Compile nonbonded kernels as C++
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_avx_128_fma_single.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/gmxlib/nrnb.h"
46
47 #include "kernelutil_x86_avx_128_fma_single.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
51  * Electrostatics interaction: None
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      struct t_forcerec           * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
67      * just 0 for non-waters.
68      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
69      * jnr indices corresponding to data put in the four positions in the SIMD register.
70      */
71     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
72     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
73     int              jnrA,jnrB,jnrC,jnrD;
74     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
75     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
76     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
77     real             rcutoff_scalar;
78     real             *shiftvec,*fshift,*x,*f;
79     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
80     real             scratch[4*DIM];
81     __m128           fscal,rcutoff,rcutoff2,jidxall;
82     int              vdwioffset0;
83     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
84     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
85     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
86     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
87     int              nvdwtype;
88     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
89     int              *vdwtype;
90     real             *vdwparam;
91     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
92     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
93     __m128           c6grid_00;
94     real             *vdwgridparam;
95     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
96     __m128           one_half = _mm_set1_ps(0.5);
97     __m128           minus_one = _mm_set1_ps(-1.0);
98     __m128           dummy_mask,cutoff_mask;
99     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100     __m128           one     = _mm_set1_ps(1.0);
101     __m128           two     = _mm_set1_ps(2.0);
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116     vdwgridparam     = fr->ljpme_c6grid;
117     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
118     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
119     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
152
153         fix0             = _mm_setzero_ps();
154         fiy0             = _mm_setzero_ps();
155         fiz0             = _mm_setzero_ps();
156
157         /* Load parameters for i particles */
158         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         vvdwsum          = _mm_setzero_ps();
162
163         /* Start inner kernel loop */
164         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
165         {
166
167             /* Get j neighbor index, and coordinate index */
168             jnrA             = jjnr[jidx];
169             jnrB             = jjnr[jidx+1];
170             jnrC             = jjnr[jidx+2];
171             jnrD             = jjnr[jidx+3];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176
177             /* load j atom coordinates */
178             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
179                                               x+j_coord_offsetC,x+j_coord_offsetD,
180                                               &jx0,&jy0,&jz0);
181
182             /* Calculate displacement vector */
183             dx00             = _mm_sub_ps(ix0,jx0);
184             dy00             = _mm_sub_ps(iy0,jy0);
185             dz00             = _mm_sub_ps(iz0,jz0);
186
187             /* Calculate squared distance and things based on it */
188             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
189
190             rinv00           = avx128fma_invsqrt_f(rsq00);
191
192             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
193
194             /* Load parameters for j particles */
195             vdwjidx0A        = 2*vdwtype[jnrA+0];
196             vdwjidx0B        = 2*vdwtype[jnrB+0];
197             vdwjidx0C        = 2*vdwtype[jnrC+0];
198             vdwjidx0D        = 2*vdwtype[jnrD+0];
199
200             /**************************
201              * CALCULATE INTERACTIONS *
202              **************************/
203
204             r00              = _mm_mul_ps(rsq00,rinv00);
205
206             /* Compute parameters for interactions between i and j atoms */
207             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
208                                          vdwparam+vdwioffset0+vdwjidx0B,
209                                          vdwparam+vdwioffset0+vdwjidx0C,
210                                          vdwparam+vdwioffset0+vdwjidx0D,
211                                          &c6_00,&c12_00);
212
213             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
214                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
215                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
216                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
217
218             /* Analytical LJ-PME */
219             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
220             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
221             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
222             exponent         = avx128fma_exp_f(ewcljrsq);
223             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
224             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
225             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
226             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
227             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
228             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
229             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
230             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
234
235             fscal            = fvdw;
236
237              /* Update vectorial force */
238             fix0             = _mm_macc_ps(dx00,fscal,fix0);
239             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
240             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
241
242             fjptrA             = f+j_coord_offsetA;
243             fjptrB             = f+j_coord_offsetB;
244             fjptrC             = f+j_coord_offsetC;
245             fjptrD             = f+j_coord_offsetD;
246             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
247                                                    _mm_mul_ps(dx00,fscal),
248                                                    _mm_mul_ps(dy00,fscal),
249                                                    _mm_mul_ps(dz00,fscal));
250
251             /* Inner loop uses 50 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             /* Get j neighbor index, and coordinate index */
258             jnrlistA         = jjnr[jidx];
259             jnrlistB         = jjnr[jidx+1];
260             jnrlistC         = jjnr[jidx+2];
261             jnrlistD         = jjnr[jidx+3];
262             /* Sign of each element will be negative for non-real atoms.
