Created SIMD module
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJSh_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
50 #include "kernelutil_x86_avx_128_fma_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
54  * Electrostatics interaction: None
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_avx_128_fma_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
80     real             rcutoff_scalar;
81     real             *shiftvec,*fshift,*x,*f;
82     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83     real             scratch[4*DIM];
84     __m128           fscal,rcutoff,rcutoff2,jidxall;
85     int              vdwioffset0;
86     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90     int              nvdwtype;
91     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92     int              *vdwtype;
93     real             *vdwparam;
94     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
95     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
96     __m128           dummy_mask,cutoff_mask;
97     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98     __m128           one     = _mm_set1_ps(1.0);
99     __m128           two     = _mm_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     rcutoff_scalar   = fr->rvdw;
116     rcutoff          = _mm_set1_ps(rcutoff_scalar);
117     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
118
119     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
120     rvdw             = _mm_set1_ps(fr->rvdw);
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinvsq00         = gmx_mm_inv_ps(rsq00);
192
193             /* Load parameters for j particles */
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm_any_lt(rsq00,rcutoff2))
204             {
205
206             /* Compute parameters for interactions between i and j atoms */
207             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,
209                                          vdwparam+vdwioffset0+vdwjidx0C,
210                                          vdwparam+vdwioffset0+vdwjidx0D,
211                                          &c6_00,&c12_00);
212
213             /* LENNARD-JONES DISPERSION/REPULSION */
214
215             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
216             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
217             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
218             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
219                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
220             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
221
222             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
223
224             /* Update potential sum for this i atom from the interaction with this j atom. */
225             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
226             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
227
228             fscal            = fvdw;
229
230             fscal            = _mm_and_ps(fscal,cutoff_mask);
231
232              /* Update vectorial force */
233             fix0             = _mm_macc_ps(dx00,fscal,fix0);
234             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
235             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
236
237             fjptrA             = f+j_coord_offsetA;
238             fjptrB             = f+j_coord_offsetB;
239             fjptrC             = f+j_coord_offsetC;
240             fjptrD             = f+j_coord_offsetD;
241             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
242                                                    _mm_mul_ps(dx00,fscal),
243                                                    _mm_mul_ps(dy00,fscal),
244                                                    _mm_mul_ps(dz00,fscal));
245
246             }
247
248             /* Inner loop uses 44 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             /* Get j neighbor index, and coordinate index */
255             jnrlistA         = jjnr[jidx];
256             jnrlistB         = jjnr[jidx+1];
257             jnrlistC         = jjnr[jidx+2];
258             jnrlistD         = jjnr[jidx+3];
259             /* Sign of each element will be negative for non-real atoms.
260              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
261              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
262              */
263             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
264             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
265             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
266             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
267             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
268             j_coord_offsetA  = DIM*jnrA;
269             j_coord_offsetB  = DIM*jnrB;
270             j_coord_offsetC  = DIM*jnrC;
271             j_coord_offsetD  = DIM*jnrD;
272
273             /* load j atom coordinates */
274             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
275                                               x+j_coord_offsetC,x+j_coord_offsetD,
276                                               &jx0,&jy0,&jz0);
277
278             /* Calculate displacement vector */
279             dx00             = _mm_sub_ps(ix0,jx0);
280             dy00             = _mm_sub_ps(iy0,jy0);
281             dz00             = _mm_sub_ps(iz0,jz0);
282
283             /* Calculate squared distance and things based on it */
284             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
285
286             rinvsq00         = gmx_mm_inv_ps(rsq00);
287
288             /* Load parameters for j particles */
289             vdwjidx0A        = 2*vdwtype[jnrA+0];
290             vdwjidx0B        = 2*vdwtype[jnrB+0];
291             vdwjidx0C        = 2*vdwtype[jnrC+0];
292             vdwjidx0D        = 2*vdwtype[jnrD+0];
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             if (gmx_mm_any_lt(rsq00,rcutoff2))
299             {
300
301             /* Compute parameters for interactions between i and j atoms */
302             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
303                                          vdwparam+vdwioffset0+vdwjidx0B,
304                                          vdwparam+vdwioffset0+vdwjidx0C,
305                                          vdwparam+vdwioffset0+vdwjidx0D,
306                                          &c6_00,&c12_00);
307
308             /* LENNARD-JONES DISPERSION/REPULSION */
309
310             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
311             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
312             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
313             vvdw             = _mm_msub_ps(_mm_nmacc_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6),vvdw12),one_twelfth,
314                                           _mm_mul_ps( _mm_nmacc_ps(c6_00,sh_vdw_invrcut6,vvdw6),one_sixth));
315             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
316
317             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             vvdw             = _mm_and_ps(vvdw,cutoff_mask);
321             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
322             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
323
324             fscal            = fvdw;
325
326             fscal            = _mm_and_ps(fscal,cutoff_mask);
327
328             fscal            = _mm_andnot_ps(dummy_mask,fscal);
329
330              /* Update vectorial force */
331             fix0             = _mm_macc_ps(dx00,fscal,fix0);
332             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
333             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
334
335             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
336             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
337             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
338             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
339             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
340                                                    _mm_mul_ps(dx00,fscal),
341                                                    _mm_mul_ps(dy00,fscal),
342                                                    _mm_mul_ps(dz00,fscal));
343
344             }
345
346             /* Inner loop uses 44 flops */
347         }
348
349         /* End of innermost loop */
350
351         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
352                                               f+i_coord_offset,fshift+i_shift_offset);
353
354         ggid                        = gid[iidx];
355         /* Update potential energies */
356         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
357
358         /* Increment number of inner iterations */
359         inneriter                  += j_index_end - j_index_start;
360
361         /* Outer loop uses 7 flops */
362     }
363
364     /* Increment number of outer iterations */
365     outeriter        += nri;
366
367     /* Update outer/inner flops */
368
369     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*44);
370 }
371 /*
372  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_single
373  * Electrostatics interaction: None
374  * VdW interaction:            LennardJones
375  * Geometry:                   Particle-Particle
376  * Calculate force/pot:        Force
377  */
378 void
379 nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_avx_128_fma_single
380                     (t_nblist                    * gmx_restrict       nlist,
381                      rvec                        * gmx_restrict          xx,
382                      rvec                        * gmx_restrict          ff,
383                      t_forcerec                  * gmx_restrict          fr,
384                      t_mdatoms                   * gmx_restrict     mdatoms,
385                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
386                      t_nrnb                      * gmx_restrict        nrnb)
387 {
388     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
389      * just 0 for non-waters.
