306
307             /* Get j neighbor index, and coordinate index */
308             jnrlistA         = jjnr[jidx];
309             jnrlistB         = jjnr[jidx+1];
310             jnrlistC         = jjnr[jidx+2];
311             jnrlistD         = jjnr[jidx+3];
312             /* Sign of each element will be negative for non-real atoms.
313              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
314              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
315              */
316             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
328                                               x+j_coord_offsetC,x+j_coord_offsetD,
329                                               &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm_sub_ps(ix0,jx0);
333             dy00             = _mm_sub_ps(iy0,jy0);
334             dz00             = _mm_sub_ps(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
338
339             rinv00           = avx128fma_invsqrt_f(rsq00);
340
341             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
345                                                               charge+jnrC+0,charge+jnrD+0);
346             vdwjidx0A        = 2*vdwtype[jnrA+0];
347             vdwjidx0B        = 2*vdwtype[jnrB+0];
348             vdwjidx0C        = 2*vdwtype[jnrC+0];
349             vdwjidx0D        = 2*vdwtype[jnrD+0];
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (gmx_mm_any_lt(rsq00,rcutoff2))
356             {
357
358             r00              = _mm_mul_ps(rsq00,rinv00);
359             r00              = _mm_andnot_ps(dummy_mask,r00);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq00             = _mm_mul_ps(iq0,jq0);
363             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
364                                          vdwparam+vdwioffset0+vdwjidx0B,
365                                          vdwparam+vdwioffset0+vdwjidx0C,
366                                          vdwparam+vdwioffset0+vdwjidx0D,
367                                          &c6_00,&c12_00);
368
369             /* Calculate table index by multiplying r with table scale and truncate to integer */
370             rt               = _mm_mul_ps(r00,vftabscale);
371             vfitab           = _mm_cvttps_epi32(rt);
372 #ifdef __XOP__
373             vfeps            = _mm_frcz_ps(rt);
374 #else
375             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
376 #endif
377             twovfeps         = _mm_add_ps(vfeps,vfeps);
378             vfitab           = _mm_slli_epi32(vfitab,3);
379
380             /* REACTION-FIELD ELECTROSTATICS */
381             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
382             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
383
384             /* CUBIC SPLINE TABLE DISPERSION */
385             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
386             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
387             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
388             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
389             _MM_TRANSPOSE4_PS(Y,F,G,H);
390             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
391             VV               = _mm_macc_ps(vfeps,Fp,Y);
392             vvdw6            = _mm_mul_ps(c6_00,VV);
393             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
394             fvdw6            = _mm_mul_ps(c6_00,FF);
395
396             /* CUBIC SPLINE TABLE REPULSION */
397             vfitab           = _mm_add_epi32(vfitab,ifour);
398             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
399             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
400             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
401             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
402             _MM_TRANSPOSE4_PS(Y,F,G,H);
403             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
404             VV               = _mm_macc_ps(vfeps,Fp,Y);
405             vvdw12           = _mm_mul_ps(c12_00,VV);
406             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
407             fvdw12           = _mm_mul_ps(c12_00,FF);
408             vvdw             = _mm_add_ps(vvdw12,vvdw6);
409             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
410
411             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
412
413             /* Update potential sum for this i atom from the interaction with this j atom. */
414             velec            = _mm_and_ps(velec,cutoff_mask);
415             velec            = _mm_andnot_ps(dummy_mask,velec);
416             velecsum         = _mm_add_ps(velecsum,velec);
417             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
418             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
419             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
420
421             fscal            = _mm_add_ps(felec,fvdw);
422
423             fscal            = _mm_and_ps(fscal,cutoff_mask);
424
425             fscal            = _mm_andnot_ps(dummy_mask,fscal);
426
427              /* Update vectorial force */
428             fix0             = _mm_macc_ps(dx00,fscal,fix0);
429             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
430             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
431
432             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
433             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
434             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
435             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
436             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
437                                                    _mm_mul_ps(dx00,fscal),
438                                                    _mm_mul_ps(dy00,fscal),
439                                                    _mm_mul_ps(dz00,fscal));
440
441             }
442
443             /* Inner loop uses 76 flops */
444         }
445
446         /* End of innermost loop */
447
448         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
449                                               f+i_coord_offset,fshift+i_shift_offset);
450
451         ggid                        = gid[iidx];
452         /* Update potential energies */
453         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
454         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
455
456         /* Increment number of inner iterations */
457         inneriter                  += j_index_end - j_index_start;
458
459         /* Outer loop uses 9 flops */
460     }
461
462     /* Increment number of outer iterations */
463     outeriter        += nri;
464
465     /* Update outer/inner flops */
466
467     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
468 }
469 /*
470  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
471  * Electrostatics interaction: ReactionField
472  * VdW interaction:            CubicSplineTable
473  * Geometry:                   Particle-Particle
474  * Calculate force/pot:        Force
475  */
476 void
477 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
478                     (t_nblist                    * gmx_restrict       nlist,
479                      rvec                        * gmx_restrict          xx,
480                      rvec                        * gmx_restrict          ff,
481                      struct t_forcerec           * gmx_restrict          fr,
482                      t_mdatoms                   * gmx_restrict     mdatoms,
483                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
484                      t_nrnb                      * gmx_restrict        nrnb)
485 {
486     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
487      * just 0 for non-waters.
