Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97     real             rswitch_scalar,d_scalar;
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     rcutoff_scalar   = fr->rvdw;
118     rcutoff          = _mm_set1_ps(rcutoff_scalar);
119     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
120
121     rswitch_scalar   = fr->rvdw_switch;
122     rswitch          = _mm_set1_ps(rswitch_scalar);
123     /* Setup switch parameters */
124     d_scalar         = rcutoff_scalar-rswitch_scalar;
125     d                = _mm_set1_ps(d_scalar);
126     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
127     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
130     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
131     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
164
165         fix0             = _mm_setzero_ps();
166         fiy0             = _mm_setzero_ps();
167         fiz0             = _mm_setzero_ps();
168
169         /* Load parameters for i particles */
170         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         vvdwsum          = _mm_setzero_ps();
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
177         {
178
179             /* Get j neighbor index, and coordinate index */
180             jnrA             = jjnr[jidx];
181             jnrB             = jjnr[jidx+1];
182             jnrC             = jjnr[jidx+2];
183             jnrD             = jjnr[jidx+3];
184             j_coord_offsetA  = DIM*jnrA;
185             j_coord_offsetB  = DIM*jnrB;
186             j_coord_offsetC  = DIM*jnrC;
187             j_coord_offsetD  = DIM*jnrD;
188
189             /* load j atom coordinates */
190             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                               x+j_coord_offsetC,x+j_coord_offsetD,
192                                               &jx0,&jy0,&jz0);
193
194             /* Calculate displacement vector */
195             dx00             = _mm_sub_ps(ix0,jx0);
196             dy00             = _mm_sub_ps(iy0,jy0);
197             dz00             = _mm_sub_ps(iz0,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
201
202             rinv00           = gmx_mm_invsqrt_ps(rsq00);
203
204             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
205
206             /* Load parameters for j particles */
207             vdwjidx0A        = 2*vdwtype[jnrA+0];
208             vdwjidx0B        = 2*vdwtype[jnrB+0];
209             vdwjidx0C        = 2*vdwtype[jnrC+0];
210             vdwjidx0D        = 2*vdwtype[jnrD+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (gmx_mm_any_lt(rsq00,rcutoff2))
217             {
218
219             r00              = _mm_mul_ps(rsq00,rinv00);
220
221             /* Compute parameters for interactions between i and j atoms */
222             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
223                                          vdwparam+vdwioffset0+vdwjidx0B,
224                                          vdwparam+vdwioffset0+vdwjidx0C,
225                                          vdwparam+vdwioffset0+vdwjidx0D,
226                                          &c6_00,&c12_00);
227
228             /* LENNARD-JONES DISPERSION/REPULSION */
229
230             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
231             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
232             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
233             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
234             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
235
236             d                = _mm_sub_ps(r00,rswitch);
237             d                = _mm_max_ps(d,_mm_setzero_ps());
238             d2               = _mm_mul_ps(d,d);
239             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
240
241             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
242
243             /* Evaluate switch function */
244             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
245             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
246             vvdw             = _mm_mul_ps(vvdw,sw);
247             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
248
249             /* Update potential sum for this i atom from the interaction with this j atom. */
250             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
251             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
252
253             fscal            = fvdw;
254
255             fscal            = _mm_and_ps(fscal,cutoff_mask);
256
257              /* Update vectorial force */
258             fix0             = _mm_macc_ps(dx00,fscal,fix0);
259             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
260             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
261
262             fjptrA             = f+j_coord_offsetA;
263             fjptrB             = f+j_coord_offsetB;
264             fjptrC             = f+j_coord_offsetC;
265             fjptrD             = f+j_coord_offsetD;
266             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
267                                                    _mm_mul_ps(dx00,fscal),
268                                                    _mm_mul_ps(dy00,fscal),
269                                                    _mm_mul_ps(dz00,fscal));
270
271             }
272
273             /* Inner loop uses 62 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             /* Sign of each element will be negative for non-real atoms.
