Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm_setzero_ps();
148         fiy0             = _mm_setzero_ps();
149         fiz0             = _mm_setzero_ps();
150
151         /* Load parameters for i particles */
152         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
153
154         /* Reset potential sums */
155         vvdwsum          = _mm_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             j_coord_offsetA  = DIM*jnrA;
167             j_coord_offsetB  = DIM*jnrB;
168             j_coord_offsetC  = DIM*jnrC;
169             j_coord_offsetD  = DIM*jnrD;
170
171             /* load j atom coordinates */
172             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
173                                               x+j_coord_offsetC,x+j_coord_offsetD,
174                                               &jx0,&jy0,&jz0);
175
176             /* Calculate displacement vector */
177             dx00             = _mm_sub_ps(ix0,jx0);
178             dy00             = _mm_sub_ps(iy0,jy0);
179             dz00             = _mm_sub_ps(iz0,jz0);
180
181             /* Calculate squared distance and things based on it */
182             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
183
184             rinvsq00         = gmx_mm_inv_ps(rsq00);
185
186             /* Load parameters for j particles */
187             vdwjidx0A        = 2*vdwtype[jnrA+0];
188             vdwjidx0B        = 2*vdwtype[jnrB+0];
189             vdwjidx0C        = 2*vdwtype[jnrC+0];
190             vdwjidx0D        = 2*vdwtype[jnrD+0];
191
192             /**************************
193              * CALCULATE INTERACTIONS *
194              **************************/
195
196             /* Compute parameters for interactions between i and j atoms */
197             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
198                                          vdwparam+vdwioffset0+vdwjidx0B,
199                                          vdwparam+vdwioffset0+vdwjidx0C,
200                                          vdwparam+vdwioffset0+vdwjidx0D,
201                                          &c6_00,&c12_00);
202
203             /* LENNARD-JONES DISPERSION/REPULSION */
204
205             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
206             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
207             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
208             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
209             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
210
211             /* Update potential sum for this i atom from the interaction with this j atom. */
212             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
213
214             fscal            = fvdw;
215
216              /* Update vectorial force */
217             fix0             = _mm_macc_ps(dx00,fscal,fix0);
218             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
219             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
220
221             fjptrA             = f+j_coord_offsetA;
222             fjptrB             = f+j_coord_offsetB;
223             fjptrC             = f+j_coord_offsetC;
224             fjptrD             = f+j_coord_offsetD;
225             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
226                                                    _mm_mul_ps(dx00,fscal),
227                                                    _mm_mul_ps(dy00,fscal),
228                                                    _mm_mul_ps(dz00,fscal));
229
230             /* Inner loop uses 35 flops */
231         }
232
233         if(jidx<j_index_end)
234         {
235
236             /* Get j neighbor index, and coordinate index */
237             jnrlistA         = jjnr[jidx];
238             jnrlistB         = jjnr[jidx+1];
239             jnrlistC         = jjnr[jidx+2];
240             jnrlistD         = jjnr[jidx+3];
241             /* Sign of each element will be negative for non-real atoms.
242              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
243              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
244              */
245             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
246             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
247             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
248             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
249             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
250             j_coord_offsetA  = DIM*jnrA;
251             j_coord_offsetB  = DIM*jnrB;
252             j_coord_offsetC  = DIM*jnrC;
253             j_coord_offsetD  = DIM*jnrD;
254
255             /* load j atom coordinates */
256             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
257                                               x+j_coord_offsetC,x+j_coord_offsetD,
258                                               &jx0,&jy0,&jz0);
259
260             /* Calculate displacement vector */
261             dx00             = _mm_sub_ps(ix0,jx0);
262             dy00             = _mm_sub_ps(iy0,jy0);
263             dz00             = _mm_sub_ps(iz0,jz0);
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
267
268             rinvsq00         = gmx_mm_inv_ps(rsq00);
269
270             /* Load parameters for j particles */
271             vdwjidx0A        = 2*vdwtype[jnrA+0];
272             vdwjidx0B        = 2*vdwtype[jnrB+0];
273             vdwjidx0C        = 2*vdwtype[jnrC+0];
274             vdwjidx0D        = 2*vdwtype[jnrD+0];
275
276             /**************************
277              * CALCULATE INTERACTIONS *
278              **************************/
279
280             /* Compute parameters for interactions between i and j atoms */
281             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
282                                          vdwparam+vdwioffset0+vdwjidx0B,
283                                          vdwparam+vdwioffset0+vdwjidx0C,
284                                          vdwparam+vdwioffset0+vdwjidx0D,
285                                          &c6_00,&c12_00);
286
287             /* LENNARD-JONES DISPERSION/REPULSION */
288
289             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
290             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
291             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
292             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
293             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
294
295             /* Update potential sum for this i atom from the interaction with this j atom. */
296             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
297             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
298