263              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
264              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
265              */
266             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
267             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
268             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
269             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
270             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
271             j_coord_offsetA  = DIM*jnrA;
272             j_coord_offsetB  = DIM*jnrB;
273             j_coord_offsetC  = DIM*jnrC;
274             j_coord_offsetD  = DIM*jnrD;
275
276             /* load j atom coordinates */
277             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
278                                               x+j_coord_offsetC,x+j_coord_offsetD,
279                                               &jx0,&jy0,&jz0);
280
281             /* Calculate displacement vector */
282             dx00             = _mm_sub_ps(ix0,jx0);
283             dy00             = _mm_sub_ps(iy0,jy0);
284             dz00             = _mm_sub_ps(iz0,jz0);
285
286             /* Calculate squared distance and things based on it */
287             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
288
289             rinv00           = avx128fma_invsqrt_f(rsq00);
290
291             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
292
293             /* Load parameters for j particles */
294             vdwjidx0A        = 2*vdwtype[jnrA+0];
295             vdwjidx0B        = 2*vdwtype[jnrB+0];
296             vdwjidx0C        = 2*vdwtype[jnrC+0];
297             vdwjidx0D        = 2*vdwtype[jnrD+0];
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             r00              = _mm_mul_ps(rsq00,rinv00);
304             r00              = _mm_andnot_ps(dummy_mask,r00);
305
306             /* Compute parameters for interactions between i and j atoms */
307             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
308                                          vdwparam+vdwioffset0+vdwjidx0B,
309                                          vdwparam+vdwioffset0+vdwjidx0C,
310                                          vdwparam+vdwioffset0+vdwjidx0D,
311                                          &c6_00,&c12_00);
312
313             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
314                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
315                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
316                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
317
318             /* Analytical LJ-PME */
319             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
320             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
321             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
322             exponent         = avx128fma_exp_f(ewcljrsq);
323             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
324             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
325             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
326             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
327             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
328             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
329             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
330             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
334             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
335
336             fscal            = fvdw;
337
338             fscal            = _mm_andnot_ps(dummy_mask,fscal);
339
340              /* Update vectorial force */
341             fix0             = _mm_macc_ps(dx00,fscal,fix0);
342             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
343             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
344
345             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
346             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
347             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
348             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
349             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
350                                                    _mm_mul_ps(dx00,fscal),
351                                                    _mm_mul_ps(dy00,fscal),
352                                                    _mm_mul_ps(dz00,fscal));
353
354             /* Inner loop uses 51 flops */
355         }
356
357         /* End of innermost loop */
358
359         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
360                                               f+i_coord_offset,fshift+i_shift_offset);
361
362         ggid                        = gid[iidx];
363         /* Update potential energies */
364         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
365
366         /* Increment number of inner iterations */
367         inneriter                  += j_index_end - j_index_start;
368
369         /* Outer loop uses 7 flops */
370     }
371
372     /* Increment number of outer iterations */
373     outeriter        += nri;
374
375     /* Update outer/inner flops */
376
377     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
378 }
379 /*
380  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_128_fma_single
381  * Electrostatics interaction: None
382  * VdW interaction:            LJEwald
383  * Geometry:                   Particle-Particle
384  * Calculate force/pot:        Force
385  */
386 void
387 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_128_fma_single
388                     (t_nblist                    * gmx_restrict       nlist,
389                      rvec                        * gmx_restrict          xx,
390                      rvec                        * gmx_restrict          ff,
391                      struct t_forcerec           * gmx_restrict          fr,
392                      t_mdatoms                   * gmx_restrict     mdatoms,
393                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
394                      t_nrnb                      * gmx_restrict        nrnb)
395 {
396     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
397      * just 0 for non-waters.
398      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
399      * jnr indices corresponding to data put in the four positions in the SIMD register.