390      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
391      * jnr indices corresponding to data put in the four positions in the SIMD register.
392      */
393     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
394     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
395     int              jnrA,jnrB,jnrC,jnrD;
396     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
397     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
398     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
399     real             rcutoff_scalar;
400     real             *shiftvec,*fshift,*x,*f;
401     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
402     real             scratch[4*DIM];
403     __m128           fscal,rcutoff,rcutoff2,jidxall;
404     int              vdwioffset0;
405     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
406     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
407     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
408     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
409     int              nvdwtype;
410     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
411     int              *vdwtype;
412     real             *vdwparam;
413     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
414     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
415     __m128           dummy_mask,cutoff_mask;
416     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
417     __m128           one     = _mm_set1_ps(1.0);
418     __m128           two     = _mm_set1_ps(2.0);
419     x                = xx[0];
420     f                = ff[0];
421
422     nri              = nlist->nri;
423     iinr             = nlist->iinr;
424     jindex           = nlist->jindex;
425     jjnr             = nlist->jjnr;
426     shiftidx         = nlist->shift;
427     gid              = nlist->gid;
428     shiftvec         = fr->shift_vec[0];
429     fshift           = fr->fshift[0];
430     nvdwtype         = fr->ntype;
431     vdwparam         = fr->nbfp;
432     vdwtype          = mdatoms->typeA;
433
434     rcutoff_scalar   = fr->rvdw;
435     rcutoff          = _mm_set1_ps(rcutoff_scalar);
436     rcutoff2         = _mm_mul_ps(rcutoff,rcutoff);
437
438     sh_vdw_invrcut6  = _mm_set1_ps(fr->ic->sh_invrc6);
439     rvdw             = _mm_set1_ps(fr->rvdw);
440
441     /* Avoid stupid compiler warnings */
442     jnrA = jnrB = jnrC = jnrD = 0;
443     j_coord_offsetA = 0;
444     j_coord_offsetB = 0;
445     j_coord_offsetC = 0;
446     j_coord_offsetD = 0;
447
448     outeriter        = 0;
449     inneriter        = 0;
450
451     for(iidx=0;iidx<4*DIM;iidx++)
452     {
453         scratch[iidx] = 0.0;
454     }
455
456     /* Start outer loop over neighborlists */
457     for(iidx=0; iidx<nri; iidx++)
458     {
459         /* Load shift vector for this list */
460         i_shift_offset   = DIM*shiftidx[iidx];
461
462         /* Load limits for loop over neighbors */
463         j_index_start    = jindex[iidx];
464         j_index_end      = jindex[iidx+1];
465
466         /* Get outer coordinate index */
467         inr              = iinr[iidx];
468         i_coord_offset   = DIM*inr;
469
470         /* Load i particle coords and add shift vector */
471         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
472
473         fix0             = _mm_setzero_ps();
474         fiy0             = _mm_setzero_ps();
475         fiz0             = _mm_setzero_ps();
476
477         /* Load parameters for i particles */
478         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
479
480         /* Start inner kernel loop */
481         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
482         {
483
484             /* Get j neighbor index, and coordinate index */
485             jnrA             = jjnr[jidx];
486             jnrB             = jjnr[jidx+1];
487             jnrC             = jjnr[jidx+2];
488             jnrD             = jjnr[jidx+3];
489             j_coord_offsetA  = DIM*jnrA;
490             j_coord_offsetB  = DIM*jnrB;
491             j_coord_offsetC  = DIM*jnrC;
492             j_coord_offsetD  = DIM*jnrD;
493
494             /* load j atom coordinates */
495             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
496                                               x+j_coord_offsetC,x+j_coord_offsetD,
497                                               &jx0,&jy0,&jz0);
498
499             /* Calculate displacement vector */
500             dx00             = _mm_sub_ps(ix0,jx0);
501             dy00             = _mm_sub_ps(iy0,jy0);
502             dz00             = _mm_sub_ps(iz0,jz0);
503
504             /* Calculate squared distance and things based on it */
505             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
506
507             rinvsq00         = gmx_mm_inv_ps(rsq00);
508
509             /* Load parameters for j particles */
510             vdwjidx0A        = 2*vdwtype[jnrA+0];
511             vdwjidx0B        = 2*vdwtype[jnrB+0];
512             vdwjidx0C        = 2*vdwtype[jnrC+0];
513             vdwjidx0D        = 2*vdwtype[jnrD+0];
514
515             /**************************
516              * CALCULATE INTERACTIONS *
517              **************************/
518
519             if (gmx_mm_any_lt(rsq00,rcutoff2))
520             {
521
522             /* Compute parameters for interactions between i and j atoms */
523             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
524                                          vdwparam+vdwioffset0+vdwjidx0B,
525                                          vdwparam+vdwioffset0+vdwjidx0C,
526                                          vdwparam+vdwioffset0+vdwjidx0D,