285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
286              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
287              */
288             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
289             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
290             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
291             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
292             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
293             j_coord_offsetA  = DIM*jnrA;
294             j_coord_offsetB  = DIM*jnrB;
295             j_coord_offsetC  = DIM*jnrC;
296             j_coord_offsetD  = DIM*jnrD;
297
298             /* load j atom coordinates */
299             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
300                                               x+j_coord_offsetC,x+j_coord_offsetD,
301                                               &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm_sub_ps(ix0,jx0);
305             dy00             = _mm_sub_ps(iy0,jy0);
306             dz00             = _mm_sub_ps(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm_invsqrt_ps(rsq00);
312
313             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
314
315             /* Load parameters for j particles */
316             vdwjidx0A        = 2*vdwtype[jnrA+0];
317             vdwjidx0B        = 2*vdwtype[jnrB+0];
318             vdwjidx0C        = 2*vdwtype[jnrC+0];
319             vdwjidx0D        = 2*vdwtype[jnrD+0];
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (gmx_mm_any_lt(rsq00,rcutoff2))
326             {
327
328             r00              = _mm_mul_ps(rsq00,rinv00);
329             r00              = _mm_andnot_ps(dummy_mask,r00);
330
331             /* Compute parameters for interactions between i and j atoms */
332             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
333                                          vdwparam+vdwioffset0+vdwjidx0B,
334                                          vdwparam+vdwioffset0+vdwjidx0C,
335                                          vdwparam+vdwioffset0+vdwjidx0D,
336                                          &c6_00,&c12_00);
337
338             /* LENNARD-JONES DISPERSION/REPULSION */
339
340             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
341             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
342             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
343             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
344             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
345
346             d                = _mm_sub_ps(r00,rswitch);
347             d                = _mm_max_ps(d,_mm_setzero_ps());
348             d2               = _mm_mul_ps(d,d);
349             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
350
351             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
352
353             /* Evaluate switch function */
354             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
355             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
356             vvdw             = _mm_mul_ps(vvdw,sw);
357             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
358
359             /* Update potential sum for this i atom from the interaction with this j atom. */
360             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
361             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
362             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
363
364             fscal            = fvdw;
365
366             fscal            = _mm_and_ps(fscal,cutoff_mask);
367
368             fscal            = _mm_andnot_ps(dummy_mask,fscal);
369
370              /* Update vectorial force */
371             fix0             = _mm_macc_ps(dx00,fscal,fix0);
372             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
373             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
374
375             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
376             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
377             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
378             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
379             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
380                                                    _mm_mul_ps(dx00,fscal),
381                                                    _mm_mul_ps(dy00,fscal),
382                                                    _mm_mul_ps(dz00,fscal));
383
384             }
385
386             /* Inner loop uses 63 flops */
387         }
388
389         /* End of innermost loop */
390
391         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
392                                               f+i_coord_offset,fshift+i_shift_offset);
393
394         ggid                        = gid[iidx];
395         /* Update potential energies */
396         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
397
398         /* Increment number of inner iterations */
399         inneriter                  += j_index_end - j_index_start;
400
401         /* Outer loop uses 7 flops */
402     }
403
404     /* Increment number of outer iterations */
405     outeriter        += nri;
406
407     /* Update outer/inner flops */
408
409     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*63);
410 }
411 /*
412  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_128_fma_single
413  * Electrostatics interaction: None
414  * VdW interaction:            LennardJones
415  * Geometry:                   Particle-Particle
416  * Calculate force/pot:        Force
417  */
418 void
419 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_128_fma_single
420                     (t_nblist                    * gmx_restrict       nlist,
421                      rvec                        * gmx_restrict          xx,
422                      rvec                        * gmx_restrict          ff,
423                      t_forcerec                  * gmx_restrict          fr,
424                      t_mdatoms                   * gmx_restrict     mdatoms,
425                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
426                      t_nrnb                      * gmx_restrict        nrnb)
427 {
428     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
429      * just 0 for non-waters.
430      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
431      * jnr indices corresponding to data put in the four positions in the SIMD register.
