37a9fbb9f5d90e8de0686a8168011e44cdc375a7
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecNone_VdwLJEw_GeomP1P1_avx_128_fma_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_128_fma_single kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 #include "gromacs/simd/math_x86_avx_128_fma_single.h"
48 #include "kernelutil_x86_avx_128_fma_single.h"
49
50 /*
51  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
52  * Electrostatics interaction: None
53  * VdW interaction:            LJEwald
54  * Geometry:                   Particle-Particle
55  * Calculate force/pot:        PotentialAndForce
56  */
57 void
58 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_avx_128_fma_single
59                     (t_nblist                    * gmx_restrict       nlist,
60                      rvec                        * gmx_restrict          xx,
61                      rvec                        * gmx_restrict          ff,
62                      t_forcerec                  * gmx_restrict          fr,
63                      t_mdatoms                   * gmx_restrict     mdatoms,
64                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
65                      t_nrnb                      * gmx_restrict        nrnb)
66 {
67     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
68      * just 0 for non-waters.
69      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
70      * jnr indices corresponding to data put in the four positions in the SIMD register.
71      */
72     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
73     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
74     int              jnrA,jnrB,jnrC,jnrD;
75     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
76     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
77     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
78     real             rcutoff_scalar;
79     real             *shiftvec,*fshift,*x,*f;
80     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
81     real             scratch[4*DIM];
82     __m128           fscal,rcutoff,rcutoff2,jidxall;
83     int              vdwioffset0;
84     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
85     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
86     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
87     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
88     int              nvdwtype;
89     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
93     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
94     __m128           c6grid_00;
95     real             *vdwgridparam;
96     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
97     __m128           one_half = _mm_set1_ps(0.5);
98     __m128           minus_one = _mm_set1_ps(-1.0);
99     __m128           dummy_mask,cutoff_mask;
100     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
101     __m128           one     = _mm_set1_ps(1.0);
102     __m128           two     = _mm_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117     vdwgridparam     = fr->ljpme_c6grid;
118     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
119     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
120     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm_setzero_ps();
155         fiy0             = _mm_setzero_ps();
156         fiz0             = _mm_setzero_ps();
157
158         /* Load parameters for i particles */
159         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
160
161         /* Reset potential sums */
162         vvdwsum          = _mm_setzero_ps();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180                                               x+j_coord_offsetC,x+j_coord_offsetD,
181                                               &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm_sub_ps(ix0,jx0);
185             dy00             = _mm_sub_ps(iy0,jy0);
186             dz00             = _mm_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             vdwjidx0A        = 2*vdwtype[jnrA+0];
197             vdwjidx0B        = 2*vdwtype[jnrB+0];
198             vdwjidx0C        = 2*vdwtype[jnrC+0];
199             vdwjidx0D        = 2*vdwtype[jnrD+0];
200
201             /**************************
202              * CALCULATE INTERACTIONS *
203              **************************/
204
205             r00              = _mm_mul_ps(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
209                                          vdwparam+vdwioffset0+vdwjidx0B,
210                                          vdwparam+vdwioffset0+vdwjidx0C,
211                                          vdwparam+vdwioffset0+vdwjidx0D,
212                                          &c6_00,&c12_00);
213
214             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
215                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
216                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
217                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
218
219             /* Analytical LJ-PME */
220             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
221             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
222             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
223             exponent         = gmx_simd_exp_r(ewcljrsq);
224             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
225             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
226             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
227             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
228             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
229             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
230             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
231             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
235
236             fscal            = fvdw;
237
238              /* Update vectorial force */
239             fix0             = _mm_macc_ps(dx00,fscal,fix0);
240             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
241             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
242
243             fjptrA             = f+j_coord_offsetA;
244             fjptrB             = f+j_coord_offsetB;
245             fjptrC             = f+j_coord_offsetC;
246             fjptrD             = f+j_coord_offsetD;
247             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
248                                                    _mm_mul_ps(dx00,fscal),
249                                                    _mm_mul_ps(dy00,fscal),
250                                                    _mm_mul_ps(dz00,fscal));
251
252             /* Inner loop uses 50 flops */
253         }
254
255         if(jidx<j_index_end)
256         {
257
258             /* Get j neighbor index, and coordinate index */
259             jnrlistA         = jjnr[jidx];
260             jnrlistB         = jjnr[jidx+1];
261             jnrlistC         = jjnr[jidx+2];
262             jnrlistD         = jjnr[jidx+3];
263             /* Sign of each element will be negative for non-real atoms.
