Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     /* Avoid stupid compiler warnings */
114     jnrA = jnrB = jnrC = jnrD = 0;
115     j_coord_offsetA = 0;
116     j_coord_offsetB = 0;
117     j_coord_offsetC = 0;
118     j_coord_offsetD = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     for(iidx=0;iidx<4*DIM;iidx++)
124     {
125         scratch[iidx] = 0.0;
126     }
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145         fix0             = _mm_setzero_ps();
146         fiy0             = _mm_setzero_ps();
147         fiz0             = _mm_setzero_ps();
148
149         /* Load parameters for i particles */
150         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         vvdwsum          = _mm_setzero_ps();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
171                                               x+j_coord_offsetC,x+j_coord_offsetD,
172                                               &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm_sub_ps(ix0,jx0);
176             dy00             = _mm_sub_ps(iy0,jy0);
177             dz00             = _mm_sub_ps(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181
182             rinvsq00         = gmx_mm_inv_ps(rsq00);
183
184             /* Load parameters for j particles */
185             vdwjidx0A        = 2*vdwtype[jnrA+0];
186             vdwjidx0B        = 2*vdwtype[jnrB+0];
187             vdwjidx0C        = 2*vdwtype[jnrC+0];
188             vdwjidx0D        = 2*vdwtype[jnrD+0];
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             /* Compute parameters for interactions between i and j atoms */
195             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,
197                                          vdwparam+vdwioffset0+vdwjidx0C,
198                                          vdwparam+vdwioffset0+vdwjidx0D,
199                                          &c6_00,&c12_00);
200
201             /* LENNARD-JONES DISPERSION/REPULSION */
202
203             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
204             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
205             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
206             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
207             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
208
209             /* Update potential sum for this i atom from the interaction with this j atom. */
210             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
211
212             fscal            = fvdw;
213
214              /* Update vectorial force */
215             fix0             = _mm_macc_ps(dx00,fscal,fix0);
216             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
217             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
218
219             fjptrA             = f+j_coord_offsetA;
220             fjptrB             = f+j_coord_offsetB;
221             fjptrC             = f+j_coord_offsetC;
222             fjptrD             = f+j_coord_offsetD;
223             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
224                                                    _mm_mul_ps(dx00,fscal),
225                                                    _mm_mul_ps(dy00,fscal),
226                                                    _mm_mul_ps(dz00,fscal));
227
228             /* Inner loop uses 35 flops */
229         }
230
231         if(jidx<j_index_end)
232         {
233
234             /* Get j neighbor index, and coordinate index */
235             jnrlistA         = jjnr[jidx];
236             jnrlistB         = jjnr[jidx+1];
237             jnrlistC         = jjnr[jidx+2];
238             jnrlistD         = jjnr[jidx+3];
239             /* Sign of each element will be negative for non-real atoms.
240              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
241              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
242              */
243             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
244             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
245             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
246             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
247             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
248             j_coord_offsetA  = DIM*jnrA;
249             j_coord_offsetB  = DIM*jnrB;
250             j_coord_offsetC  = DIM*jnrC;
251             j_coord_offsetD  = DIM*jnrD;
252
253             /* load j atom coordinates */
254             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
255                                               x+j_coord_offsetC,x+j_coord_offsetD,
256                                               &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm_sub_ps(ix0,jx0);
260             dy00             = _mm_sub_ps(iy0,jy0);
261             dz00             = _mm_sub_ps(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
265
266             rinvsq00         = gmx_mm_inv_ps(rsq00);
267
268             /* Load parameters for j particles */
269             vdwjidx0A        = 2*vdwtype[jnrA+0];
270             vdwjidx0B        = 2*vdwtype[jnrB+0];
271             vdwjidx0C        = 2*vdwtype[jnrC+0];
272             vdwjidx0D        = 2*vdwtype[jnrD+0];
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             /* Compute parameters for interactions between i and j atoms */
279             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
280                                          vdwparam+vdwioffset0+vdwjidx0B,
281                                          vdwparam+vdwioffset0+vdwjidx0C,
282                                          vdwparam+vdwioffset0+vdwjidx0D,
283                                          &c6_00,&c12_00);
284
285             /* LENNARD-JONES DISPERSION/REPULSION */
286
287             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
288             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
289             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
290             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
291             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
295             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
296
297             fscal            = fvdw;
298
299             fscal            = _mm_andnot_ps(dummy_mask,fscal);
300
301              /* Update vectorial force */
302             fix0             = _mm_macc_ps(dx00,fscal,fix0);
303             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
