Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
91     real             *charge;
92     int              nvdwtype;
93     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94     int              *vdwtype;
95     real             *vdwparam;
96     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
97     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
98     __m128i          vfitab;
99     __m128i          ifour       = _mm_set1_epi32(4);
100     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
101     real             *vftab;
102     __m128           dummy_mask,cutoff_mask;
103     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104     __m128           one     = _mm_set1_ps(1.0);
105     __m128           two     = _mm_set1_ps(2.0);
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = _mm_set1_ps(fr->epsfac);
118     charge           = mdatoms->chargeA;
119     krf              = _mm_set1_ps(fr->ic->k_rf);
120     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
121     crf              = _mm_set1_ps(fr->ic->c_rf);
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     vftab            = kernel_data->table_vdw->data;
127     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130     rcutoff_scalar   = fr->rcoulomb;
131     rcutoff          = _mm_set1_ps(rcutoff_scalar);
132     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
133
134     /* Avoid stupid compiler warnings */
135     jnrA = jnrB = jnrC = jnrD = 0;
136     j_coord_offsetA = 0;
137     j_coord_offsetB = 0;
138     j_coord_offsetC = 0;
139     j_coord_offsetD = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm_setzero_ps();
167         fiy0             = _mm_setzero_ps();
168         fiz0             = _mm_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
173
174         /* Reset potential sums */
175         velecsum         = _mm_setzero_ps();
176         vvdwsum          = _mm_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             j_coord_offsetA  = DIM*jnrA;
188             j_coord_offsetB  = DIM*jnrB;
189             j_coord_offsetC  = DIM*jnrC;
190             j_coord_offsetD  = DIM*jnrD;
191
192             /* load j atom coordinates */
193             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194                                               x+j_coord_offsetC,x+j_coord_offsetD,
195                                               &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm_sub_ps(ix0,jx0);
199             dy00             = _mm_sub_ps(iy0,jy0);
200             dz00             = _mm_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                               charge+jnrC+0,charge+jnrD+0);
212             vdwjidx0A        = 2*vdwtype[jnrA+0];
213             vdwjidx0B        = 2*vdwtype[jnrB+0];
214             vdwjidx0C        = 2*vdwtype[jnrC+0];
215             vdwjidx0D        = 2*vdwtype[jnrD+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (gmx_mm_any_lt(rsq00,rcutoff2))
222             {
223
224             r00              = _mm_mul_ps(rsq00,rinv00);
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm_mul_ps(iq0,jq0);
228             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229                                          vdwparam+vdwioffset0+vdwjidx0B,
230                                          vdwparam+vdwioffset0+vdwjidx0C,
231                                          vdwparam+vdwioffset0+vdwjidx0D,
232                                          &c6_00,&c12_00);
233
234             /* Calculate table index by multiplying r with table scale and truncate to integer */
235             rt               = _mm_mul_ps(r00,vftabscale);
236             vfitab           = _mm_cvttps_epi32(rt);
237 #ifdef __XOP__
238             vfeps            = _mm_frcz_ps(rt);
239 #else
240             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
241 #endif
242             twovfeps         = _mm_add_ps(vfeps,vfeps);
243             vfitab           = _mm_slli_epi32(vfitab,3);
244
245             /* REACTION-FIELD ELECTROSTATICS */
246             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
247             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
251             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
252             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
253             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
254             _MM_TRANSPOSE4_PS(Y,F,G,H);
255             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
256             VV               = _mm_macc_ps(vfeps,Fp,Y);
257             vvdw6            = _mm_mul_ps(c6_00,VV);
258             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
259             fvdw6            = _mm_mul_ps(c6_00,FF);
260
261             /* CUBIC SPLINE TABLE REPULSION */
262             vfitab           = _mm_add_epi32(vfitab,ifour);
263             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
264             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
265             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
266             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
267             _MM_TRANSPOSE4_PS(Y,F,G,H);
268             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
269             VV               = _mm_macc_ps(vfeps,Fp,Y);
270             vvdw12           = _mm_mul_ps(c12_00,VV);
271             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
272             fvdw12           = _mm_mul_ps(c12_00,FF);
273             vvdw             = _mm_add_ps(vvdw12,vvdw6);
274             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
275
276             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velec            = _mm_and_ps(velec,cutoff_mask);
280             velecsum         = _mm_add_ps(velecsum,velec);
281             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
282             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
283
284             fscal            = _mm_add_ps(felec,fvdw);
285
286             fscal            = _mm_and_ps(fscal,cutoff_mask);
287
288              /* Update vectorial force */
289             fix0             = _mm_macc_ps(dx00,fscal,fix0);
290             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
291             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
292
293             fjptrA             = f+j_coord_offsetA;
294             fjptrB             = f+j_coord_offsetB;
295             fjptrC             = f+j_coord_offsetC;
296             fjptrD             = f+j_coord_offsetD;
297             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
298                                                    _mm_mul_ps(dx00,fscal),
299                                                    _mm_mul_ps(dy00,fscal),
300                                                    _mm_mul_ps(dz00,fscal));
301
302             }
303
304             /* Inner loop uses 75 flops */
305         }
306
307         if(jidx<j_index_end)
308         {
309
310             /* Get j neighbor index, and coordinate index */
311             jnrlistA         = jjnr[jidx];
312             jnrlistB         = jjnr[jidx+1];
313             jnrlistC         = jjnr[jidx+2];
314             jnrlistD         = jjnr[jidx+3];
315             /* Sign of each element will be negative for non-real atoms.