488      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
489      * jnr indices corresponding to data put in the four positions in the SIMD register.
490      */
491     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
492     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
493     int              jnrA,jnrB,jnrC,jnrD;
494     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
495     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
496     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
497     real             rcutoff_scalar;
498     real             *shiftvec,*fshift,*x,*f;
499     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
500     real             scratch[4*DIM];
501     __m128           fscal,rcutoff,rcutoff2,jidxall;
502     int              vdwioffset0;
503     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
504     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
505     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
506     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
507     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
508     real             *charge;
509     int              nvdwtype;
510     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
511     int              *vdwtype;
512     real             *vdwparam;
513     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
514     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
515     __m128i          vfitab;
516     __m128i          ifour       = _mm_set1_epi32(4);
517     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
518     real             *vftab;
519     __m128           dummy_mask,cutoff_mask;
520     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
521     __m128           one     = _mm_set1_ps(1.0);
522     __m128           two     = _mm_set1_ps(2.0);
523     x                = xx[0];
524     f                = ff[0];
525
526     nri              = nlist->nri;
527     iinr             = nlist->iinr;
528     jindex           = nlist->jindex;
529     jjnr             = nlist->jjnr;
530     shiftidx         = nlist->shift;
531     gid              = nlist->gid;
532     shiftvec         = fr->shift_vec[0];
533     fshift           = fr->fshift[0];
534     facel            = _mm_set1_ps(fr->ic->epsfac);
535     charge           = mdatoms->chargeA;
536     krf              = _mm_set1_ps(fr->ic->k_rf);
537     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
538     crf              = _mm_set1_ps(fr->ic->c_rf);
539     nvdwtype         = fr->ntype;
540     vdwparam         = fr->nbfp;
541     vdwtype          = mdatoms->typeA;
542
543     vftab            = kernel_data->table_vdw->data;
544     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
545
546     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
547     rcutoff_scalar   = fr->ic->rcoulomb;
548     rcutoff          = _mm_set1_ps(rcutoff_scalar);
549     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
550
551     /* Avoid stupid compiler warnings */
552     jnrA = jnrB = jnrC = jnrD = 0;
553     j_coord_offsetA = 0;
554     j_coord_offsetB = 0;
555     j_coord_offsetC = 0;
556     j_coord_offsetD = 0;
557
558     outeriter        = 0;
559     inneriter        = 0;
560
561     for(iidx=0;iidx<4*DIM;iidx++)
562     {
563         scratch[iidx] = 0.0;
564     }
565
566     /* Start outer loop over neighborlists */
567     for(iidx=0; iidx<nri; iidx++)
568     {
569         /* Load shift vector for this list */
570         i_shift_offset   = DIM*shiftidx[iidx];
571
572         /* Load limits for loop over neighbors */
573         j_index_start    = jindex[iidx];
574         j_index_end      = jindex[iidx+1];
575
576         /* Get outer coordinate index */
577         inr              = iinr[iidx];
578         i_coord_offset   = DIM*inr;
579
580         /* Load i particle coords and add shift vector */
581         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
582
583         fix0             = _mm_setzero_ps();
584         fiy0             = _mm_setzero_ps();
585         fiz0             = _mm_setzero_ps();
586
587         /* Load parameters for i particles */
588         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
589         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
590
591         /* Start inner kernel loop */
592         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
593         {
594
595             /* Get j neighbor index, and coordinate index */
596             jnrA             = jjnr[jidx];
597             jnrB             = jjnr[jidx+1];
598             jnrC             = jjnr[jidx+2];
599             jnrD             = jjnr[jidx+3];
600             j_coord_offsetA  = DIM*jnrA;
601             j_coord_offsetB  = DIM*jnrB;
602             j_coord_offsetC  = DIM*jnrC;
603             j_coord_offsetD  = DIM*jnrD;
604
605             /* load j atom coordinates */
606             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
607                                               x+j_coord_offsetC,x+j_coord_offsetD,
608                                               &jx0,&jy0,&jz0);