264              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
265              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
266              */
267             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
268             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
269             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
270             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
271             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
272             j_coord_offsetA  = DIM*jnrA;
273             j_coord_offsetB  = DIM*jnrB;
274             j_coord_offsetC  = DIM*jnrC;
275             j_coord_offsetD  = DIM*jnrD;
276
277             /* load j atom coordinates */
278             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
279                                               x+j_coord_offsetC,x+j_coord_offsetD,
280                                               &jx0,&jy0,&jz0);
281
282             /* Calculate displacement vector */
283             dx00             = _mm_sub_ps(ix0,jx0);
284             dy00             = _mm_sub_ps(iy0,jy0);
285             dz00             = _mm_sub_ps(iz0,jz0);
286
287             /* Calculate squared distance and things based on it */
288             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
289
290             rinv00           = gmx_mm_invsqrt_ps(rsq00);
291
292             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
293
294             /* Load parameters for j particles */
295             vdwjidx0A        = 2*vdwtype[jnrA+0];
296             vdwjidx0B        = 2*vdwtype[jnrB+0];
297             vdwjidx0C        = 2*vdwtype[jnrC+0];
298             vdwjidx0D        = 2*vdwtype[jnrD+0];
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             r00              = _mm_mul_ps(rsq00,rinv00);
305             r00              = _mm_andnot_ps(dummy_mask,r00);
306
307             /* Compute parameters for interactions between i and j atoms */
308             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
309                                          vdwparam+vdwioffset0+vdwjidx0B,
310                                          vdwparam+vdwioffset0+vdwjidx0C,
311                                          vdwparam+vdwioffset0+vdwjidx0D,
312                                          &c6_00,&c12_00);
313
314             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
315                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
316                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
317                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
318
319             /* Analytical LJ-PME */
320             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
321             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
322             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
323             exponent         = gmx_simd_exp_r(ewcljrsq);
324             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
325             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
326             /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
327             vvdw6            = _mm_mul_ps(_mm_macc_ps(-c6grid_00,_mm_sub_ps(one,poly),c6_00),rinvsix);
328             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
329             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
330             /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
331             fvdw             = _mm_mul_ps(_mm_add_ps(vvdw12,_mm_msub_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6),vvdw6)),rinvsq00);
332
333             /* Update potential sum for this i atom from the interaction with this j atom. */
334             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
335             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
336
337             fscal            = fvdw;
338
339             fscal            = _mm_andnot_ps(dummy_mask,fscal);
340
341              /* Update vectorial force */
342             fix0             = _mm_macc_ps(dx00,fscal,fix0);
343             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
344             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
345
346             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
347             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
348             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
349             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
350             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
351                                                    _mm_mul_ps(dx00,fscal),
352                                                    _mm_mul_ps(dy00,fscal),
353                                                    _mm_mul_ps(dz00,fscal));
354
355             /* Inner loop uses 51 flops */
356         }
357
358         /* End of innermost loop */
359
360         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
361                                               f+i_coord_offset,fshift+i_shift_offset);
362
363         ggid                        = gid[iidx];
364         /* Update potential energies */
365         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
366
367         /* Increment number of inner iterations */
368         inneriter                  += j_index_end - j_index_start;
369
370         /* Outer loop uses 7 flops */
371     }
372
373     /* Increment number of outer iterations */
374     outeriter        += nri;
375
376     /* Update outer/inner flops */
377
378     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*51);
379 }
380 /*
381  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_128_fma_single
382  * Electrostatics interaction: None
383  * VdW interaction:            LJEwald
384  * Geometry:                   Particle-Particle
385  * Calculate force/pot:        Force
386  */
387 void
388 nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_avx_128_fma_single
389                     (t_nblist                    * gmx_restrict       nlist,
390                      rvec                        * gmx_restrict          xx,
391                      rvec                        * gmx_restrict          ff,
392                      t_forcerec                  * gmx_restrict          fr,
393                      t_mdatoms                   * gmx_restrict     mdatoms,
394                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
395                      t_nrnb                      * gmx_restrict        nrnb)
396 {
397     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
398      * just 0 for non-waters.
399      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
400      * jnr indices corresponding to data put in the four positions in the SIMD register.