316              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
317              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
318              */
319             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
320             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
321             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
322             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
323             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
324             j_coord_offsetA  = DIM*jnrA;
325             j_coord_offsetB  = DIM*jnrB;
326             j_coord_offsetC  = DIM*jnrC;
327             j_coord_offsetD  = DIM*jnrD;
328
329             /* load j atom coordinates */
330             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
331                                               x+j_coord_offsetC,x+j_coord_offsetD,
332                                               &jx0,&jy0,&jz0);
333
334             /* Calculate displacement vector */
335             dx00             = _mm_sub_ps(ix0,jx0);
336             dy00             = _mm_sub_ps(iy0,jy0);
337             dz00             = _mm_sub_ps(iz0,jz0);
338
339             /* Calculate squared distance and things based on it */
340             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
341
342             rinv00           = gmx_mm_invsqrt_ps(rsq00);
343
344             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
345
346             /* Load parameters for j particles */
347             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
348                                                               charge+jnrC+0,charge+jnrD+0);
349             vdwjidx0A        = 2*vdwtype[jnrA+0];
350             vdwjidx0B        = 2*vdwtype[jnrB+0];
351             vdwjidx0C        = 2*vdwtype[jnrC+0];
352             vdwjidx0D        = 2*vdwtype[jnrD+0];
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (gmx_mm_any_lt(rsq00,rcutoff2))
359             {
360
361             r00              = _mm_mul_ps(rsq00,rinv00);
362             r00              = _mm_andnot_ps(dummy_mask,r00);
363
364             /* Compute parameters for interactions between i and j atoms */
365             qq00             = _mm_mul_ps(iq0,jq0);
366             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
367                                          vdwparam+vdwioffset0+vdwjidx0B,
368                                          vdwparam+vdwioffset0+vdwjidx0C,
369                                          vdwparam+vdwioffset0+vdwjidx0D,
370                                          &c6_00,&c12_00);
371
372             /* Calculate table index by multiplying r with table scale and truncate to integer */
373             rt               = _mm_mul_ps(r00,vftabscale);
374             vfitab           = _mm_cvttps_epi32(rt);
375 #ifdef __XOP__
376             vfeps            = _mm_frcz_ps(rt);
377 #else
378             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
379 #endif
380             twovfeps         = _mm_add_ps(vfeps,vfeps);
381             vfitab           = _mm_slli_epi32(vfitab,3);
382
383             /* REACTION-FIELD ELECTROSTATICS */
384             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
385             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
386
387             /* CUBIC SPLINE TABLE DISPERSION */
388             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
389             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
390             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
391             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
392             _MM_TRANSPOSE4_PS(Y,F,G,H);
393             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
394             VV               = _mm_macc_ps(vfeps,Fp,Y);
395             vvdw6            = _mm_mul_ps(c6_00,VV);
396             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
397             fvdw6            = _mm_mul_ps(c6_00,FF);
398
399             /* CUBIC SPLINE TABLE REPULSION */
400             vfitab           = _mm_add_epi32(vfitab,ifour);
401             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
402             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
403             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
404             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
405             _MM_TRANSPOSE4_PS(Y,F,G,H);
406             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
407             VV               = _mm_macc_ps(vfeps,Fp,Y);
408             vvdw12           = _mm_mul_ps(c12_00,VV);
409             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
410             fvdw12           = _mm_mul_ps(c12_00,FF);
411             vvdw             = _mm_add_ps(vvdw12,vvdw6);
412             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
413
414             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
415
416             /* Update potential sum for this i atom from the interaction with this j atom. */
417             velec            = _mm_and_ps(velec,cutoff_mask);
418             velec            = _mm_andnot_ps(dummy_mask,velec);
419             velecsum         = _mm_add_ps(velecsum,velec);
420             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
421             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
422             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
423
424             fscal            = _mm_add_ps(felec,fvdw);
425
426             fscal            = _mm_and_ps(fscal,cutoff_mask);
427
428             fscal            = _mm_andnot_ps(dummy_mask,fscal);
429
430              /* Update vectorial force */
431             fix0             = _mm_macc_ps(dx00,fscal,fix0);
432             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
433             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
434
435             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
436             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
437             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