609
610             /* Calculate displacement vector */
611             dx00             = _mm_sub_ps(ix0,jx0);
612             dy00             = _mm_sub_ps(iy0,jy0);
613             dz00             = _mm_sub_ps(iz0,jz0);
614
615             /* Calculate squared distance and things based on it */
616             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
617
618             rinv00           = avx128fma_invsqrt_f(rsq00);
619
620             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
621
622             /* Load parameters for j particles */
623             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
624                                                               charge+jnrC+0,charge+jnrD+0);
625             vdwjidx0A        = 2*vdwtype[jnrA+0];
626             vdwjidx0B        = 2*vdwtype[jnrB+0];
627             vdwjidx0C        = 2*vdwtype[jnrC+0];
628             vdwjidx0D        = 2*vdwtype[jnrD+0];
629
630             /**************************
631              * CALCULATE INTERACTIONS *
632              **************************/
633
634             if (gmx_mm_any_lt(rsq00,rcutoff2))
635             {
636
637             r00              = _mm_mul_ps(rsq00,rinv00);
638
639             /* Compute parameters for interactions between i and j atoms */
640             qq00             = _mm_mul_ps(iq0,jq0);
641             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
642                                          vdwparam+vdwioffset0+vdwjidx0B,
643                                          vdwparam+vdwioffset0+vdwjidx0C,
644                                          vdwparam+vdwioffset0+vdwjidx0D,
645                                          &c6_00,&c12_00);
646
647             /* Calculate table index by multiplying r with table scale and truncate to integer */
648             rt               = _mm_mul_ps(r00,vftabscale);
649             vfitab           = _mm_cvttps_epi32(rt);
650 #ifdef __XOP__
651             vfeps            = _mm_frcz_ps(rt);
652 #else
653             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
654 #endif
655             twovfeps         = _mm_add_ps(vfeps,vfeps);
656             vfitab           = _mm_slli_epi32(vfitab,3);
657
658             /* REACTION-FIELD ELECTROSTATICS */
659             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
660
661             /* CUBIC SPLINE TABLE DISPERSION */
662             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
663             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
664             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
665             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
666             _MM_TRANSPOSE4_PS(Y,F,G,H);
667             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
668             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
669             fvdw6            = _mm_mul_ps(c6_00,FF);
670
671             /* CUBIC SPLINE TABLE REPULSION */
672             vfitab           = _mm_add_epi32(vfitab,ifour);
673             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
674             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
675             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
676             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
677             _MM_TRANSPOSE4_PS(Y,F,G,H);
678             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
679             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
680             fvdw12           = _mm_mul_ps(c12_00,FF);
681             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
682
683             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
684
685             fscal            = _mm_add_ps(felec,fvdw);
686
687             fscal            = _mm_and_ps(fscal,cutoff_mask);
688
689              /* Update vectorial force */
690             fix0             = _mm_macc_ps(dx00,fscal,fix0);
691             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
692             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
693
694             fjptrA             = f+j_coord_offsetA;
695             fjptrB             = f+j_coord_offsetB;
696             fjptrC             = f+j_coord_offsetC;
697             fjptrD             = f+j_coord_offsetD;
698             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
699                                                    _mm_mul_ps(dx00,fscal),
700                                                    _mm_mul_ps(dy00,fscal),
701                                                    _mm_mul_ps(dz00,fscal));
702
703             }
704
705             /* Inner loop uses 60 flops */
706         }
707
708         if(jidx<j_index_end)
709         {
710
711             /* Get j neighbor index, and coordinate index */
712             jnrlistA         = jjnr[jidx];
713             jnrlistB         = jjnr[jidx+1];
714             jnrlistC         = jjnr[jidx+2];
715             jnrlistD         = jjnr[jidx+3];
716             /* Sign of each element will be negative for non-real atoms.