401      */
402     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
403     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
404     int              jnrA,jnrB,jnrC,jnrD;
405     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
406     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
407     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
408     real             rcutoff_scalar;
409     real             *shiftvec,*fshift,*x,*f;
410     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
411     real             scratch[4*DIM];
412     __m128           fscal,rcutoff,rcutoff2,jidxall;
413     int              vdwioffset0;
414     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
415     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
416     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
418     int              nvdwtype;
419     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
420     int              *vdwtype;
421     real             *vdwparam;
422     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
423     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
424     __m128           c6grid_00;
425     real             *vdwgridparam;
426     __m128           ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
427     __m128           one_half = _mm_set1_ps(0.5);
428     __m128           minus_one = _mm_set1_ps(-1.0);
429     __m128           dummy_mask,cutoff_mask;
430     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
431     __m128           one     = _mm_set1_ps(1.0);
432     __m128           two     = _mm_set1_ps(2.0);
433     x                = xx[0];
434     f                = ff[0];
435
436     nri              = nlist->nri;
437     iinr             = nlist->iinr;
438     jindex           = nlist->jindex;
439     jjnr             = nlist->jjnr;
440     shiftidx         = nlist->shift;
441     gid              = nlist->gid;
442     shiftvec         = fr->shift_vec[0];
443     fshift           = fr->fshift[0];
444     nvdwtype         = fr->ntype;
445     vdwparam         = fr->nbfp;
446     vdwtype          = mdatoms->typeA;
447     vdwgridparam     = fr->ljpme_c6grid;
448     sh_lj_ewald      = _mm_set1_ps(fr->ic->sh_lj_ewald);
449     ewclj            = _mm_set1_ps(fr->ewaldcoeff_lj);
450     ewclj2           = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
451
452     /* Avoid stupid compiler warnings */
453     jnrA = jnrB = jnrC = jnrD = 0;
454     j_coord_offsetA = 0;
455     j_coord_offsetB = 0;
456     j_coord_offsetC = 0;
457     j_coord_offsetD = 0;
458
459     outeriter        = 0;
460     inneriter        = 0;
461
462     for(iidx=0;iidx<4*DIM;iidx++)
463     {
464         scratch[iidx] = 0.0;
465     }
466
467     /* Start outer loop over neighborlists */
468     for(iidx=0; iidx<nri; iidx++)
469     {
470         /* Load shift vector for this list */
471         i_shift_offset   = DIM*shiftidx[iidx];
472
473         /* Load limits for loop over neighbors */
474         j_index_start    = jindex[iidx];
475         j_index_end      = jindex[iidx+1];
476
477         /* Get outer coordinate index */
478         inr              = iinr[iidx];
479         i_coord_offset   = DIM*inr;
480
481         /* Load i particle coords and add shift vector */
482         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
483
484         fix0             = _mm_setzero_ps();
485         fiy0             = _mm_setzero_ps();
486         fiz0             = _mm_setzero_ps();
487
488         /* Load parameters for i particles */
489         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
490
491         /* Start inner kernel loop */
492         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
493         {
494
495             /* Get j neighbor index, and coordinate index */
496             jnrA             = jjnr[jidx];
497             jnrB             = jjnr[jidx+1];
498             jnrC             = jjnr[jidx+2];
499             jnrD             = jjnr[jidx+3];
500             j_coord_offsetA  = DIM*jnrA;
501             j_coord_offsetB  = DIM*jnrB;
502             j_coord_offsetC  = DIM*jnrC;
503             j_coord_offsetD  = DIM*jnrD;
504
505             /* load j atom coordinates */
506             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
507                                               x+j_coord_offsetC,x+j_coord_offsetD,
508                                               &jx0,&jy0,&jz0);
509
510             /* Calculate displacement vector */
511             dx00             = _mm_sub_ps(ix0,jx0);
512             dy00             = _mm_sub_ps(iy0,jy0);
513             dz00             = _mm_sub_ps(iz0,jz0);
514
515             /* Calculate squared distance and things based on it */
516             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
517
518             rinv00           = gmx_mm_invsqrt_ps(rsq00);
519
520             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
521
522             /* Load parameters for j particles */
523             vdwjidx0A        = 2*vdwtype[jnrA+0];
524             vdwjidx0B        = 2*vdwtype[jnrB+0];
525             vdwjidx0C        = 2*vdwtype[jnrC+0];
526             vdwjidx0D        = 2*vdwtype[jnrD+0];
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             r00              = _mm_mul_ps(rsq00,rinv00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
536                                          vdwparam+vdwioffset0+vdwjidx0B,
537                                          vdwparam+vdwioffset0+vdwjidx0C,
538                                          vdwparam+vdwioffset0+vdwjidx0D,
539                                          &c6_00,&c12_00);
540
541             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
542                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
543                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
544                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
545
546             /* Analytical LJ-PME */
547             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
548             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
549             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
550             exponent         = gmx_simd_exp_r(ewcljrsq);
551             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
552             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
553             /* f6A = 6 * C6grid * (1 - poly) */
554             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
555             /* f6B = C6grid * exponent * beta^6 */
556             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
557             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
558             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
559
560             fscal            = fvdw;
561
562              /* Update vectorial force */
563             fix0             = _mm_macc_ps(dx00,fscal,fix0);
564             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
565             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
566
567             fjptrA             = f+j_coord_offsetA;
568             fjptrB             = f+j_coord_offsetB;
569             fjptrC             = f+j_coord_offsetC;
570             fjptrD             = f+j_coord_offsetD;
571             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
572                                                    _mm_mul_ps(dx00,fscal),
573                                                    _mm_mul_ps(dy00,fscal),
574                                                    _mm_mul_ps(dz00,fscal));
575
576             /* Inner loop uses 47 flops */
577         }
578
579         if(jidx<j_index_end)
580         {
581
582             /* Get j neighbor index, and coordinate index */
583             jnrlistA         = jjnr[jidx];
584             jnrlistB         = jjnr[jidx+1];
585             jnrlistC         = jjnr[jidx+2];
586             jnrlistD         = jjnr[jidx+3];
587             /* Sign of each element will be negative for non-real atoms.
