8e6b26d26131276eb3089ceec0c85de876b52dd9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: ReactionField
53  * VdW interaction:            CubicSplineTable
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
89     real             *charge;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128i          vfitab;
97     __m128i          ifour       = _mm_set1_epi32(4);
98     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
99     real             *vftab;
100     __m128           dummy_mask,cutoff_mask;
101     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102     __m128           one     = _mm_set1_ps(1.0);
103     __m128           two     = _mm_set1_ps(2.0);
104     x                = xx[0];
105     f                = ff[0];
106
107     nri              = nlist->nri;
108     iinr             = nlist->iinr;
109     jindex           = nlist->jindex;
110     jjnr             = nlist->jjnr;
111     shiftidx         = nlist->shift;
112     gid              = nlist->gid;
113     shiftvec         = fr->shift_vec[0];
114     fshift           = fr->fshift[0];
115     facel            = _mm_set1_ps(fr->epsfac);
116     charge           = mdatoms->chargeA;
117     krf              = _mm_set1_ps(fr->ic->k_rf);
118     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
119     crf              = _mm_set1_ps(fr->ic->c_rf);
120     nvdwtype         = fr->ntype;
121     vdwparam         = fr->nbfp;
122     vdwtype          = mdatoms->typeA;
123
124     vftab            = kernel_data->table_vdw->data;
125     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
126
127     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
128     rcutoff_scalar   = fr->rcoulomb;
129     rcutoff          = _mm_set1_ps(rcutoff_scalar);
130     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
131
132     /* Avoid stupid compiler warnings */
133     jnrA = jnrB = jnrC = jnrD = 0;
134     j_coord_offsetA = 0;
135     j_coord_offsetB = 0;
136     j_coord_offsetC = 0;
137     j_coord_offsetD = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm_setzero_ps();
165         fiy0             = _mm_setzero_ps();
166         fiz0             = _mm_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm_setzero_ps();
174         vvdwsum          = _mm_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             j_coord_offsetA  = DIM*jnrA;
186             j_coord_offsetB  = DIM*jnrB;
187             j_coord_offsetC  = DIM*jnrC;
188             j_coord_offsetD  = DIM*jnrD;
189
190             /* load j atom coordinates */
191             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                               x+j_coord_offsetC,x+j_coord_offsetD,
193                                               &jx0,&jy0,&jz0);
194
195             /* Calculate displacement vector */
196             dx00             = _mm_sub_ps(ix0,jx0);
197             dy00             = _mm_sub_ps(iy0,jy0);
198             dz00             = _mm_sub_ps(iz0,jz0);
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
202
203             rinv00           = gmx_mm_invsqrt_ps(rsq00);
204
205             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
206
207             /* Load parameters for j particles */
208             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
209                                                               charge+jnrC+0,charge+jnrD+0);
210             vdwjidx0A        = 2*vdwtype[jnrA+0];
211             vdwjidx0B        = 2*vdwtype[jnrB+0];
212             vdwjidx0C        = 2*vdwtype[jnrC+0];
213             vdwjidx0D        = 2*vdwtype[jnrD+0];
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (gmx_mm_any_lt(rsq00,rcutoff2))
220             {
221
222             r00              = _mm_mul_ps(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm_mul_ps(iq0,jq0);
226             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
227                                          vdwparam+vdwioffset0+vdwjidx0B,
228                                          vdwparam+vdwioffset0+vdwjidx0C,
229                                          vdwparam+vdwioffset0+vdwjidx0D,
230                                          &c6_00,&c12_00);
231
232             /* Calculate table index by multiplying r with table scale and truncate to integer */
233             rt               = _mm_mul_ps(r00,vftabscale);
234             vfitab           = _mm_cvttps_epi32(rt);
235 #ifdef __XOP__
236             vfeps            = _mm_frcz_ps(rt);
237 #else
238             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
239 #endif
240             twovfeps         = _mm_add_ps(vfeps,vfeps);
241             vfitab           = _mm_slli_epi32(vfitab,3);
242
243             /* REACTION-FIELD ELECTROSTATICS */
244             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
245             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
246
247             /* CUBIC SPLINE TABLE DISPERSION */