304             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
305
306             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
307             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
308             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
309             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
310             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
311                                                    _mm_mul_ps(dx00,fscal),
312                                                    _mm_mul_ps(dy00,fscal),
313                                                    _mm_mul_ps(dz00,fscal));
314
315             /* Inner loop uses 35 flops */
316         }
317
318         /* End of innermost loop */
319
320         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
321                                               f+i_coord_offset,fshift+i_shift_offset);
322
323         ggid                        = gid[iidx];
324         /* Update potential energies */
325         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
326
327         /* Increment number of inner iterations */
328         inneriter                  += j_index_end - j_index_start;
329
330         /* Outer loop uses 7 flops */
331     }
332
333     /* Increment number of outer iterations */
334     outeriter        += nri;
335
336     /* Update outer/inner flops */
337
338     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*35);
339 }
340 /*
341  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_128_fma_single
342  * Electrostatics interaction: None
343  * VdW interaction:            LennardJones
344  * Geometry:                   Particle-Particle
345  * Calculate force/pot:        Force
346  */
347 void
348 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_128_fma_single
349                     (t_nblist                    * gmx_restrict       nlist,
350                      rvec                        * gmx_restrict          xx,
351                      rvec                        * gmx_restrict          ff,
352                      t_forcerec                  * gmx_restrict          fr,
353                      t_mdatoms                   * gmx_restrict     mdatoms,
354                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
355                      t_nrnb                      * gmx_restrict        nrnb)
356 {
357     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
358      * just 0 for non-waters.
359      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
360      * jnr indices corresponding to data put in the four positions in the SIMD register.
361      */
362     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
363     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
364     int              jnrA,jnrB,jnrC,jnrD;
365     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
366     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
367     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
368     real             rcutoff_scalar;
369     real             *shiftvec,*fshift,*x,*f;
370     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
371     real             scratch[4*DIM];
372     __m128           fscal,rcutoff,rcutoff2,jidxall;
373     int              vdwioffset0;
374     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
375     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
376     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
377     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
378     int              nvdwtype;
379     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
380     int              *vdwtype;
381     real             *vdwparam;
382     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
383     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
384     __m128           dummy_mask,cutoff_mask;
385     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
386     __m128           one     = _mm_set1_ps(1.0);
387     __m128           two     = _mm_set1_ps(2.0);
388     x                = xx[0];
389     f                = ff[0];
390
391     nri              = nlist->nri;
392     iinr             = nlist->iinr;
393     jindex           = nlist->jindex;
394     jjnr             = nlist->jjnr;
395     shiftidx         = nlist->shift;
396     gid              = nlist->gid;
397     shiftvec         = fr->shift_vec[0];
398     fshift           = fr->fshift[0];
399     nvdwtype         = fr->ntype;
400     vdwparam         = fr->nbfp;
401     vdwtype          = mdatoms->typeA;
402
403     /* Avoid stupid compiler warnings */
404     jnrA = jnrB = jnrC = jnrD = 0;
405     j_coord_offsetA = 0;
406     j_coord_offsetB = 0;
407     j_coord_offsetC = 0;
408     j_coord_offsetD = 0;
409
410     outeriter        = 0;
411     inneriter        = 0;
412
413     for(iidx=0;iidx<4*DIM;iidx++)
414     {
415         scratch[iidx] = 0.0;
416     }
417
418     /* Start outer loop over neighborlists */
419     for(iidx=0; iidx<nri; iidx++)
420     {
421         /* Load shift vector for this list */
422         i_shift_offset   = DIM*shiftidx[iidx];
423
424         /* Load limits for loop over neighbors */
425         j_index_start    = jindex[iidx];
426         j_index_end      = jindex[iidx+1];
427
428         /* Get outer coordinate index */
429         inr              = iinr[iidx];
430         i_coord_offset   = DIM*inr;
431
432         /* Load i particle coords and add shift vector */
433         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
434
435         fix0             = _mm_setzero_ps();
436         fiy0             = _mm_setzero_ps();
437         fiz0             = _mm_setzero_ps();
438
439         /* Load parameters for i particles */
440         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
441
442         /* Start inner kernel loop */
443         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
444         {
445
446             /* Get j neighbor index, and coordinate index */
447             jnrA             = jjnr[jidx];
448             jnrB             = jjnr[jidx+1];
449             jnrC             = jjnr[jidx+2];
450             jnrD             = jjnr[jidx+3];
451             j_coord_offsetA  = DIM*jnrA;
452             j_coord_offsetB  = DIM*jnrB;
453             j_coord_offsetC  = DIM*jnrC;
454             j_coord_offsetD  = DIM*jnrD;
455
456             /* load j atom coordinates */
457             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
458                                               x+j_coord_offsetC,x+j_coord_offsetD,