400      */
401     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
402     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
403     int              jnrA,jnrB,jnrC,jnrD;
404     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
405     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
406     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
407     real             rcutoff_scalar;
408     real             *shiftvec,*fshift,*x,*f;
409     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
410     real             scratch[4*DIM];
411     __m128           fscal,rcutoff,rcutoff2,jidxall;
412     int              vdwioffset0;
413     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
414     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
415     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
416     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
417     int              nvdwtype;
418     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
419     int              *vdwtype;
420     real             *vdwparam;
421     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
422     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
423     __m128           c6grid_00;
424     real             *vdwgridparam;
425     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
426     __m128           one_half = _mm_set1_ps(0.5);
427     __m128           minus_one = _mm_set1_ps(-1.0);
428     __m128           dummy_mask,cutoff_mask;
429     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
430     __m128           one     = _mm_set1_ps(1.0);
431     __m128           two     = _mm_set1_ps(2.0);
432     x                = xx[0];
433     f                = ff[0];
434
435     nri              = nlist->nri;
436     iinr             = nlist->iinr;
437     jindex           = nlist->jindex;
438     jjnr             = nlist->jjnr;
439     shiftidx         = nlist->shift;
440     gid              = nlist->gid;
441     shiftvec         = fr->shift_vec[0];
442     fshift           = fr->fshift[0];
443     nvdwtype         = fr->ntype;
444     vdwparam         = fr->nbfp;
445     vdwtype          = mdatoms->typeA;
446     vdwgridparam     = fr->ljpme_c6grid;
447     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
448     ewclj            = _mm_set1_ps(fr->ic->ewaldcoeff_lj);
449     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
450
451     /* Avoid stupid compiler warnings */
452     jnrA = jnrB = jnrC = jnrD = 0;
453     j_coord_offsetA = 0;
454     j_coord_offsetB = 0;
455     j_coord_offsetC = 0;
456     j_coord_offsetD = 0;
457
458     outeriter        = 0;
459     inneriter        = 0;
460
461     for(iidx=0;iidx<4*DIM;iidx++)
462     {
463         scratch[iidx] = 0.0;
464     }
465
466     /* Start outer loop over neighborlists */
467     for(iidx=0; iidx<nri; iidx++)
468     {
469         /* Load shift vector for this list */
470         i_shift_offset   = DIM*shiftidx[iidx];
471
472         /* Load limits for loop over neighbors */
473         j_index_start    = jindex[iidx];
474         j_index_end      = jindex[iidx+1];
475
476         /* Get outer coordinate index */
477         inr              = iinr[iidx];
478         i_coord_offset   = DIM*inr;
479
480         /* Load i particle coords and add shift vector */
481         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
482
483         fix0             = _mm_setzero_ps();
484         fiy0             = _mm_setzero_ps();
485         fiz0             = _mm_setzero_ps();
486
487         /* Load parameters for i particles */
488         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
489
490         /* Start inner kernel loop */
491         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
492         {
493
494             /* Get j neighbor index, and coordinate index */
495             jnrA             = jjnr[jidx];
496             jnrB             = jjnr[jidx+1];
497             jnrC             = jjnr[jidx+2];
498             jnrD             = jjnr[jidx+3];
499             j_coord_offsetA  = DIM*jnrA;
500             j_coord_offsetB  = DIM*jnrB;
501             j_coord_offsetC  = DIM*jnrC;
502             j_coord_offsetD  = DIM*jnrD;
503
504             /* load j atom coordinates */
505             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
506                                               x+j_coord_offsetC,x+j_coord_offsetD,
507                                               &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm_sub_ps(ix0,jx0);
511             dy00             = _mm_sub_ps(iy0,jy0);
512             dz00             = _mm_sub_ps(iz0,jz0);
513
514             /* Calculate squared distance and things based on it */
515             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
516
517             rinv00           = avx128fma_invsqrt_f(rsq00);
518
519             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
520
521             /* Load parameters for j particles */
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523             vdwjidx0B        = 2*vdwtype[jnrB+0];
524             vdwjidx0C        = 2*vdwtype[jnrC+0];
525             vdwjidx0D        = 2*vdwtype[jnrD+0];
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r00              = _mm_mul_ps(rsq00,rinv00);
532
533             /* Compute parameters for interactions between i and j atoms */
534             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
535                                          vdwparam+vdwioffset0+vdwjidx0B,
536                                          vdwparam+vdwioffset0+vdwjidx0C,
537                                          vdwparam+vdwioffset0+vdwjidx0D,
538                                          &c6_00,&c12_00);
539
540             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
541                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
542                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
544
545             /* Analytical LJ-PME */
546             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
547             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
548             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
549             exponent         = avx128fma_exp_f(ewcljrsq);
550             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
551             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
552             /* f6A = 6 * C6grid * (1 - poly) */