432      */
433     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
434     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
435     int              jnrA,jnrB,jnrC,jnrD;
436     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
437     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
438     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
439     real             rcutoff_scalar;
440     real             *shiftvec,*fshift,*x,*f;
441     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
442     real             scratch[4*DIM];
443     __m128           fscal,rcutoff,rcutoff2,jidxall;
444     int              vdwioffset0;
445     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
446     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
447     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
448     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
449     int              nvdwtype;
450     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451     int              *vdwtype;
452     real             *vdwparam;
453     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
454     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
455     __m128           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
456     real             rswitch_scalar,d_scalar;
457     __m128           dummy_mask,cutoff_mask;
458     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
459     __m128           one     = _mm_set1_ps(1.0);
460     __m128           two     = _mm_set1_ps(2.0);
461     x                = xx[0];
462     f                = ff[0];
463
464     nri              = nlist->nri;
465     iinr             = nlist->iinr;
466     jindex           = nlist->jindex;
467     jjnr             = nlist->jjnr;
468     shiftidx         = nlist->shift;
469     gid              = nlist->gid;
470     shiftvec         = fr->shift_vec[0];
471     fshift           = fr->fshift[0];
472     nvdwtype         = fr->ntype;
473     vdwparam         = fr->nbfp;
474     vdwtype          = mdatoms->typeA;
475
476     rcutoff_scalar   = fr->rvdw;
477     rcutoff          = _mm_set1_ps(rcutoff_scalar);
478     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
479
480     rswitch_scalar   = fr->rvdw_switch;
481     rswitch          = _mm_set1_ps(rswitch_scalar);
482     /* Setup switch parameters */
483     d_scalar         = rcutoff_scalar-rswitch_scalar;
484     d                = _mm_set1_ps(d_scalar);
485     swV3             = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
486     swV4             = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
487     swV5             = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
488     swF2             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
489     swF3             = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
490     swF4             = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
491
492     /* Avoid stupid compiler warnings */
493     jnrA = jnrB = jnrC = jnrD = 0;
494     j_coord_offsetA = 0;
495     j_coord_offsetB = 0;
496     j_coord_offsetC = 0;
497     j_coord_offsetD = 0;
498
499     outeriter        = 0;
500     inneriter        = 0;
501
502     for(iidx=0;iidx<4*DIM;iidx++)
503     {
504         scratch[iidx] = 0.0;
505     }
506
507     /* Start outer loop over neighborlists */
508     for(iidx=0; iidx<nri; iidx++)
509     {
510         /* Load shift vector for this list */
511         i_shift_offset   = DIM*shiftidx[iidx];
512
513         /* Load limits for loop over neighbors */
514         j_index_start    = jindex[iidx];
515         j_index_end      = jindex[iidx+1];
516
517         /* Get outer coordinate index */
518         inr              = iinr[iidx];
519         i_coord_offset   = DIM*inr;
520
521         /* Load i particle coords and add shift vector */
522         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
523
524         fix0             = _mm_setzero_ps();
525         fiy0             = _mm_setzero_ps();
526         fiz0             = _mm_setzero_ps();
527
528         /* Load parameters for i particles */
529         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
530
531         /* Start inner kernel loop */
532         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
533         {
534
535             /* Get j neighbor index, and coordinate index */
536             jnrA             = jjnr[jidx];
537             jnrB             = jjnr[jidx+1];
538             jnrC             = jjnr[jidx+2];
539             jnrD             = jjnr[jidx+3];
540             j_coord_offsetA  = DIM*jnrA;
541             j_coord_offsetB  = DIM*jnrB;
542             j_coord_offsetC  = DIM*jnrC;
543             j_coord_offsetD  = DIM*jnrD;
544
545             /* load j atom coordinates */
546             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
547                                               x+j_coord_offsetC,x+j_coord_offsetD,
548                                               &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm_sub_ps(ix0,jx0);
552             dy00             = _mm_sub_ps(iy0,jy0);
553             dz00             = _mm_sub_ps(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm_invsqrt_ps(rsq00);
559
560             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
561
562             /* Load parameters for j particles */
563             vdwjidx0A        = 2*vdwtype[jnrA+0];
564             vdwjidx0B        = 2*vdwtype[jnrB+0];
565             vdwjidx0C        = 2*vdwtype[jnrC+0];
566             vdwjidx0D        = 2*vdwtype[jnrD+0];
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (gmx_mm_any_lt(rsq00,rcutoff2))
573             {
574
575             r00              = _mm_mul_ps(rsq00,rinv00);
576
577             /* Compute parameters for interactions between i and j atoms */
578             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
579                                          vdwparam+vdwioffset0+vdwjidx0B,
580                                          vdwparam+vdwioffset0+vdwjidx0C,
581                                          vdwparam+vdwioffset0+vdwjidx0D,
582                                          &c6_00,&c12_00);
583
584             /* LENNARD-JONES DISPERSION/REPULSION */
585
586             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
588             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
589             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
590             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
591
592             d                = _mm_sub_ps(r00,rswitch);
593             d                = _mm_max_ps(d,_mm_setzero_ps());
594             d2               = _mm_mul_ps(d,d);
595             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
596
597             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
598
599             /* Evaluate switch function */
600             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
601             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
602             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
603
604             fscal            = fvdw;
605
606             fscal            = _mm_and_ps(fscal,cutoff_mask);
607
608              /* Update vectorial force */
609             fix0             = _mm_macc_ps(dx00,fscal,fix0);
610             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
611             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
612
613             fjptrA             = f+j_coord_offsetA;
614             fjptrB             = f+j_coord_offsetB;
615             fjptrC             = f+j_coord_offsetC;
616             fjptrD             = f+j_coord_offsetD;
617             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
618                                                    _mm_mul_ps(dx00,fscal),
619                                                    _mm_mul_ps(dy00,fscal),
620                                                    _mm_mul_ps(dz00,fscal));
621
622             }
623
624             /* Inner loop uses 59 flops */
625         }
626
627         if(jidx<j_index_end)
628         {
629
630             /* Get j neighbor index, and coordinate index */
631             jnrlistA         = jjnr[jidx];
632             jnrlistB         = jjnr[jidx+1];
633             jnrlistC         = jjnr[jidx+2];
634             jnrlistD         = jjnr[jidx+3];
635             /* Sign of each element will be negative for non-real atoms.
