Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LennardJones
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           dummy_mask,cutoff_mask;
95     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
96     __m128           one     = _mm_set1_ps(1.0);
97     __m128           two     = _mm_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     rcutoff_scalar   = fr->rvdw;
114     rcutoff          = _mm_set1_ps(rcutoff_scalar);
115     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
116
117     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
118     rvdw             = _mm_set1_ps(fr->rvdw);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm_setzero_ps();
153         fiy0             = _mm_setzero_ps();
154         fiz0             = _mm_setzero_ps();
155
156         /* Load parameters for i particles */
157         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
158
159         /* Reset potential sums */
160         vvdwsum          = _mm_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             j_coord_offsetA  = DIM*jnrA;
172             j_coord_offsetB  = DIM*jnrB;
173             j_coord_offsetC  = DIM*jnrC;
174             j_coord_offsetD  = DIM*jnrD;
175
176             /* load j atom coordinates */
177             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                               x+j_coord_offsetC,x+j_coord_offsetD,
179                                               &jx0,&jy0,&jz0);
180
181             /* Calculate displacement vector */
182             dx00             = _mm_sub_ps(ix0,jx0);
183             dy00             = _mm_sub_ps(iy0,jy0);
184             dz00             = _mm_sub_ps(iz0,jz0);
185
186             /* Calculate squared distance and things based on it */
187             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
188
189             rinvsq00         = gmx_mm_inv_ps(rsq00);
190
191             /* Load parameters for j particles */
192             vdwjidx0A        = 2*vdwtype[jnrA+0];
193             vdwjidx0B        = 2*vdwtype[jnrB+0];
194             vdwjidx0C        = 2*vdwtype[jnrC+0];
195             vdwjidx0D        = 2*vdwtype[jnrD+0];
196
197             /**************************
198              * CALCULATE INTERACTIONS *
199              **************************/
200
201             if (gmx_mm_any_lt(rsq00,rcutoff2))
202             {
203
204             /* Compute parameters for interactions between i and j atoms */
205             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
206                                          vdwparam+vdwioffset0+vdwjidx0B,
207                                          vdwparam+vdwioffset0+vdwjidx0C,
208                                          vdwparam+vdwioffset0+vdwjidx0D,
209                                          &c6_00,&c12_00);
210
211             /* LENNARD-JONES DISPERSION/REPULSION */
212
213             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
214             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
215             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
216             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
217                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
218             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
219
220             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
224             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
225
226             fscal            = fvdw;
227
228             fscal            = _mm_and_ps(fscal,cutoff_mask);
229
230              /* Update vectorial force */
231             fix0             = _mm_macc_ps(dx00,fscal,fix0);
232             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
233             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
234
235             fjptrA             = f+j_coord_offsetA;
236             fjptrB             = f+j_coord_offsetB;
237             fjptrC             = f+j_coord_offsetC;
238             fjptrD             = f+j_coord_offsetD;
239             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
240                                                    _mm_mul_ps(dx00,fscal),
241                                                    _mm_mul_ps(dy00,fscal),
242                                                    _mm_mul_ps(dz00,fscal));
243
244             }
245
246             /* Inner loop uses 44 flops */
247         }
248
249         if(jidx<j_index_end)
250         {
251
252             /* Get j neighbor index, and coordinate index */
253             jnrlistA         = jjnr[jidx];
254             jnrlistB         = jjnr[jidx+1];
255             jnrlistC         = jjnr[jidx+2];
256             jnrlistD         = jjnr[jidx+3];
257             /* Sign of each element will be negative for non-real atoms.
258              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
259              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
260              */
261             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
262             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
263             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
264             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
265             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
266             j_coord_offsetA  = DIM*jnrA;
267             j_coord_offsetB  = DIM*jnrB;
268             j_coord_offsetC  = DIM*jnrC;
269             j_coord_offsetD  = DIM*jnrD;
270
271             /* load j atom coordinates */
272             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
273                                               x+j_coord_offsetC,x+j_coord_offsetD,
274                                               &jx0,&jy0,&jz0);
275
276             /* Calculate displacement vector */
277             dx00             = _mm_sub_ps(ix0,jx0);
278             dy00             = _mm_sub_ps(iy0,jy0);
279             dz00             = _mm_sub_ps(iz0,jz0);
280
281             /* Calculate squared distance and things based on it */
282             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
283
284             rinvsq00         = gmx_mm_inv_ps(rsq00);
285
286             /* Load parameters for j particles */
287             vdwjidx0A        = 2*vdwtype[jnrA+0];
288             vdwjidx0B        = 2*vdwtype[jnrB+0];
289             vdwjidx0C        = 2*vdwtype[jnrC+0];
290             vdwjidx0D        = 2*vdwtype[jnrD+0];
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm_any_lt(rsq00,rcutoff2))
297             {
298
299             /* Compute parameters for interactions between i and j atoms */
300             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
301                                          vdwparam+vdwioffset0+vdwjidx0B,
302                                          vdwparam+vdwioffset0+vdwjidx0C,
303                                          vdwparam+vdwioffset0+vdwjidx0D,
304                                          &c6_00,&c12_00);
305
306             /* LENNARD-JONES DISPERSION/REPULSION */
307
308             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
309             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