553             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
554             /* f6B = C6grid * exponent * beta^6 */
555             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
556             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
557             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
558
559             fscal            = fvdw;
560
561              /* Update vectorial force */
562             fix0             = _mm_macc_ps(dx00,fscal,fix0);
563             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
564             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
565
566             fjptrA             = f+j_coord_offsetA;
567             fjptrB             = f+j_coord_offsetB;
568             fjptrC             = f+j_coord_offsetC;
569             fjptrD             = f+j_coord_offsetD;
570             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
571                                                    _mm_mul_ps(dx00,fscal),
572                                                    _mm_mul_ps(dy00,fscal),
573                                                    _mm_mul_ps(dz00,fscal));
574
575             /* Inner loop uses 47 flops */
576         }
577
578         if(jidx<j_index_end)
579         {
580
581             /* Get j neighbor index, and coordinate index */
582             jnrlistA         = jjnr[jidx];
583             jnrlistB         = jjnr[jidx+1];
584             jnrlistC         = jjnr[jidx+2];
585             jnrlistD         = jjnr[jidx+3];
586             /* Sign of each element will be negative for non-real atoms.
587              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
588              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
589              */
590             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
591             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
592             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
593             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
594             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
595             j_coord_offsetA  = DIM*jnrA;
596             j_coord_offsetB  = DIM*jnrB;
597             j_coord_offsetC  = DIM*jnrC;
598             j_coord_offsetD  = DIM*jnrD;
599
600             /* load j atom coordinates */
601             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
602                                               x+j_coord_offsetC,x+j_coord_offsetD,
603                                               &jx0,&jy0,&jz0);
604
605             /* Calculate displacement vector */
606             dx00             = _mm_sub_ps(ix0,jx0);
607             dy00             = _mm_sub_ps(iy0,jy0);
608             dz00             = _mm_sub_ps(iz0,jz0);
609
610             /* Calculate squared distance and things based on it */
611             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
612
613             rinv00           = avx128fma_invsqrt_f(rsq00);
614
615             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
616
617             /* Load parameters for j particles */
618             vdwjidx0A        = 2*vdwtype[jnrA+0];
619             vdwjidx0B        = 2*vdwtype[jnrB+0];
620             vdwjidx0C        = 2*vdwtype[jnrC+0];
621             vdwjidx0D        = 2*vdwtype[jnrD+0];
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r00              = _mm_mul_ps(rsq00,rinv00);
628             r00              = _mm_andnot_ps(dummy_mask,r00);
629
630             /* Compute parameters for interactions between i and j atoms */
631             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
632                                          vdwparam+vdwioffset0+vdwjidx0B,
633                                          vdwparam+vdwioffset0+vdwjidx0C,
634                                          vdwparam+vdwioffset0+vdwjidx0D,
635                                          &c6_00,&c12_00);
636
637             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
638                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
639                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
640                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
641
642             /* Analytical LJ-PME */
643             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
644             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
645             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
646             exponent         = avx128fma_exp_f(ewcljrsq);
647             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
648             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
649             /* f6A = 6 * C6grid * (1 - poly) */
650             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
651             /* f6B = C6grid * exponent * beta^6 */
652             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
653             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
654             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
655
656             fscal            = fvdw;
657
658             fscal            = _mm_andnot_ps(dummy_mask,fscal);
659
660              /* Update vectorial force */
661             fix0             = _mm_macc_ps(dx00,fscal,fix0);
662             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
663             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
664
665             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
666             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
667             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
668             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
669             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
670                                                    _mm_mul_ps(dx00,fscal),
671                                                    _mm_mul_ps(dy00,fscal),
672                                                    _mm_mul_ps(dz00,fscal));
673
674             /* Inner loop uses 48 flops */
675         }
676
677         /* End of innermost loop */
678
679         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
680                                               f+i_coord_offset,fshift+i_shift_offset);
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 6 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
694 }