636              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
637              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
638              */
639             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
640             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
641             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
642             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
643             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
644             j_coord_offsetA  = DIM*jnrA;
645             j_coord_offsetB  = DIM*jnrB;
646             j_coord_offsetC  = DIM*jnrC;
647             j_coord_offsetD  = DIM*jnrD;
648
649             /* load j atom coordinates */
650             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
651                                               x+j_coord_offsetC,x+j_coord_offsetD,
652                                               &jx0,&jy0,&jz0);
653
654             /* Calculate displacement vector */
655             dx00             = _mm_sub_ps(ix0,jx0);
656             dy00             = _mm_sub_ps(iy0,jy0);
657             dz00             = _mm_sub_ps(iz0,jz0);
658
659             /* Calculate squared distance and things based on it */
660             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
661
662             rinv00           = gmx_mm_invsqrt_ps(rsq00);
663
664             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
665
666             /* Load parameters for j particles */
667             vdwjidx0A        = 2*vdwtype[jnrA+0];
668             vdwjidx0B        = 2*vdwtype[jnrB+0];
669             vdwjidx0C        = 2*vdwtype[jnrC+0];
670             vdwjidx0D        = 2*vdwtype[jnrD+0];
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (gmx_mm_any_lt(rsq00,rcutoff2))
677             {
678
679             r00              = _mm_mul_ps(rsq00,rinv00);
680             r00              = _mm_andnot_ps(dummy_mask,r00);
681
682             /* Compute parameters for interactions between i and j atoms */
683             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
684                                          vdwparam+vdwioffset0+vdwjidx0B,
685                                          vdwparam+vdwioffset0+vdwjidx0C,
686                                          vdwparam+vdwioffset0+vdwjidx0D,
687                                          &c6_00,&c12_00);
688
689             /* LENNARD-JONES DISPERSION/REPULSION */
690
691             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
692             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
693             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
694             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
695             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
696
697             d                = _mm_sub_ps(r00,rswitch);
698             d                = _mm_max_ps(d,_mm_setzero_ps());
699             d2               = _mm_mul_ps(d,d);
700             sw               = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_macc_ps(d,_mm_macc_ps(d,swV5,swV4),swV3))));
701
702             dsw              = _mm_mul_ps(d2,_mm_macc_ps(d,_mm_macc_ps(d,swF4,swF3),swF2));
703
704             /* Evaluate switch function */
705             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
706             fvdw             = _mm_msub_ps( fvdw,sw , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
707             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
708
709             fscal            = fvdw;
710
711             fscal            = _mm_and_ps(fscal,cutoff_mask);
712
713             fscal            = _mm_andnot_ps(dummy_mask,fscal);
714
715              /* Update vectorial force */
716             fix0             = _mm_macc_ps(dx00,fscal,fix0);
717             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
718             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
719
720             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
721             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
722             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
723             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
724             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
725                                                    _mm_mul_ps(dx00,fscal),
726                                                    _mm_mul_ps(dy00,fscal),
727                                                    _mm_mul_ps(dz00,fscal));
728
729             }
730
731             /* Inner loop uses 60 flops */
732         }
733
734         /* End of innermost loop */
735
736         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
737                                               f+i_coord_offset,fshift+i_shift_offset);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 6 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*60);
751 }