438             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
439             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
440                                                    _mm_mul_ps(dx00,fscal),
441                                                    _mm_mul_ps(dy00,fscal),
442                                                    _mm_mul_ps(dz00,fscal));
443
444             }
445
446             /* Inner loop uses 76 flops */
447         }
448
449         /* End of innermost loop */
450
451         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
452                                               f+i_coord_offset,fshift+i_shift_offset);
453
454         ggid                        = gid[iidx];
455         /* Update potential energies */
456         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
457         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
458
459         /* Increment number of inner iterations */
460         inneriter                  += j_index_end - j_index_start;
461
462         /* Outer loop uses 9 flops */
463     }
464
465     /* Increment number of outer iterations */
466     outeriter        += nri;
467
468     /* Update outer/inner flops */
469
470     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
471 }
472 /*
473  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
474  * Electrostatics interaction: ReactionField
475  * VdW interaction:            CubicSplineTable
476  * Geometry:                   Particle-Particle
477  * Calculate force/pot:        Force
478  */
479 void
480 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
481                     (t_nblist                    * gmx_restrict       nlist,
482                      rvec                        * gmx_restrict          xx,
483                      rvec                        * gmx_restrict          ff,
484                      t_forcerec                  * gmx_restrict          fr,
485                      t_mdatoms                   * gmx_restrict     mdatoms,
486                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
487                      t_nrnb                      * gmx_restrict        nrnb)
488 {
489     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
490      * just 0 for non-waters.
491      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
492      * jnr indices corresponding to data put in the four positions in the SIMD register.
493      */
494     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
495     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
496     int              jnrA,jnrB,jnrC,jnrD;
497     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
498     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
499     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
500     real             rcutoff_scalar;
501     real             *shiftvec,*fshift,*x,*f;
502     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
503     real             scratch[4*DIM];
504     __m128           fscal,rcutoff,rcutoff2,jidxall;
505     int              vdwioffset0;
506     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
507     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
508     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
509     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
510     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
511     real             *charge;
512     int              nvdwtype;
513     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
514     int              *vdwtype;
515     real             *vdwparam;
516     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
517     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
518     __m128i          vfitab;
519     __m128i          ifour       = _mm_set1_epi32(4);
520     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
521     real             *vftab;
522     __m128           dummy_mask,cutoff_mask;
523     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
524     __m128           one     = _mm_set1_ps(1.0);
525     __m128           two     = _mm_set1_ps(2.0);
526     x                = xx[0];
527     f                = ff[0];
528
529     nri              = nlist->nri;
530     iinr             = nlist->iinr;
531     jindex           = nlist->jindex;
532     jjnr             = nlist->jjnr;
533     shiftidx         = nlist->shift;
534     gid              = nlist->gid;
535     shiftvec         = fr->shift_vec[0];
536     fshift           = fr->fshift[0];
537     facel            = _mm_set1_ps(fr->epsfac);
538     charge           = mdatoms->chargeA;
539     krf              = _mm_set1_ps(fr->ic->k_rf);
540     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
541     crf              = _mm_set1_ps(fr->ic->c_rf);
542     nvdwtype         = fr->ntype;
543     vdwparam         = fr->nbfp;
544     vdwtype          = mdatoms->typeA;
545
546     vftab            = kernel_data->table_vdw->data;
547     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
548
549     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
550     rcutoff_scalar   = fr->rcoulomb;
551     rcutoff          = _mm_set1_ps(rcutoff_scalar);
552     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
553
554     /* Avoid stupid compiler warnings */
555     jnrA = jnrB = jnrC = jnrD = 0;
556     j_coord_offsetA = 0;
557     j_coord_offsetB = 0;
558     j_coord_offsetC = 0;
559     j_coord_offsetD = 0;
560
561     outeriter        = 0;
562     inneriter        = 0;
563
564     for(iidx=0;iidx<4*DIM;iidx++)
565     {
566         scratch[iidx] = 0.0;
567     }
568
569     /* Start outer loop over neighborlists */
570     for(iidx=0; iidx<nri; iidx++)
571     {
572         /* Load shift vector for this list */
573         i_shift_offset   = DIM*shiftidx[iidx];
574
575         /* Load limits for loop over neighbors */
576         j_index_start    = jindex[iidx];
577         j_index_end      = jindex[iidx+1];
578
579         /* Get outer coordinate index */
580         inr              = iinr[iidx];
581         i_coord_offset   = DIM*inr;
582
583         /* Load i particle coords and add shift vector */
584         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