248             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
249             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
250             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
251             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
252             _MM_TRANSPOSE4_PS(Y,F,G,H);
253             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
254             VV               = _mm_macc_ps(vfeps,Fp,Y);
255             vvdw6            = _mm_mul_ps(c6_00,VV);
256             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
257             fvdw6            = _mm_mul_ps(c6_00,FF);
258
259             /* CUBIC SPLINE TABLE REPULSION */
260             vfitab           = _mm_add_epi32(vfitab,ifour);
261             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
262             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
263             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
264             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
265             _MM_TRANSPOSE4_PS(Y,F,G,H);
266             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
267             VV               = _mm_macc_ps(vfeps,Fp,Y);
268             vvdw12           = _mm_mul_ps(c12_00,VV);
269             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
270             fvdw12           = _mm_mul_ps(c12_00,FF);
271             vvdw             = _mm_add_ps(vvdw12,vvdw6);
272             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
273
274             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _mm_and_ps(velec,cutoff_mask);
278             velecsum         = _mm_add_ps(velecsum,velec);
279             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
280             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm_add_ps(felec,fvdw);
283
284             fscal            = _mm_and_ps(fscal,cutoff_mask);
285
286              /* Update vectorial force */
287             fix0             = _mm_macc_ps(dx00,fscal,fix0);
288             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
289             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
290
291             fjptrA             = f+j_coord_offsetA;
292             fjptrB             = f+j_coord_offsetB;
293             fjptrC             = f+j_coord_offsetC;
294             fjptrD             = f+j_coord_offsetD;
295             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
296                                                    _mm_mul_ps(dx00,fscal),
297                                                    _mm_mul_ps(dy00,fscal),
298                                                    _mm_mul_ps(dz00,fscal));
299
300             }
301
302             /* Inner loop uses 75 flops */
303         }
304
305         if(jidx<j_index_end)
306         {
307
308             /* Get j neighbor index, and coordinate index */
309             jnrlistA         = jjnr[jidx];
310             jnrlistB         = jjnr[jidx+1];
311             jnrlistC         = jjnr[jidx+2];
312             jnrlistD         = jjnr[jidx+3];
313             /* Sign of each element will be negative for non-real atoms.
314              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
315              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
316              */
317             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
318             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
319             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
320             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
321             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
322             j_coord_offsetA  = DIM*jnrA;
323             j_coord_offsetB  = DIM*jnrB;
324             j_coord_offsetC  = DIM*jnrC;
325             j_coord_offsetD  = DIM*jnrD;
326
327             /* load j atom coordinates */
328             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
329                                               x+j_coord_offsetC,x+j_coord_offsetD,
330                                               &jx0,&jy0,&jz0);
331
332             /* Calculate displacement vector */
333             dx00             = _mm_sub_ps(ix0,jx0);
334             dy00             = _mm_sub_ps(iy0,jy0);
335             dz00             = _mm_sub_ps(iz0,jz0);
336
337             /* Calculate squared distance and things based on it */
338             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
339
340             rinv00           = gmx_mm_invsqrt_ps(rsq00);
341
342             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
343
344             /* Load parameters for j particles */
345             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
346                                                               charge+jnrC+0,charge+jnrD+0);
347             vdwjidx0A        = 2*vdwtype[jnrA+0];
348             vdwjidx0B        = 2*vdwtype[jnrB+0];