310             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
311             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
312                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
313             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
314
315             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
316
317             /* Update potential sum for this i atom from the interaction with this j atom. */
318             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
319             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
320             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
321
322             fscal            = fvdw;
323
324             fscal            = _mm_and_ps(fscal,cutoff_mask);
325
326             fscal            = _mm_andnot_ps(dummy_mask,fscal);
327
328              /* Update vectorial force */
329             fix0             = _mm_macc_ps(dx00,fscal,fix0);
330             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
331             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
332
333             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
334             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
335             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
336             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
337             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
338                                                    _mm_mul_ps(dx00,fscal),
339                                                    _mm_mul_ps(dy00,fscal),
340                                                    _mm_mul_ps(dz00,fscal));
341
342             }
343
344             /* Inner loop uses 44 flops */
345         }
346
347         /* End of innermost loop */
348
349         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
350                                               f+i_coord_offset,fshift+i_shift_offset);
351
352         ggid                        = gid[iidx];
353         /* Update potential energies */
354         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
355
356         /* Increment number of inner iterations */
357         inneriter                  += j_index_end - j_index_start;
358
359         /* Outer loop uses 7 flops */
360     }
361
362     /* Increment number of outer iterations */
363     outeriter        += nri;
364
365     /* Update outer/inner flops */
366
367     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*44);
368 }
369 /*
370  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_single
371  * Electrostatics interaction: None
372  * VdW interaction:            LennardJones
373  * Geometry:                   Particle-Particle
374  * Calculate force/pot:        Force
375  */
376 void
377 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_single
378                     (t_nblist                    * gmx_restrict       nlist,
379                      rvec                        * gmx_restrict          xx,
380                      rvec                        * gmx_restrict          ff,
381                      t_forcerec                  * gmx_restrict          fr,
382                      t_mdatoms                   * gmx_restrict     mdatoms,
383                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
384                      t_nrnb                      * gmx_restrict        nrnb)
385 {
386     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
387      * just 0 for non-waters.
388      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
389      * jnr indices corresponding to data put in the four positions in the SIMD register.
390      */
391     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
392     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
393     int              jnrA,jnrB,jnrC,jnrD;
394     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
395     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
396     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
397     real             rcutoff_scalar;
398     real             *shiftvec,*fshift,*x,*f;
399     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
400     real             scratch[4*DIM];
401     __m128           fscal,rcutoff,rcutoff2,jidxall;
402     int              vdwioffset0;
403     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
404     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
405     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
406     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
407     int              nvdwtype;
408     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
409     int              *vdwtype;
410     real             *vdwparam;
411     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
412     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
413     __m128           dummy_mask,cutoff_mask;
414     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
415     __m128           one     = _mm_set1_ps(1.0);
416     __m128           two     = _mm_set1_ps(2.0);
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     nvdwtype         = fr->ntype;
429     vdwparam         = fr->nbfp;
430     vdwtype          = mdatoms->typeA;
431
432     rcutoff_scalar   = fr->rvdw;
433     rcutoff          = _mm_set1_ps(rcutoff_scalar);
434     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
435
436     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
437     rvdw             = _mm_set1_ps(fr->rvdw);
438
439     /* Avoid stupid compiler warnings */
440     jnrA = jnrB = jnrC = jnrD = 0;
441     j_coord_offsetA = 0;
442     j_coord_offsetB = 0;
443     j_coord_offsetC = 0;
444     j_coord_offsetD = 0;
445
446     outeriter        = 0;
447     inneriter        = 0;
448
449     for(iidx=0;iidx<4*DIM;iidx++)
450     {
451         scratch[iidx] = 0.0;
452     }
453
454     /* Start outer loop over neighborlists */
455     for(iidx=0; iidx<nri; iidx++)
456     {
457         /* Load shift vector for this list */
458         i_shift_offset   = DIM*shiftidx[iidx];
459
460         /* Load limits for loop over neighbors */
461         j_index_start    = jindex[iidx];
462         j_index_end      = jindex[iidx+1];
463
464         /* Get outer coordinate index */
465         inr              = iinr[iidx];
466         i_coord_offset   = DIM*inr;
467
468         /* Load i particle coords and add shift vector */
469         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
470
471         fix0             = _mm_setzero_ps();
472         fiy0             = _mm_setzero_ps();
473         fiz0             = _mm_setzero_ps();
474
475         /* Load parameters for i particles */
476         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
477
478         /* Start inner kernel loop */
479         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
480         {
481
482             /* Get j neighbor index, and coordinate index */
483             jnrA             = jjnr[jidx];
484             jnrB             = jjnr[jidx+1];
485             jnrC             = jjnr[jidx+2];
486             jnrD             = jjnr[jidx+3];
487             j_coord_offsetA  = DIM*jnrA;
488             j_coord_offsetB  = DIM*jnrB;