585
586         fix0             = _mm_setzero_ps();
587         fiy0             = _mm_setzero_ps();
588         fiz0             = _mm_setzero_ps();
589
590         /* Load parameters for i particles */
591         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
592         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
593
594         /* Start inner kernel loop */
595         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
596         {
597
598             /* Get j neighbor index, and coordinate index */
599             jnrA             = jjnr[jidx];
600             jnrB             = jjnr[jidx+1];
601             jnrC             = jjnr[jidx+2];
602             jnrD             = jjnr[jidx+3];
603             j_coord_offsetA  = DIM*jnrA;
604             j_coord_offsetB  = DIM*jnrB;
605             j_coord_offsetC  = DIM*jnrC;
606             j_coord_offsetD  = DIM*jnrD;
607
608             /* load j atom coordinates */
609             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
610                                               x+j_coord_offsetC,x+j_coord_offsetD,
611                                               &jx0,&jy0,&jz0);
612
613             /* Calculate displacement vector */
614             dx00             = _mm_sub_ps(ix0,jx0);
615             dy00             = _mm_sub_ps(iy0,jy0);
616             dz00             = _mm_sub_ps(iz0,jz0);
617
618             /* Calculate squared distance and things based on it */
619             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
620
621             rinv00           = gmx_mm_invsqrt_ps(rsq00);
622
623             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
624
625             /* Load parameters for j particles */
626             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
627                                                               charge+jnrC+0,charge+jnrD+0);
628             vdwjidx0A        = 2*vdwtype[jnrA+0];
629             vdwjidx0B        = 2*vdwtype[jnrB+0];
630             vdwjidx0C        = 2*vdwtype[jnrC+0];
631             vdwjidx0D        = 2*vdwtype[jnrD+0];
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             if (gmx_mm_any_lt(rsq00,rcutoff2))
638             {
639
640             r00              = _mm_mul_ps(rsq00,rinv00);
641
642             /* Compute parameters for interactions between i and j atoms */
643             qq00             = _mm_mul_ps(iq0,jq0);
644             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
645                                          vdwparam+vdwioffset0+vdwjidx0B,
646                                          vdwparam+vdwioffset0+vdwjidx0C,
647                                          vdwparam+vdwioffset0+vdwjidx0D,
648                                          &c6_00,&c12_00);
649
650             /* Calculate table index by multiplying r with table scale and truncate to integer */
651             rt               = _mm_mul_ps(r00,vftabscale);
652             vfitab           = _mm_cvttps_epi32(rt);
653 #ifdef __XOP__
654             vfeps            = _mm_frcz_ps(rt);
655 #else
656             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
657 #endif
658             twovfeps         = _mm_add_ps(vfeps,vfeps);
659             vfitab           = _mm_slli_epi32(vfitab,3);
660
661             /* REACTION-FIELD ELECTROSTATICS */
662             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
663
664             /* CUBIC SPLINE TABLE DISPERSION */
665             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
666             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
667             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
668             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
669             _MM_TRANSPOSE4_PS(Y,F,G,H);
670             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
671             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
672             fvdw6            = _mm_mul_ps(c6_00,FF);
673
674             /* CUBIC SPLINE TABLE REPULSION */
675             vfitab           = _mm_add_epi32(vfitab,ifour);
676             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
677             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
678             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
679             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
680             _MM_TRANSPOSE4_PS(Y,F,G,H);
681             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
682             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
683             fvdw12           = _mm_mul_ps(c12_00,FF);
684             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
685
686             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
687
688             fscal            = _mm_add_ps(felec,fvdw);
689
690             fscal            = _mm_and_ps(fscal,cutoff_mask);
691
692              /* Update vectorial force */
693             fix0             = _mm_macc_ps(dx00,fscal,fix0);
694             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
695             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
696
697             fjptrA             = f+j_coord_offsetA;
698             fjptrB             = f+j_coord_offsetB;
699             fjptrC             = f+j_coord_offsetC;
700             fjptrD             = f+j_coord_offsetD;
701             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
702                                                    _mm_mul_ps(dx00,fscal),
703                                                    _mm_mul_ps(dy00,fscal),
704                                                    _mm_mul_ps(dz00,fscal));
705
706             }
707
708             /* Inner loop uses 60 flops */
709         }
710
711         if(jidx<j_index_end)
712         {
713
714             /* Get j neighbor index, and coordinate index */
715             jnrlistA         = jjnr[jidx];
716             jnrlistB         = jjnr[jidx+1];
717             jnrlistC         = jjnr[jidx+2];
718             jnrlistD         = jjnr[jidx+3];
719             /* Sign of each element will be negative for non-real atoms.