349             vdwjidx0C        = 2*vdwtype[jnrC+0];
350             vdwjidx0D        = 2*vdwtype[jnrD+0];
351
352             /**************************
353              * CALCULATE INTERACTIONS *
354              **************************/
355
356             if (gmx_mm_any_lt(rsq00,rcutoff2))
357             {
358
359             r00              = _mm_mul_ps(rsq00,rinv00);
360             r00              = _mm_andnot_ps(dummy_mask,r00);
361
362             /* Compute parameters for interactions between i and j atoms */
363             qq00             = _mm_mul_ps(iq0,jq0);
364             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
365                                          vdwparam+vdwioffset0+vdwjidx0B,
366                                          vdwparam+vdwioffset0+vdwjidx0C,
367                                          vdwparam+vdwioffset0+vdwjidx0D,
368                                          &c6_00,&c12_00);
369
370             /* Calculate table index by multiplying r with table scale and truncate to integer */
371             rt               = _mm_mul_ps(r00,vftabscale);
372             vfitab           = _mm_cvttps_epi32(rt);
373 #ifdef __XOP__
374             vfeps            = _mm_frcz_ps(rt);
375 #else
376             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
377 #endif
378             twovfeps         = _mm_add_ps(vfeps,vfeps);
379             vfitab           = _mm_slli_epi32(vfitab,3);
380
381             /* REACTION-FIELD ELECTROSTATICS */
382             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
383             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
384
385             /* CUBIC SPLINE TABLE DISPERSION */
386             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
387             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
388             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
389             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
390             _MM_TRANSPOSE4_PS(Y,F,G,H);
391             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
392             VV               = _mm_macc_ps(vfeps,Fp,Y);
393             vvdw6            = _mm_mul_ps(c6_00,VV);
394             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
395             fvdw6            = _mm_mul_ps(c6_00,FF);
396
397             /* CUBIC SPLINE TABLE REPULSION */
398             vfitab           = _mm_add_epi32(vfitab,ifour);
399             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
400             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
401             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
402             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
403             _MM_TRANSPOSE4_PS(Y,F,G,H);
404             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
405             VV               = _mm_macc_ps(vfeps,Fp,Y);
406             vvdw12           = _mm_mul_ps(c12_00,VV);
407             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
408             fvdw12           = _mm_mul_ps(c12_00,FF);
409             vvdw             = _mm_add_ps(vvdw12,vvdw6);
410             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
411
412             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm_and_ps(velec,cutoff_mask);
416             velec            = _mm_andnot_ps(dummy_mask,velec);
417             velecsum         = _mm_add_ps(velecsum,velec);
418             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
419             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
420             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
421
422             fscal            = _mm_add_ps(felec,fvdw);
423
424             fscal            = _mm_and_ps(fscal,cutoff_mask);
425
426             fscal            = _mm_andnot_ps(dummy_mask,fscal);
427
428              /* Update vectorial force */
429             fix0             = _mm_macc_ps(dx00,fscal,fix0);
430             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
431             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
432
433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
437             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
438                                                    _mm_mul_ps(dx00,fscal),
439                                                    _mm_mul_ps(dy00,fscal),
440                                                    _mm_mul_ps(dz00,fscal));
441
442             }
443
444             /* Inner loop uses 76 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450                                               f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
472  * Electrostatics interaction: ReactionField
473  * VdW interaction:            CubicSplineTable
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_128_fma_single
479                     (t_nblist                    * gmx_restrict       nlist,