299             fscal            = fvdw;
300
301             fscal            = _mm_andnot_ps(dummy_mask,fscal);
302
303              /* Update vectorial force */
304             fix0             = _mm_macc_ps(dx00,fscal,fix0);
305             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
306             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
307
308             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
309             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
310             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
311             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
312             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
313                                                    _mm_mul_ps(dx00,fscal),
314                                                    _mm_mul_ps(dy00,fscal),
315                                                    _mm_mul_ps(dz00,fscal));
316
317             /* Inner loop uses 35 flops */
318         }
319
320         /* End of innermost loop */
321
322         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
323                                               f+i_coord_offset,fshift+i_shift_offset);
324
325         ggid                        = gid[iidx];
326         /* Update potential energies */
327         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
328
329         /* Increment number of inner iterations */
330         inneriter                  += j_index_end - j_index_start;
331
332         /* Outer loop uses 7 flops */
333     }
334
335     /* Increment number of outer iterations */
336     outeriter        += nri;
337
338     /* Update outer/inner flops */
339
340     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*35);
341 }
342 /*
343  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_128_fma_single
344  * Electrostatics interaction: None
345  * VdW interaction:            LennardJones
346  * Geometry:                   Particle-Particle
347  * Calculate force/pot:        Force
348  */
349 void
350 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_avx_128_fma_single
351                     (t_nblist                    * gmx_restrict       nlist,
352                      rvec                        * gmx_restrict          xx,
353                      rvec                        * gmx_restrict          ff,
354                      t_forcerec                  * gmx_restrict          fr,
355                      t_mdatoms                   * gmx_restrict     mdatoms,
356                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
357                      t_nrnb                      * gmx_restrict        nrnb)
358 {
359     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
360      * just 0 for non-waters.
361      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
362      * jnr indices corresponding to data put in the four positions in the SIMD register.
363      */
364     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
365     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
366     int              jnrA,jnrB,jnrC,jnrD;
367     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
368     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
369     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
370     real             rcutoff_scalar;
371     real             *shiftvec,*fshift,*x,*f;
372     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
373     real             scratch[4*DIM];
374     __m128           fscal,rcutoff,rcutoff2,jidxall;
375     int              vdwioffset0;
376     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
377     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
378     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
379     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
380     int              nvdwtype;
381     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
382     int              *vdwtype;
383     real             *vdwparam;
384     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
385     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
386     __m128           dummy_mask,cutoff_mask;
387     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
388     __m128           one     = _mm_set1_ps(1.0);
389     __m128           two     = _mm_set1_ps(2.0);
390     x                = xx[0];
391     f                = ff[0];
392
393     nri              = nlist->nri;
394     iinr             = nlist->iinr;
395     jindex           = nlist->jindex;
396     jjnr             = nlist->jjnr;
397     shiftidx         = nlist->shift;
398     gid              = nlist->gid;
399     shiftvec         = fr->shift_vec[0];
400     fshift           = fr->fshift[0];
401     nvdwtype         = fr->ntype;
402     vdwparam         = fr->nbfp;
403     vdwtype          = mdatoms->typeA;
404
405     /* Avoid stupid compiler warnings */
406     jnrA = jnrB = jnrC = jnrD = 0;
407     j_coord_offsetA = 0;
408     j_coord_offsetB = 0;
409     j_coord_offsetC = 0;
410     j_coord_offsetD = 0;
411
412     outeriter        = 0;
413     inneriter        = 0;
414
415     for(iidx=0;iidx<4*DIM;iidx++)
416     {
417         scratch[iidx] = 0.0;
418     }
419
420     /* Start outer loop over neighborlists */
421     for(iidx=0; iidx<nri; iidx++)
422     {
423         /* Load shift vector for this list */
424         i_shift_offset   = DIM*shiftidx[iidx];
425
426         /* Load limits for loop over neighbors */
427         j_index_start    = jindex[iidx];
428         j_index_end      = jindex[iidx+1];
429
430         /* Get outer coordinate index */
431         inr              = iinr[iidx];
432         i_coord_offset   = DIM*inr;
433
434         /* Load i particle coords and add shift vector */
435         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
436
437         fix0             = _mm_setzero_ps();
438         fiy0             = _mm_setzero_ps();
439         fiz0             = _mm_setzero_ps();
440
441         /* Load parameters for i particles */
442         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
443
444         /* Start inner kernel loop */
445         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
446         {
447
448             /* Get j neighbor index, and coordinate index */
449             jnrA             = jjnr[jidx];
450             jnrB             = jjnr[jidx+1];
451             jnrC             = jjnr[jidx+2];
452             jnrD             = jjnr[jidx+3];
453             j_coord_offsetA  = DIM*jnrA;
454             j_coord_offsetB  = DIM*jnrB;
455             j_coord_offsetC  = DIM*jnrC;
456             j_coord_offsetD  = DIM*jnrD;
457
458             /* load j atom coordinates */
459             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460                                               x+j_coord_offsetC,x+j_coord_offsetD,