588              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
589              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
590              */
591             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
592             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
593             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
594             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
595             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
596             j_coord_offsetA  = DIM*jnrA;
597             j_coord_offsetB  = DIM*jnrB;
598             j_coord_offsetC  = DIM*jnrC;
599             j_coord_offsetD  = DIM*jnrD;
600
601             /* load j atom coordinates */
602             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
603                                               x+j_coord_offsetC,x+j_coord_offsetD,
604                                               &jx0,&jy0,&jz0);
605
606             /* Calculate displacement vector */
607             dx00             = _mm_sub_ps(ix0,jx0);
608             dy00             = _mm_sub_ps(iy0,jy0);
609             dz00             = _mm_sub_ps(iz0,jz0);
610
611             /* Calculate squared distance and things based on it */
612             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
613
614             rinv00           = gmx_mm_invsqrt_ps(rsq00);
615
616             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
617
618             /* Load parameters for j particles */
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620             vdwjidx0B        = 2*vdwtype[jnrB+0];
621             vdwjidx0C        = 2*vdwtype[jnrC+0];
622             vdwjidx0D        = 2*vdwtype[jnrD+0];
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             r00              = _mm_mul_ps(rsq00,rinv00);
629             r00              = _mm_andnot_ps(dummy_mask,r00);
630
631             /* Compute parameters for interactions between i and j atoms */
632             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
633                                          vdwparam+vdwioffset0+vdwjidx0B,
634                                          vdwparam+vdwioffset0+vdwjidx0C,
635                                          vdwparam+vdwioffset0+vdwjidx0D,
636                                          &c6_00,&c12_00);
637
638             c6grid_00       = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
639                                                                vdwgridparam+vdwioffset0+vdwjidx0B,
640                                                                vdwgridparam+vdwioffset0+vdwjidx0C,
641                                                                vdwgridparam+vdwioffset0+vdwjidx0D);
642
643             /* Analytical LJ-PME */
644             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
645             ewcljrsq         = _mm_mul_ps(ewclj2,rsq00);
646             ewclj6           = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
647             exponent         = gmx_simd_exp_r(ewcljrsq);
648             /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
649             poly             = _mm_mul_ps(exponent,_mm_macc_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half,_mm_sub_ps(one,ewcljrsq)));
650             /* f6A = 6 * C6grid * (1 - poly) */
651             f6A              = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
652             /* f6B = C6grid * exponent * beta^6 */
653             f6B              = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
654             /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
655             fvdw              = _mm_mul_ps(_mm_macc_ps(_mm_msub_ps(c12_00,rinvsix,_mm_sub_ps(c6_00,f6A)),rinvsix,f6B),rinvsq00);
656
657             fscal            = fvdw;
658
659             fscal            = _mm_andnot_ps(dummy_mask,fscal);
660
661              /* Update vectorial force */
662             fix0             = _mm_macc_ps(dx00,fscal,fix0);
663             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
664             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
665
666             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
667             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
668             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
669             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
670             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
671                                                    _mm_mul_ps(dx00,fscal),
672                                                    _mm_mul_ps(dy00,fscal),
673                                                    _mm_mul_ps(dz00,fscal));
674
675             /* Inner loop uses 48 flops */
676         }
677
678         /* End of innermost loop */
679
680         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
681                                               f+i_coord_offset,fshift+i_shift_offset);
682
683         /* Increment number of inner iterations */
684         inneriter                  += j_index_end - j_index_start;
685
686         /* Outer loop uses 6 flops */
687     }
688
689     /* Increment number of outer iterations */
690     outeriter        += nri;
691
692     /* Update outer/inner flops */
693
694     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*48);
695 }