480                      rvec                        * gmx_restrict          xx,
481                      rvec                        * gmx_restrict          ff,
482                      t_forcerec                  * gmx_restrict          fr,
483                      t_mdatoms                   * gmx_restrict     mdatoms,
484                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
485                      t_nrnb                      * gmx_restrict        nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
498     real             rcutoff_scalar;
499     real             *shiftvec,*fshift,*x,*f;
500     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
501     real             scratch[4*DIM];
502     __m128           fscal,rcutoff,rcutoff2,jidxall;
503     int              vdwioffset0;
504     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
506     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
509     real             *charge;
510     int              nvdwtype;
511     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512     int              *vdwtype;
513     real             *vdwparam;
514     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
515     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
516     __m128i          vfitab;
517     __m128i          ifour       = _mm_set1_epi32(4);
518     __m128           rt,vfeps,twovfeps,vftabscale,Y,F,G,H,Fp,VV,FF;
519     real             *vftab;
520     __m128           dummy_mask,cutoff_mask;
521     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
522     __m128           one     = _mm_set1_ps(1.0);
523     __m128           two     = _mm_set1_ps(2.0);
524     x                = xx[0];
525     f                = ff[0];
526
527     nri              = nlist->nri;
528     iinr             = nlist->iinr;
529     jindex           = nlist->jindex;
530     jjnr             = nlist->jjnr;
531     shiftidx         = nlist->shift;
532     gid              = nlist->gid;
533     shiftvec         = fr->shift_vec[0];
534     fshift           = fr->fshift[0];
535     facel            = _mm_set1_ps(fr->epsfac);
536     charge           = mdatoms->chargeA;
537     krf              = _mm_set1_ps(fr->ic->k_rf);
538     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
539     crf              = _mm_set1_ps(fr->ic->c_rf);
540     nvdwtype         = fr->ntype;
541     vdwparam         = fr->nbfp;
542     vdwtype          = mdatoms->typeA;
543
544     vftab            = kernel_data->table_vdw->data;
545     vftabscale       = _mm_set1_ps(kernel_data->table_vdw->scale);
546
547     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
548     rcutoff_scalar   = fr->rcoulomb;
549     rcutoff          = _mm_set1_ps(rcutoff_scalar);
550     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
551
552     /* Avoid stupid compiler warnings */
553     jnrA = jnrB = jnrC = jnrD = 0;
554     j_coord_offsetA = 0;
555     j_coord_offsetB = 0;
556     j_coord_offsetC = 0;
557     j_coord_offsetD = 0;
558
559     outeriter        = 0;
560     inneriter        = 0;
561
562     for(iidx=0;iidx<4*DIM;iidx++)
563     {
564         scratch[iidx] = 0.0;
565     }
566
567     /* Start outer loop over neighborlists */
568     for(iidx=0; iidx<nri; iidx++)
569     {
570         /* Load shift vector for this list */
571         i_shift_offset   = DIM*shiftidx[iidx];
572
573         /* Load limits for loop over neighbors */
574         j_index_start    = jindex[iidx];
575         j_index_end      = jindex[iidx+1];
576
577         /* Get outer coordinate index */
578         inr              = iinr[iidx];
579         i_coord_offset   = DIM*inr;
580
581         /* Load i particle coords and add shift vector */
582         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583
584         fix0             = _mm_setzero_ps();
585         fiy0             = _mm_setzero_ps();
586         fiz0             = _mm_setzero_ps();
587
588         /* Load parameters for i particles */
589         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
590         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
591
592         /* Start inner kernel loop */
593         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594         {
595
596             /* Get j neighbor index, and coordinate index */
597             jnrA             = jjnr[jidx];
598             jnrB             = jjnr[jidx+1];
599             jnrC             = jjnr[jidx+2];
600             jnrD             = jjnr[jidx+3];
601             j_coord_offsetA  = DIM*jnrA;
602             j_coord_offsetB  = DIM*jnrB;
603             j_coord_offsetC  = DIM*jnrC;
604             j_coord_offsetD  = DIM*jnrD;
605
606             /* load j atom coordinates */
607             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608                                               x+j_coord_offsetC,x+j_coord_offsetD,
609                                               &jx0,&jy0,&jz0);
610
611             /* Calculate displacement vector */