720              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
721              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
722              */
723             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
724             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
725             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
726             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
727             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
728             j_coord_offsetA  = DIM*jnrA;
729             j_coord_offsetB  = DIM*jnrB;
730             j_coord_offsetC  = DIM*jnrC;
731             j_coord_offsetD  = DIM*jnrD;
732
733             /* load j atom coordinates */
734             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
735                                               x+j_coord_offsetC,x+j_coord_offsetD,
736                                               &jx0,&jy0,&jz0);
737
738             /* Calculate displacement vector */
739             dx00             = _mm_sub_ps(ix0,jx0);
740             dy00             = _mm_sub_ps(iy0,jy0);
741             dz00             = _mm_sub_ps(iz0,jz0);
742
743             /* Calculate squared distance and things based on it */
744             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
745
746             rinv00           = gmx_mm_invsqrt_ps(rsq00);
747
748             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
749
750             /* Load parameters for j particles */
751             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
752                                                               charge+jnrC+0,charge+jnrD+0);
753             vdwjidx0A        = 2*vdwtype[jnrA+0];
754             vdwjidx0B        = 2*vdwtype[jnrB+0];
755             vdwjidx0C        = 2*vdwtype[jnrC+0];
756             vdwjidx0D        = 2*vdwtype[jnrD+0];
757
758             /**************************
759              * CALCULATE INTERACTIONS *
760              **************************/
761
762             if (gmx_mm_any_lt(rsq00,rcutoff2))
763             {
764
765             r00              = _mm_mul_ps(rsq00,rinv00);
766             r00              = _mm_andnot_ps(dummy_mask,r00);
767
768             /* Compute parameters for interactions between i and j atoms */
769             qq00             = _mm_mul_ps(iq0,jq0);
770             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
771                                          vdwparam+vdwioffset0+vdwjidx0B,
772                                          vdwparam+vdwioffset0+vdwjidx0C,
773                                          vdwparam+vdwioffset0+vdwjidx0D,
774                                          &c6_00,&c12_00);
775
776             /* Calculate table index by multiplying r with table scale and truncate to integer */
777             rt               = _mm_mul_ps(r00,vftabscale);
778             vfitab           = _mm_cvttps_epi32(rt);
779 #ifdef __XOP__
780             vfeps            = _mm_frcz_ps(rt);
781 #else
782             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
783 #endif
784             twovfeps         = _mm_add_ps(vfeps,vfeps);
785             vfitab           = _mm_slli_epi32(vfitab,3);
786
787             /* REACTION-FIELD ELECTROSTATICS */
788             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
789
790             /* CUBIC SPLINE TABLE DISPERSION */
791             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
792             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
793             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
794             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
795             _MM_TRANSPOSE4_PS(Y,F,G,H);
796             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
797             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
798             fvdw6            = _mm_mul_ps(c6_00,FF);
799
800             /* CUBIC SPLINE TABLE REPULSION */
801             vfitab           = _mm_add_epi32(vfitab,ifour);
802             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
803             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
804             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
805             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
806             _MM_TRANSPOSE4_PS(Y,F,G,H);
807             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
808             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
809             fvdw12           = _mm_mul_ps(c12_00,FF);
810             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
811
812             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
813
814             fscal            = _mm_add_ps(felec,fvdw);
815
816             fscal            = _mm_and_ps(fscal,cutoff_mask);
817
818             fscal            = _mm_andnot_ps(dummy_mask,fscal);
819
820              /* Update vectorial force */
821             fix0             = _mm_macc_ps(dx00,fscal,fix0);
822             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
823             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
824
825             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
826             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
827             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
828             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
829             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
830                                                    _mm_mul_ps(dx00,fscal),
831                                                    _mm_mul_ps(dy00,fscal),
832                                                    _mm_mul_ps(dz00,fscal));
833
834             }
835
836             /* Inner loop uses 61 flops */
837         }
838
839         /* End of innermost loop */
840
841         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
842                                               f+i_coord_offset,fshift+i_shift_offset);
843
844         /* Increment number of inner iterations */
845         inneriter                  += j_index_end - j_index_start;
846
847         /* Outer loop uses 7 flops */
848     }
849
850     /* Increment number of outer iterations */
851     outeriter        += nri;
852
853     /* Update outer/inner flops */
854
855     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
856 }