489             j_coord_offsetC  = DIM*jnrC;
490             j_coord_offsetD  = DIM*jnrD;
491
492             /* load j atom coordinates */
493             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
494                                               x+j_coord_offsetC,x+j_coord_offsetD,
495                                               &jx0,&jy0,&jz0);
496
497             /* Calculate displacement vector */
498             dx00             = _mm_sub_ps(ix0,jx0);
499             dy00             = _mm_sub_ps(iy0,jy0);
500             dz00             = _mm_sub_ps(iz0,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
504
505             rinvsq00         = gmx_mm_inv_ps(rsq00);
506
507             /* Load parameters for j particles */
508             vdwjidx0A        = 2*vdwtype[jnrA+0];
509             vdwjidx0B        = 2*vdwtype[jnrB+0];
510             vdwjidx0C        = 2*vdwtype[jnrC+0];
511             vdwjidx0D        = 2*vdwtype[jnrD+0];
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             if (gmx_mm_any_lt(rsq00,rcutoff2))
518             {
519
520             /* Compute parameters for interactions between i and j atoms */
521             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
522                                          vdwparam+vdwioffset0+vdwjidx0B,
523                                          vdwparam+vdwioffset0+vdwjidx0C,
524                                          vdwparam+vdwioffset0+vdwjidx0D,
525                                          &c6_00,&c12_00);
526
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
530             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
531
532             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
533
534             fscal            = fvdw;
535
536             fscal            = _mm_and_ps(fscal,cutoff_mask);
537
538              /* Update vectorial force */
539             fix0             = _mm_macc_ps(dx00,fscal,fix0);
540             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
541             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
542
543             fjptrA             = f+j_coord_offsetA;
544             fjptrB             = f+j_coord_offsetB;
545             fjptrC             = f+j_coord_offsetC;
546             fjptrD             = f+j_coord_offsetD;
547             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
548                                                    _mm_mul_ps(dx00,fscal),
549                                                    _mm_mul_ps(dy00,fscal),
550                                                    _mm_mul_ps(dz00,fscal));
551
552             }
553
554             /* Inner loop uses 33 flops */
555         }
556
557         if(jidx<j_index_end)
558         {
559
560             /* Get j neighbor index, and coordinate index */
561             jnrlistA         = jjnr[jidx];
562             jnrlistB         = jjnr[jidx+1];
563             jnrlistC         = jjnr[jidx+2];
564             jnrlistD         = jjnr[jidx+3];
565             /* Sign of each element will be negative for non-real atoms.
566              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
567              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
568              */
569             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
570             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
571             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
572             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
573             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
574             j_coord_offsetA  = DIM*jnrA;
575             j_coord_offsetB  = DIM*jnrB;
576             j_coord_offsetC  = DIM*jnrC;
577             j_coord_offsetD  = DIM*jnrD;
578
579             /* load j atom coordinates */
580             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
581                                               x+j_coord_offsetC,x+j_coord_offsetD,
582                                               &jx0,&jy0,&jz0);
583
584             /* Calculate displacement vector */
585             dx00             = _mm_sub_ps(ix0,jx0);
586             dy00             = _mm_sub_ps(iy0,jy0);
587             dz00             = _mm_sub_ps(iz0,jz0);
588
589             /* Calculate squared distance and things based on it */
590             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
591
592             rinvsq00         = gmx_mm_inv_ps(rsq00);
593
594             /* Load parameters for j particles */
595             vdwjidx0A        = 2*vdwtype[jnrA+0];
596             vdwjidx0B        = 2*vdwtype[jnrB+0];
597             vdwjidx0C        = 2*vdwtype[jnrC+0];
598             vdwjidx0D        = 2*vdwtype[jnrD+0];
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (gmx_mm_any_lt(rsq00,rcutoff2))
605             {
606
607             /* Compute parameters for interactions between i and j atoms */
608             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
609                                          vdwparam+vdwioffset0+vdwjidx0B,
610                                          vdwparam+vdwioffset0+vdwjidx0C,
611                                          vdwparam+vdwioffset0+vdwjidx0D,
612                                          &c6_00,&c12_00);
613
614             /* LENNARD-JONES DISPERSION/REPULSION */
615
616             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
617             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
618
619             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
620
621             fscal            = fvdw;
622
623             fscal            = _mm_and_ps(fscal,cutoff_mask);
624
625             fscal            = _mm_andnot_ps(dummy_mask,fscal);
626
627              /* Update vectorial force */
628             fix0             = _mm_macc_ps(dx00,fscal,fix0);
629             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
630             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
631
632             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
633             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
634             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
635             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
636             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
637                                                    _mm_mul_ps(dx00,fscal),
638                                                    _mm_mul_ps(dy00,fscal),
639                                                    _mm_mul_ps(dz00,fscal));
640
641             }
642
643             /* Inner loop uses 33 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
649                                               f+i_coord_offset,fshift+i_shift_offset);
650
651         /* Increment number of inner iterations */
652         inneriter                  += j_index_end - j_index_start;
653
654         /* Outer loop uses 6 flops */
655     }
656
657     /* Increment number of outer iterations */
658     outeriter        += nri;
659
660     /* Update outer/inner flops */
661
662     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*33);
663 }