612             dx00             = _mm_sub_ps(ix0,jx0);
613             dy00             = _mm_sub_ps(iy0,jy0);
614             dz00             = _mm_sub_ps(iz0,jz0);
615
616             /* Calculate squared distance and things based on it */
617             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
618
619             rinv00           = gmx_mm_invsqrt_ps(rsq00);
620
621             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
622
623             /* Load parameters for j particles */
624             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
625                                                               charge+jnrC+0,charge+jnrD+0);
626             vdwjidx0A        = 2*vdwtype[jnrA+0];
627             vdwjidx0B        = 2*vdwtype[jnrB+0];
628             vdwjidx0C        = 2*vdwtype[jnrC+0];
629             vdwjidx0D        = 2*vdwtype[jnrD+0];
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             if (gmx_mm_any_lt(rsq00,rcutoff2))
636             {
637
638             r00              = _mm_mul_ps(rsq00,rinv00);
639
640             /* Compute parameters for interactions between i and j atoms */
641             qq00             = _mm_mul_ps(iq0,jq0);
642             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
643                                          vdwparam+vdwioffset0+vdwjidx0B,
644                                          vdwparam+vdwioffset0+vdwjidx0C,
645                                          vdwparam+vdwioffset0+vdwjidx0D,
646                                          &c6_00,&c12_00);
647
648             /* Calculate table index by multiplying r with table scale and truncate to integer */
649             rt               = _mm_mul_ps(r00,vftabscale);
650             vfitab           = _mm_cvttps_epi32(rt);
651 #ifdef __XOP__
652             vfeps            = _mm_frcz_ps(rt);
653 #else
654             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
655 #endif
656             twovfeps         = _mm_add_ps(vfeps,vfeps);
657             vfitab           = _mm_slli_epi32(vfitab,3);
658
659             /* REACTION-FIELD ELECTROSTATICS */
660             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
661
662             /* CUBIC SPLINE TABLE DISPERSION */
663             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
664             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
665             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
666             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
667             _MM_TRANSPOSE4_PS(Y,F,G,H);
668             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
669             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
670             fvdw6            = _mm_mul_ps(c6_00,FF);
671
672             /* CUBIC SPLINE TABLE REPULSION */
673             vfitab           = _mm_add_epi32(vfitab,ifour);
674             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
675             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
676             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
677             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
678             _MM_TRANSPOSE4_PS(Y,F,G,H);
679             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
680             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
681             fvdw12           = _mm_mul_ps(c12_00,FF);
682             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
683
684             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
685
686             fscal            = _mm_add_ps(felec,fvdw);
687
688             fscal            = _mm_and_ps(fscal,cutoff_mask);
689
690              /* Update vectorial force */
691             fix0             = _mm_macc_ps(dx00,fscal,fix0);
692             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
693             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
694
695             fjptrA             = f+j_coord_offsetA;
696             fjptrB             = f+j_coord_offsetB;
697             fjptrC             = f+j_coord_offsetC;
698             fjptrD             = f+j_coord_offsetD;
699             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
700                                                    _mm_mul_ps(dx00,fscal),
701                                                    _mm_mul_ps(dy00,fscal),
702                                                    _mm_mul_ps(dz00,fscal));
703
704             }
705
706             /* Inner loop uses 60 flops */
707         }
708
709         if(jidx<j_index_end)
710         {
711
712             /* Get j neighbor index, and coordinate index */
713             jnrlistA         = jjnr[jidx];
714             jnrlistB         = jjnr[jidx+1];
715             jnrlistC         = jjnr[jidx+2];
716             jnrlistD         = jjnr[jidx+3];
717             /* Sign of each element will be negative for non-real atoms.