459                                               &jx0,&jy0,&jz0);
460
461             /* Calculate displacement vector */
462             dx00             = _mm_sub_ps(ix0,jx0);
463             dy00             = _mm_sub_ps(iy0,jy0);
464             dz00             = _mm_sub_ps(iz0,jz0);
465
466             /* Calculate squared distance and things based on it */
467             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
468
469             rinvsq00         = gmx_mm_inv_ps(rsq00);
470
471             /* Load parameters for j particles */
472             vdwjidx0A        = 2*vdwtype[jnrA+0];
473             vdwjidx0B        = 2*vdwtype[jnrB+0];
474             vdwjidx0C        = 2*vdwtype[jnrC+0];
475             vdwjidx0D        = 2*vdwtype[jnrD+0];
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             /* Compute parameters for interactions between i and j atoms */
482             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
483                                          vdwparam+vdwioffset0+vdwjidx0B,
484                                          vdwparam+vdwioffset0+vdwjidx0C,
485                                          vdwparam+vdwioffset0+vdwjidx0D,
486                                          &c6_00,&c12_00);
487
488             /* LENNARD-JONES DISPERSION/REPULSION */
489
490             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
491             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
492
493             fscal            = fvdw;
494
495              /* Update vectorial force */
496             fix0             = _mm_macc_ps(dx00,fscal,fix0);
497             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
498             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
499
500             fjptrA             = f+j_coord_offsetA;
501             fjptrB             = f+j_coord_offsetB;
502             fjptrC             = f+j_coord_offsetC;
503             fjptrD             = f+j_coord_offsetD;
504             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
505                                                    _mm_mul_ps(dx00,fscal),
506                                                    _mm_mul_ps(dy00,fscal),
507                                                    _mm_mul_ps(dz00,fscal));
508
509             /* Inner loop uses 30 flops */
510         }
511
512         if(jidx<j_index_end)
513         {
514
515             /* Get j neighbor index, and coordinate index */
516             jnrlistA         = jjnr[jidx];
517             jnrlistB         = jjnr[jidx+1];
518             jnrlistC         = jjnr[jidx+2];
519             jnrlistD         = jjnr[jidx+3];
520             /* Sign of each element will be negative for non-real atoms.
521              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
522              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
523              */
524             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
525             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
526             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
527             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
528             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531             j_coord_offsetC  = DIM*jnrC;
532             j_coord_offsetD  = DIM*jnrD;
533
534             /* load j atom coordinates */
535             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
536                                               x+j_coord_offsetC,x+j_coord_offsetD,
537                                               &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm_sub_ps(ix0,jx0);
541             dy00             = _mm_sub_ps(iy0,jy0);
542             dz00             = _mm_sub_ps(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
546
547             rinvsq00         = gmx_mm_inv_ps(rsq00);
548
549             /* Load parameters for j particles */
550             vdwjidx0A        = 2*vdwtype[jnrA+0];
551             vdwjidx0B        = 2*vdwtype[jnrB+0];
552             vdwjidx0C        = 2*vdwtype[jnrC+0];
553             vdwjidx0D        = 2*vdwtype[jnrD+0];
554
555             /**************************
556              * CALCULATE INTERACTIONS *
557              **************************/
558
559             /* Compute parameters for interactions between i and j atoms */
560             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
561                                          vdwparam+vdwioffset0+vdwjidx0B,
562                                          vdwparam+vdwioffset0+vdwjidx0C,
563                                          vdwparam+vdwioffset0+vdwjidx0D,
564                                          &c6_00,&c12_00);
565
566             /* LENNARD-JONES DISPERSION/REPULSION */
567
568             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
569             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
570
571             fscal            = fvdw;
572
573             fscal            = _mm_andnot_ps(dummy_mask,fscal);
574
575              /* Update vectorial force */
576             fix0             = _mm_macc_ps(dx00,fscal,fix0);
577             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
578             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
579
580             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
581             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
582             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
583             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
584             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
585                                                    _mm_mul_ps(dx00,fscal),
586                                                    _mm_mul_ps(dy00,fscal),
587                                                    _mm_mul_ps(dz00,fscal));
588
589             /* Inner loop uses 30 flops */
590         }
591
592         /* End of innermost loop */
593
594         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
595                                               f+i_coord_offset,fshift+i_shift_offset);
596
597         /* Increment number of inner iterations */
598         inneriter                  += j_index_end - j_index_start;
599
600         /* Outer loop uses 6 flops */
601     }
602
603     /* Increment number of outer iterations */
604     outeriter        += nri;
605
606     /* Update outer/inner flops */
607
608     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
609 }