461                                               &jx0,&jy0,&jz0);
462
463             /* Calculate displacement vector */
464             dx00             = _mm_sub_ps(ix0,jx0);
465             dy00             = _mm_sub_ps(iy0,jy0);
466             dz00             = _mm_sub_ps(iz0,jz0);
467
468             /* Calculate squared distance and things based on it */
469             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
470
471             rinvsq00         = gmx_mm_inv_ps(rsq00);
472
473             /* Load parameters for j particles */
474             vdwjidx0A        = 2*vdwtype[jnrA+0];
475             vdwjidx0B        = 2*vdwtype[jnrB+0];
476             vdwjidx0C        = 2*vdwtype[jnrC+0];
477             vdwjidx0D        = 2*vdwtype[jnrD+0];
478
479             /**************************
480              * CALCULATE INTERACTIONS *
481              **************************/
482
483             /* Compute parameters for interactions between i and j atoms */
484             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
485                                          vdwparam+vdwioffset0+vdwjidx0B,
486                                          vdwparam+vdwioffset0+vdwjidx0C,
487                                          vdwparam+vdwioffset0+vdwjidx0D,
488                                          &c6_00,&c12_00);
489
490             /* LENNARD-JONES DISPERSION/REPULSION */
491
492             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
493             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
494
495             fscal            = fvdw;
496
497              /* Update vectorial force */
498             fix0             = _mm_macc_ps(dx00,fscal,fix0);
499             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
500             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
501
502             fjptrA             = f+j_coord_offsetA;
503             fjptrB             = f+j_coord_offsetB;
504             fjptrC             = f+j_coord_offsetC;
505             fjptrD             = f+j_coord_offsetD;
506             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
507                                                    _mm_mul_ps(dx00,fscal),
508                                                    _mm_mul_ps(dy00,fscal),
509                                                    _mm_mul_ps(dz00,fscal));
510
511             /* Inner loop uses 30 flops */
512         }
513
514         if(jidx<j_index_end)
515         {
516
517             /* Get j neighbor index, and coordinate index */
518             jnrlistA         = jjnr[jidx];
519             jnrlistB         = jjnr[jidx+1];
520             jnrlistC         = jjnr[jidx+2];
521             jnrlistD         = jjnr[jidx+3];
522             /* Sign of each element will be negative for non-real atoms.
523              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
524              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
525              */
526             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
527             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
528             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
529             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
530             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
531             j_coord_offsetA  = DIM*jnrA;
532             j_coord_offsetB  = DIM*jnrB;
533             j_coord_offsetC  = DIM*jnrC;
534             j_coord_offsetD  = DIM*jnrD;
535
536             /* load j atom coordinates */
537             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
538                                               x+j_coord_offsetC,x+j_coord_offsetD,
539                                               &jx0,&jy0,&jz0);
540
541             /* Calculate displacement vector */
542             dx00             = _mm_sub_ps(ix0,jx0);
543             dy00             = _mm_sub_ps(iy0,jy0);
544             dz00             = _mm_sub_ps(iz0,jz0);
545
546             /* Calculate squared distance and things based on it */
547             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
548
549             rinvsq00         = gmx_mm_inv_ps(rsq00);
550
551             /* Load parameters for j particles */
552             vdwjidx0A        = 2*vdwtype[jnrA+0];
553             vdwjidx0B        = 2*vdwtype[jnrB+0];
554             vdwjidx0C        = 2*vdwtype[jnrC+0];
555             vdwjidx0D        = 2*vdwtype[jnrD+0];
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             /* Compute parameters for interactions between i and j atoms */
562             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
563                                          vdwparam+vdwioffset0+vdwjidx0B,
564                                          vdwparam+vdwioffset0+vdwjidx0C,
565                                          vdwparam+vdwioffset0+vdwjidx0D,
566                                          &c6_00,&c12_00);
567
568             /* LENNARD-JONES DISPERSION/REPULSION */
569
570             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
571             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
572
573             fscal            = fvdw;
574
575             fscal            = _mm_andnot_ps(dummy_mask,fscal);
576
577              /* Update vectorial force */
578             fix0             = _mm_macc_ps(dx00,fscal,fix0);
579             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
580             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
581
582             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
583             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
584             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
585             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
586             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
587                                                    _mm_mul_ps(dx00,fscal),
588                                                    _mm_mul_ps(dy00,fscal),
589                                                    _mm_mul_ps(dz00,fscal));
590
591             /* Inner loop uses 30 flops */
592         }
593
594         /* End of innermost loop */
595
596         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
597                                               f+i_coord_offset,fshift+i_shift_offset);
598
599         /* Increment number of inner iterations */
600         inneriter                  += j_index_end - j_index_start;
601
602         /* Outer loop uses 6 flops */
603     }
604
605     /* Increment number of outer iterations */
606     outeriter        += nri;
607
608     /* Update outer/inner flops */
609
610     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30);
611 }