718              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
719              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
720              */
721             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
722             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
723             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
724             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
725             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
726             j_coord_offsetA  = DIM*jnrA;
727             j_coord_offsetB  = DIM*jnrB;
728             j_coord_offsetC  = DIM*jnrC;
729             j_coord_offsetD  = DIM*jnrD;
730
731             /* load j atom coordinates */
732             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
733                                               x+j_coord_offsetC,x+j_coord_offsetD,
734                                               &jx0,&jy0,&jz0);
735
736             /* Calculate displacement vector */
737             dx00             = _mm_sub_ps(ix0,jx0);
738             dy00             = _mm_sub_ps(iy0,jy0);
739             dz00             = _mm_sub_ps(iz0,jz0);
740
741             /* Calculate squared distance and things based on it */
742             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
743
744             rinv00           = gmx_mm_invsqrt_ps(rsq00);
745
746             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
747
748             /* Load parameters for j particles */
749             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
750                                                               charge+jnrC+0,charge+jnrD+0);
751             vdwjidx0A        = 2*vdwtype[jnrA+0];
752             vdwjidx0B        = 2*vdwtype[jnrB+0];
753             vdwjidx0C        = 2*vdwtype[jnrC+0];
754             vdwjidx0D        = 2*vdwtype[jnrD+0];
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (gmx_mm_any_lt(rsq00,rcutoff2))
761             {
762
763             r00              = _mm_mul_ps(rsq00,rinv00);
764             r00              = _mm_andnot_ps(dummy_mask,r00);
765
766             /* Compute parameters for interactions between i and j atoms */
767             qq00             = _mm_mul_ps(iq0,jq0);
768             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
769                                          vdwparam+vdwioffset0+vdwjidx0B,
770                                          vdwparam+vdwioffset0+vdwjidx0C,
771                                          vdwparam+vdwioffset0+vdwjidx0D,
772                                          &c6_00,&c12_00);
773
774             /* Calculate table index by multiplying r with table scale and truncate to integer */
775             rt               = _mm_mul_ps(r00,vftabscale);
776             vfitab           = _mm_cvttps_epi32(rt);
777 #ifdef __XOP__
778             vfeps            = _mm_frcz_ps(rt);
779 #else
780             vfeps            = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR));
781 #endif
782             twovfeps         = _mm_add_ps(vfeps,vfeps);
783             vfitab           = _mm_slli_epi32(vfitab,3);
784
785             /* REACTION-FIELD ELECTROSTATICS */
786             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
787
788             /* CUBIC SPLINE TABLE DISPERSION */
789             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
790             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
791             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
792             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
793             _MM_TRANSPOSE4_PS(Y,F,G,H);
794             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
795             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
796             fvdw6            = _mm_mul_ps(c6_00,FF);
797
798             /* CUBIC SPLINE TABLE REPULSION */
799             vfitab           = _mm_add_epi32(vfitab,ifour);
800             Y                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,0) );
801             F                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,1) );
802             G                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,2) );
803             H                = _mm_load_ps( vftab + _mm_extract_epi32(vfitab,3) );
804             _MM_TRANSPOSE4_PS(Y,F,G,H);
805             Fp               = _mm_macc_ps(vfeps,_mm_macc_ps(H,vfeps,G),F);
806             FF               = _mm_macc_ps(vfeps,_mm_macc_ps(twovfeps,H,G),Fp);
807             fvdw12           = _mm_mul_ps(c12_00,FF);
808             fvdw             = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
809
810             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
811
812             fscal            = _mm_add_ps(felec,fvdw);
813
814             fscal            = _mm_and_ps(fscal,cutoff_mask);
815
816             fscal            = _mm_andnot_ps(dummy_mask,fscal);
817
818              /* Update vectorial force */
819             fix0             = _mm_macc_ps(dx00,fscal,fix0);
820             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
821             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
822
823             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
824             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
825             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
826             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
827             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
828                                                    _mm_mul_ps(dx00,fscal),
829                                                    _mm_mul_ps(dy00,fscal),
830                                                    _mm_mul_ps(dz00,fscal));
831
832             }
833
834             /* Inner loop uses 61 flops */
835         }
836
837         /* End of innermost loop */
838
839         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
840                                               f+i_coord_offset,fshift+i_shift_offset);
841
842         /* Increment number of inner iterations */
843         inneriter                  += j_index_end - j_index_start;
844
845         /* Outer loop uses 7 flops */
846     }
847
848     /* Increment number of outer iterations */
849     outeriter        += nri;
850
851     /* Update outer/inner flops */
852
853     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*61);
854 }