717              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
718              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
719              */
720             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
721             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
722             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
723             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
724             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
725             j_coord_offsetA  = DIM*jnrA;
726             j_coord_offsetB  = DIM*jnrB;
727             j_coord_offsetC  = DIM*jnrC;
728             j_coord_offsetD  = DIM*jnrD;
729
730             /* load j atom coordinates */
731             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
732                                               x+j_coord_offsetC,x+j_coord_offsetD,
733                                               &jx0,&jy0,&jz0);
734
735             /* Calculate displacement vector */
736             dx00             = _mm_sub_ps(ix0,jx0);
737             dy00             = _mm_sub_ps(iy0,jy0);
738             dz00             = _mm_sub_ps(iz0,jz0);
739
740             /* Calculate squared distance and things based on it */
741             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
742
743             rinv00           = avx128fma_invsqrt_f(rsq00);
744
745             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
746
747             /* Load parameters for j particles */
748             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
749                                                               charge+jnrC+0,charge+jnrD+0);
750             vdwjidx0A        = 2*vdwtype[jnrA+0];
751             vdwjidx0B        = 2*vdwtype[jnrB+0];
752             vdwjidx0C        = 2*vdwtype[jnrC+0];
753             vdwjidx0D        = 2*vdwtype[jnrD+0];
754
755             /**************************
756              * CALCULATE INTERACTIONS *
757              **************************/
758
759             if (gmx_mm_any_lt(rsq00,rcutoff2))
760             {
761
762             r00              = _mm_mul_ps(rsq00,rinv00);
763             r00              = _mm_andnot_ps(dummy_mask,r00);
764
765             /* Compute parameters for interactions between i and j atoms */
766             qq00             = _mm_mul_ps(iq0,jq0);
767             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
768                                          vdwparam+vdwioffset0+vdwjidx0B,
769                                          vdwparam+vdwioffset0+vdwjidx0C,
770                                          vdwparam+vdwioffset0+vdwjidx0D,
771                                          &c6_00,&c12_00);
772
773             /* Calculate table index by multiplying r with table scale and truncate to integer */
774             rt               = _mm_mul_ps(r00,vftabscale);
775             vfitab           = _mm_cvttps_epi32(rt);
776 #ifdef __XOP__
777             vfeps            = _mm_frcz_ps(rt);
778 #else
779             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
780 #endif
781             twovfeps         = _mm_add_ps(vfeps,vfeps);
782             vfitab           = _mm_slli_epi32(vfitab,3);
783
784             /* REACTION-FIELD ELECTROSTATICS */
785             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
786
787             /* CUBIC SPLINE TABLE DISPERSION */
788             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
789             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
790             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
791             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
792             _MM_TRANSPOSE4_PS(Y,F,G,H);
793             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
794             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
795             fvdw6            = _mm_mul_ps(c6_00,FF);
796
797             /* CUBIC SPLINE TABLE REPULSION */
798             vfitab           = _mm_add_epi32(vfitab,ifour);
799             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
800             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
801             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
802             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
803             _MM_TRANSPOSE4_PS(Y,F,G,H);
804             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
805             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
806             fvdw12           = _mm_mul_ps(c12_00,FF);
807             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
808
809             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
810
811             fscal            = _mm_add_ps(felec,fvdw);
812
813             fscal            = _mm_and_ps(fscal,cutoff_mask);
814
815             fscal            = _mm_andnot_ps(dummy_mask,fscal);
816
817              /* Update vectorial force */
818             fix0             = _mm_macc_ps(dx00,fscal,fix0);
819             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
820             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
821
822             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
823             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
824             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
825             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
826             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
827                                                    _mm_mul_ps(dx00,fscal),
828                                                    _mm_mul_ps(dy00,fscal),
829                                                    _mm_mul_ps(dz00,fscal));
830
831             }
832
833             /* Inner loop uses 61 flops */
834         }
835
836         /* End of innermost loop */
837
838         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
839                                               f+i_coord_offset,fshift+i_shift_offset);
840
841         /* Increment number of inner iterations */
842         inneriter                  += j_index_end - j_index_start;
843
844         /* Outer loop uses 7 flops */
845     }
846
847     /* Increment number of outer iterations */
848     outeriter        += nri;
849
850     /* Update outer/inner flops */
851
852     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
853 }