527                                          &c6_00,&c12_00);
528
529             /* LENNARD-JONES DISPERSION/REPULSION */
530
531             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
532             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
533
534             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
535
536             fscal            = fvdw;
537
538             fscal            = _mm_and_ps(fscal,cutoff_mask);
539
540              /* Update vectorial force */
541             fix0             = _mm_macc_ps(dx00,fscal,fix0);
542             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
543             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
544
545             fjptrA             = f+j_coord_offsetA;
546             fjptrB             = f+j_coord_offsetB;
547             fjptrC             = f+j_coord_offsetC;
548             fjptrD             = f+j_coord_offsetD;
549             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
550                                                    _mm_mul_ps(dx00,fscal),
551                                                    _mm_mul_ps(dy00,fscal),
552                                                    _mm_mul_ps(dz00,fscal));
553
554             }
555
556             /* Inner loop uses 33 flops */
557         }
558
559         if(jidx<j_index_end)
560         {
561
562             /* Get j neighbor index, and coordinate index */
563             jnrlistA         = jjnr[jidx];
564             jnrlistB         = jjnr[jidx+1];
565             jnrlistC         = jjnr[jidx+2];
566             jnrlistD         = jjnr[jidx+3];
567             /* Sign of each element will be negative for non-real atoms.
568              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
569              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
570              */
571             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
572             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
573             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
574             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
575             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
576             j_coord_offsetA  = DIM*jnrA;
577             j_coord_offsetB  = DIM*jnrB;
578             j_coord_offsetC  = DIM*jnrC;
579             j_coord_offsetD  = DIM*jnrD;
580
581             /* load j atom coordinates */
582             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
583                                               x+j_coord_offsetC,x+j_coord_offsetD,
584                                               &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm_sub_ps(ix0,jx0);
588             dy00             = _mm_sub_ps(iy0,jy0);
589             dz00             = _mm_sub_ps(iz0,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
593
594             rinvsq00         = gmx_mm_inv_ps(rsq00);
595
596             /* Load parameters for j particles */
597             vdwjidx0A        = 2*vdwtype[jnrA+0];
598             vdwjidx0B        = 2*vdwtype[jnrB+0];
599             vdwjidx0C        = 2*vdwtype[jnrC+0];
600             vdwjidx0D        = 2*vdwtype[jnrD+0];
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (gmx_mm_any_lt(rsq00,rcutoff2))
607             {
608
609             /* Compute parameters for interactions between i and j atoms */
610             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
611                                          vdwparam+vdwioffset0+vdwjidx0B,
612                                          vdwparam+vdwioffset0+vdwjidx0C,
613                                          vdwparam+vdwioffset0+vdwjidx0D,
614                                          &c6_00,&c12_00);
615
616             /* LENNARD-JONES DISPERSION/REPULSION */
617
618             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
619             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
620
621             cutoff_mask      = _mm_cmplt_ps(rsq00,rcutoff2);
622
623             fscal            = fvdw;
624
625             fscal            = _mm_and_ps(fscal,cutoff_mask);
626
627             fscal            = _mm_andnot_ps(dummy_mask,fscal);
628
629              /* Update vectorial force */
630             fix0             = _mm_macc_ps(dx00,fscal,fix0);
631             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
632             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
633
634             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
635             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
636             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
637             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
638             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
639                                                    _mm_mul_ps(dx00,fscal),
640                                                    _mm_mul_ps(dy00,fscal),
641                                                    _mm_mul_ps(dz00,fscal));
642
643             }
644
645             /* Inner loop uses 33 flops */
646         }
647
648         /* End of innermost loop */
649
650         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
651                                               f+i_coord_offset,fshift+i_shift_offset);
652
653         /* Increment number of inner iterations */
654         inneriter                  += j_index_end - j_index_start;
655
656         /* Outer loop uses 6 flops */
657     }
658
659     /* Increment number of outer iterations */
660     outeriter        += nri;
661
662     /* Update outer/inner flops */
663
664     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*33);
665 }